TEMEL HAREKAT
(AIRCRAFT OPERATIONS)
ADI SOYADI: KÜBRA MERCAN
ÖĞRETİM GÖREVLİSİ :ÜMİT ÇENDEK
BÖLÜMÜ : HAVA LOJİSTİĞİ
Uçuş Harekât Uzmanı
Uçuş Harekât Uzmanı (DİSPEÇER)
Uçuş Harekât Uzmanı; uçuşların öncelikle emniyetle gerçekleştirilmesi için gerekli tüm uçuş planlamalarını yapar ve uçuş boyunca uçuşu takip eder.
Uçuşun herhangi bir safhasında Mesul Pilotun talebi veya ele ulaşan bilgiler ışığında uçuşun güvenli ve etkin bir şekilde devamını sağlamak için uçuş ekibini bilgilendiren, uçuş hakkındaki bilgilerin gerekli birimlere aktarılması için uçuşu izleyen, acil durum (sabotaj, kaza kırım, uçak kaçırma vb.) bilgilerinin gerekli birimlere iletilmesini sağlayan, Sivil Havacılık Genel Müdürlüğü tarafından lisanslandırılan kişidir.
Uçuş Harekât Uzmanları, hava araçlarının mümkün olduğunca hızlı ve emniyetli bir şekilde kalkışa hazırlanmalarını sağlarlar.
Herhangi bir hava aracının uçuşa hazırlanması ile ilişkili farklı operasyonların/işlemlerin ve hizmetlerin tümünün, söz konusu uçağın kendisine tahsis edilmiş zamanda kalkış gerçekleştirebilmesine imkân verecek şekilde doğru zamanda ve doğru sırada bir araya getirilmesini sağlarlar.
Uçuş Harekât Uzmanları; temizlik, yakıt ikmali ile bagaj ve kargo yüklemesi işlemlerini kapsayan faaliyetleri takip ederek, kalkışa hazır olduklarından emin olmak üzere kabin ekibi ve hava aracı teknisyenleri ile yakından ilişki kurar ve bu kişilerle birlikte hareket ederler.
Uçuş Harekât Uzmanları, farklı hizmet sağlayıcılarının tümü ile temasın sürdürülebilmesi için operasyonel planlama araçlarından elektronik sistemlere kadar geniş bir dizi teknolojiden yararlanırlar.
Bu görev ayrıca, esnek çalışma saatleri gerektirmektedir. Uçuşlar günün her saatinde gerçekleştirileceğinden vardiyalı çalışma sistemi gerektirir, bu da sabahın erken saatlerinde, gecenin geç saatlerinde, hafta sonlarında ve resmi tatil günlerinde çalışmanızın beklenebileceği anlamına gelmektedir.
UÇUŞ HAREKAT UZMANLIĞI
LİSANS başvurusu :
Uçuş Harekat Uzmanı lisansı için SHY-UHU Yönetmeliği’nin Ek-3’te belirtilen belgeler ve lisans başvuru formu ile Genel Müdürlüğe başvuruda bulunulur. Formun güncel hali Genel Müdürlük resmi internet sayfasında yayımlanır.
Teorik ve uygulamalı eğitimleri tamamlayarak teorik ve uygulamalı sınavlar ile stajdan başarılı olan adaylar, stajın bitim tarihinden itibaren en geç 9 ay içinde lisans tanzimi için Genel Müdürlüğe başvuruda bulunur. Belirtilen süre içerisinde başvuruda bulunmayan adaylar, lisanslarının tanzim edilebilmesi için tekrar teorik ve uygulamalı sınavlara girerek bu sınavlardan başarılı olmalı ve stajlarını başarı ile tamamlamak zorundadır.
Genel Müdürlük, SHY-UHU Yönetmeliğinde belirtilen teorik ve uygulamalı eğitimler ile asgari staj deneyimi şartlarını sağlayan kişilere uçuş harekât uzmanı lisansı düzenler.
Ön şartlar
Uçuş harekât uzmanı eğitimi almak isteyen adaylarda aşağıdaki nitelikler aranır:
- 21 yaşından gün almış olmak.
- En az ön lisans programlarının birinden mezun olmak.
- Ölçme, Seçme ve Yerleştirme Merkezi Başkanlığı tarafından yapılan veya denkliği belirlenen İngilizce sınavlarının birinden en az 50 veya eş değeri puan almak.
- Genel Müdürlük tarafından yetkilendirilmiş havacılık tıp merkezlerinde yapılan muayene sonucunda, uçuş harekât uzmanı görevlerini yerine getirmeye engel teşkil edebilecek herhangi bir fiziksel ya da akli hastalığa sahip olmadığını, merkezi sinir sisteminin normal olduğunu, gözlüklü ya da gözlüksüz en az 6/9 görme keskinliğine sahip olduğunu, yeterli işitme kapasitesine sahip olduğunu, kulak, burun ve boğaz fonksiyonlarının normal olduğunu belgeleyen sağlık kaydına sahip olmak.
Eğitim ve Deneyim Şartları:
Uçuş harekât uzmanı lisansına esas asgari eğitim süreleri aşağıdaki gibidir:
Genel Müdürlük tarafından bu Yönetmelik kapsamında yetkilendirilmiş veya ICAO Doc. 7192-AN/857 PART D–3 dokümanında belirtilen uçuş harekât uzmanı temel eğitimi için gerekli eğitim programını (müfredatını) uygulayan üniversitelerin sivil havacılık ile ilgili bölümlerinden lisans veya ön lisans derecesi ile mezun olanların asgari teorik eğitimi tamamladıkları kabul edilir ve doğrudan teorik ve uygulama sınavına kabul edilirler.
Asgari CPL lisansı sahibi olan pilotlar veya geçerli hava trafik kontrolörü lisansına sahip olanlar için talep etmeleri durumunda, uçuş harekât uzmanı eğitimi vermeye yetkili kuruluş tarafından, ICAO Doc. 7192-AN/857 PART D–3 dokümanında belirtilen önceden tecrübesi olanlara yönelik teorik ve uygulamalı eğitim programları uygulanır.
Görev yaptığı işletmenin uçuş harekât biriminde, yine aynı işletmede görevli FDI gözetiminde asgari 2 yıl süresince çalışan adaylar için talep etmeleri durumunda, uçuş harekât uzmanı eğitimi vermeye yetkili kuruluş tarafından ICAO Doc. 7192-AN/857 PART D–3 dokümanında belirtilen önceden tecrübesi olanlara yönelik teorik ve uygulamalı eğitim programları uygulanır.
Meteoroloji eğitimi veren üniversitelerin en az ön lisans programlarından mezun olanlar için talep etmeleri durumunda, uçuş harekât uzmanı eğitimi vermeye yetkili kuruluş tarafından, ICAO Doc. 7192-AN/857 PART D–3 dokümanında belirtilen önceden tecrübesi olanlara yönelik teorik ve uygulamalı eğitim programları uygulanır.
Sivil havacılık alanında eğitim veren üniversite ve yüksek okulların ilgili bölümlerinden mezun olmuş adaylar için talep etmeleri durumunda, uçuş harekât uzmanı eğitimi vermeye yetkili kuruluş tarafından, ICAO Doc. 7192-AN/857 PART D–3 dokümanında belirtilen önceden tecrübesi olanlara yönelik teorik ve uygulamalı eğitim programları uygulanır.
Bu fıkranın (a), (b), (c), (ç) ve (d) bentlerinde belirtilenler dışında uçuş harekât uzmanı eğitimi alacak adaylar için, uçuş harekât uzmanı eğitimi vermeye yetkili kuruluş tarafından, ICAO Doc. 7192-AN/857 PART D–3 dokümanında belirtilen önceden tecrübesi olmayanlara yönelik teorik ve uygulamalı eğitim programları uygulanır.
Yukarıda belirtilen adayların lisanslarının tanzim edilebilmesi için Genel Müdürlük tarafından düzenlenen teorik ve uygulamalı sınavlardan başarılı olmaları ve asgari 30 iş günü mesleki staj yapmış olmaları zorunludur.
Ground Operations
Description
Ground Operations involves all aspects of aircraft handling at the airport as well as aircraft movement around the aerodrome except when on active runways. The safety challenges of ground operations are partly to do directly with those operations, for example ensuring that aircraft are not involved in collisions and that the jet efflux from large aircraft does not hazard small ones. Even more important, ground operations are about preparing aircraft for departure in such a way that the subsequent flight will be safe too, for example correct loading of cargo and baggage, sufficient and verified fuel of adequate quantity and quality and the correct use of ground de/anti icing facilities where appropriate.
Açıklama
Yer Operasyonları, havalimanındaki uçak taşımacılığının tüm yönlerinin yanı sıra, aktif pistlerde olduğu durumlar haricinde, havaalanındaki uçak hareketlerini içerir. Yer operasyonlarının güvenlik zorlukları kısmen bu operasyonlarla doğrudan ilgilidir, örneğin uçağın çarpışmalara karışmamasını ve büyük uçaklardan gelen jet akışının küçükleri tehlikeye atmamasını sağlamak. Daha da önemlisi, kara operasyonları, uçağın kalkış için hazırlanması, müteakip uçuşun da güvenli olacağı şekilde, örneğin doğru kargo ve bagaj yüklemesi, yeterli miktarda ve kalitede yeterli ve doğrulanmış yakıt ve doğru toprak kullanımı / uygun olan yerlerde buzlanma önleme tesisleri.
RVSM (Reduced Vertical Separation Minima) : AZALTILMIŞ DİKEY AYIRMA MİNİMUMLARI.
HAVAARACI TÜRLERİNE GÖRE OPERASYON ÇEŞİTLERİNİ YAZINIZ.,
TYPES OF AIRCRAFT
AIRCRAFT.
Commercial aircraft / Private aircraft.
Lighter than aircraft / Heavier than aircraft
Cargo aircraft / Passenger aircraft
Jet aircraft / Propeller aircraft
Light aircraft / Heavy aircraft
Small aircraft / Large aircraft
Powered aircraft / Unpowered aircraft
Fixed-wing aircraft / Rotary wing aircraft
Land aircraft / Sea aircraft
Commuter aircraft
-------------------------------------
AIRPLANES.
AMPHIBIANS
AIRSHIPS
- Zepplins.
- Nonrigid airships (blimps),
BALLOONS / Ballooning
- Hot air balloons.
DRONES.
GLIDERS / Gliding
- hang gliders
- sailplanes.
HOMEBUILTS
HELICOPTERS.
PARACHUTES / Parachuting
SEA PLANES.
Floatplanes,
Flying boats.
ULTRALIGHTS.
UNMANNED AERIAL VEHICLES (UAV).
WARBIRDS
Hava aracı operasyon türlerinin 20 tanesini yazınız ve açıklayınız.
UÇUŞ. AMAÇLARINA GÖRE.
AKROBASİ.
Aerobatics.
ARAŞTIRMA.
Aerial survey
ARAÇ TRAFİĞİ
Traffic reporting
ARAMA KURTARMA.
Search and rescue
DOĞA
Bush flying
DENEYSEL
Experimental aircraft
EĞİTİM.
Flight training
Fantasy flights
FOTOĞRAF.
Aerial photography
İŞ.
Business aircraft
HAVA YARIŞI.
Air racing
GÖSTERİ.
Air shows
HAVA TAKSİ
Air taxi
KİRALAMA
Air charter
POLİS
Police aviation
REKLAM
Aerial advertising
SAĞLIK.
Air ambulance operations
TURİZM / GEZİ
Tourism (Sightseeing)
YARDIM / HAYIR.
Angel flights
Fantasy flights
YANGIN.
Aerial firefighting
YÜK.
Air cargo flights
ZİRAİ MÜCADELE
Crop dusting
Agricultural aircraft
--------------------------------------------
UÇAKTA FARKLI AĞIRLIK TÜRLERİ
- Zero-fuel weight (ZFW)
- Operating empty weight (OEW)
- Maximum Take Off Weight (MTOW)
- Maximum zero-fuel weight (MZFW)
- Maximum landing weight (MLW)
- Manufacturer's empty weight (MEW)
ALL WEATHER OPERATIONS
Decision Height + ILS Categories
Operations Manual
Contents
1 Description
2 Contents of an Operations Manual
3 EU-OPS Requirements
4 Subsidiary Documentation
5 Amendment of the Operations Manual
6 Further Reading
7 Further Reading
Description
An Operations Manual should contain procedures, instructions and guidance for use by operational personnel in the execution of their duties. (ICAO Annex 6: Operation of Aircraft)
The Operations Manual may contain some or all of the information contained in the Aircraft Flight Manual (AFM), but it also contains much other information regarding the way in which flights are to be conducted.
Contents of an Operations Manual
An Operations Manual, which may be issued in separate parts corresponding to specific aspects of operations, ... shall contain at least the following: (ICAO Annex 6 Appendix 2)
1. Operations administration and supervision
1.1 Instructions outlining the responsibilities of operations personnel pertaining to the conduct of flight operations.
1.2 Checklist of emergency and safety equipment and instructions for its use.
1.3 The minimum equipment list for the aeroplane types operated and specific operations authorized, including any requirements relating to operations in RNP (Required Navigation Performance) airspace.
1.4 Safety precautions during refuelling with passengers on board.
2. Accident prevention and flight safety programme Details of the accident prevention and flight safety programme provided ... including a statement of safety policy and the responsibility of personnel.
3. Personnel training
3.1 Details of the flight crew training programme and requirements.
3.2 Details of the cabin crew duties training programme ...
4. Fatigue and flight time limitations Rules limiting the flight time and flight duty periods and providing for adequate rest periods for flight crew members and cabin crew ...
5. Flight operations
5.1 The flight crew for each type of operation including the designation of the succession of command.
5.2 The in-flight and the emergency duties assigned to each crew member.
5.3 Specific instructions for the computation of the quantities of fuel and oil to be carried, having regard to all circumstances of the operation including the possibility of the failure of one or more powerplants while en route.
5.4 The conditions under which oxygen shall be used and the amount of oxygen determined ...
5.5 Instructions for mass and balance control.
5.6 Instructions for the conduct and control of ground de-icing/anti-icing operations.
5.7 The specifications for the operational flight plan.
5.8 The normal, abnormal and emergency procedures to be used by the flight crew, the checklists relating thereto and aircraft systems information ...
5.9 Standard operating procedures (SOP) for each phase of flight.
5.10 Instructions on the use of normal checklists and the timing of their use.
5.11 Emergency evacuation procedures.
5.12 Departure contingency procedures.
5.13 Instructions on the maintenance of altitude awareness and the use of automated or flight crew altitude callout.
5.14 Instructions on the use of autopilots and autothrottles in Instrument Meteorological Conditions (IMC).
5.15 Instructions on the clarification and acceptance of ATC clearances, particularly where terrain clearance is involved.
5.16 Departure and approach briefings.
5.17 Route and destination familiarization.
5.18 Stabilized approach procedure.
5.19 Limitation on high rates of descent near the surface.
5.20 Conditions required to commence or to continue an instrument approach.
5.21 Instructions for the conduct of precision and nonprecision instrument approach procedures.
5.22 Allocation of flight crew duties and procedures for the management of crew workload during night and IMC instrument approach and landing operations.
5.23 Instructions and training requirements for the avoidance of controlled flight into terrain and policy for the use of the ground proximity warning system (GPWS).
5.24 Information and instructions relating to the interception of civil aircraft ...
5.25 Information relating to exposure to solar cosmic radiation.
6. Aeroplane performance Operating instructions and information on climb performance with all engines operating, if provided ...
7. Route guides and charts A route guide to ensure that the flight crew will have, for each flight, information relating to communication facilities, navigation aids, aerodromes, and such other information as the operator may deem necessary for the proper conduct of flight operations.
8. Minimum flight altitudes
8.1 The method for determining minimum flight altitudes.
8.2 The minimum flight altitudes for each route to be flown.
9. Aerodrome operating minima
9.1 The methods for determining aerodrome operating minima.
9.2 Aerodrome operating minima for each of the aerodromes that are likely to be used as aerodromes of intended landing or as alternate aerodromes.
9.3 The increase of aerodrome operating minima in case of degradation of approach or aerodrome facilities.
10. Search and rescue
10.1 The ground-air visual signal code for use by survivors ...
10.2 Procedures ... for pilots-in-command observing an accident.
11. Dangerous goods Information and instructions on the carriage of Dangerous Goods, including action to be taken in the event of an emergency.
12. Navigation
12.1 A list of the navigational equipment to be carried including any requirements relating to operations in RNP airspace.
12.2 Where relevant to the operations, the long-range navigation procedures to be used.
13. Communications The circumstances in which a radio listening watch is to be maintained.
14. Security
14.1 Security instructions and guidance.
14.2 The search procedure checklist provided ...
15. Human Factors Information on the operators’ training programme for the development of knowledge and skills related to human performance.
EU-OPS Requirements
The structure and content of the Operations Manual is detailed in EU-OPS 1.1045 and the referenced Appendix. In essence, the Operations Manual comprises four parts:
Part A. General/Basic. This part comprises all non type-related operational policies, instructions and procedures needed for a safe operation.
Part B. Aeroplane Operating Matters. This part comprises all type-related instructions and procedures needed for a safe operation. It takes account of any differences between types, variants or individual aeroplanes used by the operator.
Part C. Route and Aerodrome Instructions and Information. This part comprises all instructions and information needed for the area of operation.
Part D. Training. This part comprises all training instructions for personnel required for a safe operation.
Subsidiary Documentation
For ease of use, most operators create subsidiary documents, in particular a Quick Reference Handbook (QRH) or Emergency and Abnormal Checklist (EAC), copies of which are provided on every flight deck for the personal use of each member of the operating flight crew.
Amendment of the Operations Manual
Amendment of the Operations Manual - in hard copy and electronic format - is the responsibility of the Operator who has issued it. This is an important function of the flight operations department and must be carefully controlled to ensure that all officially issued and controlled copies of a Manual and any subsidiary documents (including copies of parts of the OM) are updated as part of the same action. It is normal for there to be a formal channel available which can be used to issue urgent individual changes to all holders of a Manual or a dependent document rapidly and for the full document text to be re-issued incorporating any individual changes issued since the previous edition at prescribed intervals of not greater than a calendar year.
Further Reading
Development of Aircraft Operating Manuals
Further Reading
ICAO Annex 6: Operation of Aircraft, Appendix 2 - Contents of an Operations Manual;
ICAO Doc 9376: Preparation of an Operations Manual;
Operasyon Kılavuzu
Makale Bilgisi
İçindekiler
1 açıklaması
2 İşlem Kılavuzunun İçeriği
3 AB-OPS Gereksinimleri
4 Yardımcı Belgeler
5 İşlem Kılavuzunda Değişiklik Yapılması
6 Daha Fazla Okuma
7 Daha Fazla Okuma
Açıklama
Operasyon El Kitabı, görevlerini yerine getirirken operasyon personeli tarafından kullanılması için prosedürler, talimatlar ve rehberlik içermelidir. (ICAO Ek 6: Uçağın İşletmesi)
Operasyon El Kitabı, Uçak Uçuş El Kitabında (AFM) yer alan bilgilerin bir kısmını veya tamamını içerebilir, fakat aynı zamanda uçuşların gerçekleştirilme şekli ile ilgili birçok başka bilgi içerir.
İşlem Kılavuzunun İçeriği
Operasyonların belirli yönlerine tekabül eden ayrı bölümlerde verilebilecek bir Operasyon El Kitabı, en azından aşağıdakileri içermelidir: (ICAO Ek 6 Ek 2)
1. Operasyon yönetimi ve denetimi
1.1 Uçuş operasyonlarının yürütülmesi ile ilgili olarak operasyon personelinin sorumluluklarını anlatan talimatlar.
1.2 Acil durum ve güvenlik ekipmanlarının kontrol listesi ve kullanım talimatları.
1.3 RNP (Zorunlu Navigasyon Performansı) hava sahasındaki operasyonlarla ilgili şartlar da dahil olmak üzere, işletilen uçak tipleri ve yetkili operasyonlar için minimum ekipman listesi.
1.4 Yolculara uçakta yakıt ikmali sırasında güvenlik önlemleri.
2. Kaza önleme ve uçuş güvenliği programı Güvenlik politikası ve personelin sorumluluğu dahil olmak üzere sağlanan ... kaza önleme ve uçuş güvenliği programının detayları.
3. Personel eğitimi
3.1 Uçuş ekibi eğitim programının detayları ve gereksinimleri.
3.2 Kabin personelinin görev eğitim programının detayları ...
4. Yorulma ve uçuş süresi kısıtlamaları Uçuş süresi ve uçuş görev sürelerini sınırlayan ve uçuş ekibi üyeleri ve kabin ekibi için yeterli dinlenme süreleri sağlayan kurallar ...
5. Uçuş işlemleri
5.1 Her bir operasyon tipi için uçuş ekibi, art arda emir atama dahil.
5.2 Her mürettebat üyesine verilen uçak içi ve acil görevler.
5.3 Yoldayken bir ya da daha fazla sayıda güç kaynağının arızalanması olasılığı dahil olmak üzere, operasyonun tüm koşullarını dikkate alarak, taşınacak yakıt ve yağ miktarlarının hesaplanması için özel talimatlar.
5.4 Oksijenin kullanılacağı koşullar ve belirlenen oksijen miktarı ...
5.5 Kütle ve denge kontrolü için talimatlar.
5.6 Toprak buzlanmayı giderici / buzlanmayı önleyici işlemlerin kontrolü ve kontrolü için talimatlar.
5.7 Operasyonel uçuş planı için şartname.
5.8 Uçuş ekibi tarafından kullanılacak normal, anormal ve acil durum prosedürleri, bunlarla ilgili kontrol listeleri ve uçak sistemleri bilgisi ...
5.9 Her uçuş aşaması için standart işletim prosedürleri (SOP).
5.10 Normal kontrol listelerinin kullanımına ve kullanım sürelerine ilişkin talimatlar.
5.11 Acil durum tahliye prosedürleri.
5.12 Kalkış acil durum prosedürleri.
5.13 Yükseklik bilincinin korunmasına ve otomatik veya uçuş ekibinin rakım belirtme çizgisinin kullanımına ilişkin talimatlar.
5.14 Enstrüman Meteorolojik Koşullarında (IMC) otopilotların ve ototrotların kullanımına ilişkin talimatlar.
5.15 ATC açıklıklarının netleştirilmesi ve kabulüne ilişkin talimatlar, özellikle de alan açıklığının söz konusu olduğu durumlarda.
5.16 Kalkış ve yaklaşma brifingleri.
5.17 Güzergah ve varış yeri tanıma.
5.18 Stabilize yaklaşım prosedürü.
5.19 Yüzeye yakın yüksek oranda iniş oranlarının sınırlandırılması.
5.20 Bir enstrüman yaklaşımına başlamak veya devam etmek için gereken şartlar.
5.21 Hassas ve hassas olmayan cihaz yaklaşımı prosedürlerinin yürütülmesi için talimatlar.
5.22 Uçuş ekibi personelinin gece boyunca personel iş yükünün yönetimi için görev ve prosedürlerin tahsisi ve IMC enstrüman yaklaşımı ve iniş işlemleri.
5.23 Kontrollü uçuşun araziye kaçınılması için talimatlar ve eğitim gereksinimleri ve yere yakınlık uyarı sisteminin (GPWS) kullanılmasıyla ilgili politika.
5.24 Sivil uçakların durdurulması ile ilgili bilgi ve talimatlar ...
5.25 Solar kozmik radyasyona maruz kalma ile ilgili bilgiler.
6. Uçak performansı İşletme talimatı ve eğer varsa, çalışan tüm motorlarla çıkma performansı hakkında bilgi ...
7. Güzergah rehberleri ve çizelgeleri Uçuş ekibinin, her uçuş için iletişim tesisleri, navigasyon yardımları, hava limanları ve operatörün uçuş operasyonlarının uygun şekilde yürütülmesi için gerekli görebileceği diğer bilgileri içerecek şekilde olmasını sağlayacak bir güzergah rehberi. .
8. Minimum uçuş irtifaları
8.1 Minimum uçuş yüksekliklerini belirleme yöntemi.
8.2 Uçacak her güzergah için minimum uçuş yüksekliği.
9.Havaalanı işletme minima
9.1 Havaalanı işleten minima belirleme yöntemleri.
9.2 Amaçlanan aerodromların her biri için kullanılacak havalimanı işleten minima
FLIGHT OPERATION
1 The flight crew for each type of operation including the designation of the succession of command.
2 The in-flight and the emergency duties assigned to each crew member.
3 Specific instructions for the computation of the quantities of fuel and oil to be carried, having regard to all circumstances of the operation including the possibility of the failure of one or more powerplants while en route.
4 The conditions under which oxygen shall be used and the amount of oxygen determined ...
5 Instructions for mass and balance control.
6 Instructions for the conduct and control of ground de-icing/anti-icing operations.
7 The specifications for the operational flight plan.
8 The normal, abnormal and emergency procedures to be used by the flight crew, the checklists relating thereto and aircraft systems information ...
9 Standard operating procedures (SOP) for each phase of flight.
10 Instructions on the use of normal checklists and the timing of their use.
11 Emergency evacuation procedures.
12 Departure contingency procedures.
13 Instructions on the maintenance of altitude awareness and the use of automated or flight crew altitude callout.
14 Instructions on the use of autopilots and autothrottles in Instrument Meteorological Conditions (IMC).
15 Instructions on the clarification and acceptance of ATC clearances, particularly where terrain clearance is involved.
16 Departure and approach briefings.
17 Route and destination familiarization.
18 Stabilized approach procedure.
19 Limitation on high rates of descent near the surface.
20 Conditions required to commence or to continue an instrument approach.
21 Instructions for the conduct of precision and nonprecision instrument approach procedures.
22 Allocation of flight crew duties and procedures for the management of crew workload during night and IMC instrument approach and landing operations.
23 Instructions and training requirements for the avoidance of controlled flight into terrain and policy for the use of the ground proximity warning system (GPWS).
24 Information and instructions relating to the interception of civil aircraft ...
25 Information relating to exposure to solar cosmic radiation.
UÇUŞ OPERASYONU
1 Her bir operasyon tipi için uçuş ekibi, art arda emir atama dahil.
2 Her mürettebat üyesine verilen uçak içi ve acil görevler.
3 Hareket halindeyken bir veya daha fazla motorun arızalanması olasılığını da içeren, operasyonun tüm koşullarına bakılarak taşınacak yakıt ve yağ miktarlarının hesaplanması için özel talimatlar.
4 Oksijenin kullanılacağı koşullar ve belirlenen oksijen miktarı ...
5 Kütle ve denge kontrolü için talimatlar.
6 Buzlanmayı giderici / buzlanmayı önleyici işlemlerin yürütülmesi ve kontrolü için talimatlar.
7 Operasyonel uçuş planının teknik özellikleri.
8 Uçuş ekibi tarafından kullanılacak normal, anormal ve acil durum prosedürleri, bunlarla ilgili kontrol listeleri ve uçak sistemleri bilgisi ...
9 Her uçuş aşaması için standart işletim prosedürleri (SOP).
10 Normal kontrol listelerinin kullanımı ve kullanım zamanlamaları ile ilgili talimatlar.
11 Acil durum tahliye prosedürleri.
12 Kalkış acil durum prosedürleri.
13 Yükseklik bilincinin korunmasına ve otomatik veya uçuş ekibinin rakım belirtme çizgisinin kullanımına ilişkin talimatlar.
14 Enstrüman Meteorolojik Koşullarında (IMC) otopilotların ve ototrotların kullanımına ilişkin talimatlar.
15 ATC açıklıklarının netleştirilmesi ve kabul edilmesiyle ilgili talimatlar, özellikle de alan açıklığının söz konusu olduğu durumlarda.
16 Kalkış ve yaklaşma brifingleri.
17 Güzergah ve varış yeri tanıma.
18 Stabilize yaklaşım prosedürü.
19 Yüzeye yakın yüksek iniş oranlarının sınırlandırılması.
20 Bir enstrüman yaklaşımına başlamak veya devam etmek için gereken şartlar.
21 Hassas ve hassas olmayan cihaz yaklaşımı prosedürlerinin yürütülmesi için talimatlar.
22 Gece uçuş ekibinin görev yükünün yönetimi için uçuş ekibinin görev ve prosedürlerinin tahsisi ve IMC enstrüman yaklaşımı ve iniş işlemleri.
23 Kontrollü uçuşun araziye kaçınılması için talimatlar ve eğitim gereksinimleri ve yere yakınlık uyarı sisteminin (GPWS) kullanılmasıyla ilgili politika.
24 Sivil uçakların ele geçirilmesine ilişkin bilgi ve talimatlar ...
25 Güneş kozmik radyasyonuna maruz kalma ile ilgili bilgiler.
CONTENTS OF AN OPERATIONS MANUAL
1. Operations administration and supervision
2. Accident prevention and flight safety programme
3. Personnel training
4. Fatigue and flight time limitations
5. Flight operations
6. Aeroplane performance
7. Route guides and charts
8. Minimum flight altitudes
9. Aerodrome operating minima
10. Search and rescue
11. Dangerous goods
12. Navigation.
13. Communications
14. Security
15. Human Factors
KULLANIM KILAVUZU İÇERİKLERİ
1. Operasyon yönetimi ve denetimi
2. Kaza önleme ve uçuş güvenliği programı
3. Personel eğitimi
4. Yorulma ve uçuş süresi sınırlamaları
5. Uçuş işlemleri
6. Uçak performansı
7. Rota kılavuzları ve çizelgeleri
8. Minimum uçuş irtifaları
9. Havaalanı işletme minima
10. Arama ve kurtarma
11. Tehlikeli mallar
12. Navigasyon.
13. İletişim
14. Güvenlik
15. İnsan Faktörleri
DEREGULATION : to remove national or local government controls from a business
Bir işten ulusal veya bölgesel hükumetin kontrolünü kaldırmak
- The government plans to deregulate the banking industry.
- The government plans to deregulate the aviation industry.
EU airline deregulation
Deregulation of the European Union airspace in the early 1990s has had substantial effect on the structure of the industry there.
The shift towards 'budget' airlines on shorter routes has been significant.
Airlines such as EasyJet and Ryanair have often grown at the expense of the traditional national airlines.
There has also been a trend for these national airlines themselves to be privatized such as has occurred for Aer Lingus and British Airways.
Other national airlines, including Italy's Alitalia, have suffered – particularly with the rapid increase of oil prices in early 2008.
Post-deregulation
In the wake of deregulation, airlines have adopted new strategies and consumers are experiencing a new market.
Below are the marquee effects of deregulation.
1 Hub and spoke
2 Price
3 Service quality
4 Competition between carriers
5 Industry consolidation and reduction in competition between carriers
6 Effects on airline staff
7 Open Skies
Fuel Dampıng (Yakıt Boşaltımı)
Bir Airbus A340-600uçağının Atlantik Okyanusu üzerinde yakıt boşaltımı
Airbus A340-300 Yakıt boşaltma nozulu
Yakıt boşaltımı, (Genellikle havacılıkta kullanılan İngilizce tabirleri ile: Fuel dumping veya fuel jettison) uçakların genellikle kalkıştan kısa süre sonra acil iniş yapma durumunda kalması halinde uygulanan prosedürdür. Kalkışın ardından, varış noktasına ulaşmadan önce ve uçağın ağırlığı uçağın yapısal iniş ağırlığının altına inmediği durumlarda, uçakta "yakıt boşaltım sistemi" bulunması halinde yakıt boşaltımı yapılabilir. Bu sayede inişde yangın riski ve uçağın yapısal hasar görmesi önlenir.
İçindekiler
1Alternatifi
2Regülasyon
Alternatifi
Yakıt boşaltımı olan uçaklarda, uçağın medikal bir acil durum veya yangın gibi bir sebepten dolayı hemen kalktığı veya rota üzerindeki alternatif bir meydana inmesi gerekirse, yakıt boşaltımının zaman alacağından, maksimum iniş ağırlığının (İng. Maximum landing weight) üzerinde iniş yapılabilir. (Overwieght landing) Hemen hemen tüm uçak tiplerinde, neredeyse kalkış ağırlığına yakın ağırlıkta inmesi sonucu uçakta yapısal bir hasar gelmesi mümkün olmasa da, bu iniş sonrası yapılması gereken teknik inceleme ve gerektiği durumda bakım masraflarından dolayı yakıt boşaltımı prosedürü uygulanır.[1] 2010 yılında Qantas havayollarına ait bir Airbus A380, Endonezya üzerindeyken, motordaki bir patlama sonucu ve sonrasında meydana gelen yakıt boşaltım sistemin arızası nedeniyle, maksimum iniş ağırlığının (386 ton) 50 ton fazlası ile indi.[2][3] Daha sonra uçak, 135 milyon $ harcanarak 18 ay sonrasında yeniden uçuşa başladı.[4]
Regülasyon
Yakıt boşaltımı prosedürüne başlamak için, öncelikle acil durum (Mayday) deklare etmek gerekmektedir. Hava trafik kontrolörü ile koordine ederek pilotlar ICAO veya FAA kurallarına uyacak şekilde seyrek nüfusun olduğu yerlere ve mümkünse deniz üzerinde yakıt boşaltımı yaparlar. İşlem sırasında yine ICAO ve ülke regülasyonları bağlı olarak minimum bir uçuş irtifasında uçulmalıdır.
FLIGHT DATA MONITORING (FDM)
It is a process which routinely captures and analyses recorder data in order to improve the safety of flight operations.
Case Study 1: Stowing Takeoff Flap
Case Study 2: Low Speed After Take Off
Case Study 3: Go-Around Procedure
Case Study 4: Landing in Snow
Case Study 5: Fuel Conservation For Short-Haul Operators
Case Study 6: Winglets and Low Power Approaches
Definitions
Flight Data Analysis is founded on Operational Flight Data Monitoring (OFDM) which in North America has become known as Flight Operations Quality Assurance (FOQA). It is a process which routinely captures and analyses recorder data in order to improve the safety of flight operations.
Flight Data Analysis. A process of analysing recorded flight data in order to improve the safety of flight operations. (ICAO Annex 6 - Operation of aircraft)
Operational Flight Data Monitoring (OFDM) is the pro-active use of recorded flight data from routine operations to improve aviation safety.
Description
The aviation community is under constant pressure to achieve safety improvement. Operational Flight Data Monitoring (OFDM) offers an efficient solution to this challenge. OFDM is to some extent a quality assurance process but also has a vital Safety Management dimension. It involves the downloading and analysis of aircraft flight recorder data on a regular and routine basis. It is widely used by aircraft operators throughout the world to inform and facilitate corrective actions in a range of operational areas by offering the ability to track and evaluate flight operations trends, identify risk precursors, and take the appropriate remedial action. The potential of OFDM programmes has been materially enhanced by the rapid expansion in the number of data parameters which can be captured using digital recorders now routinely carried on aircraft.
ICAO Standards and Recommended Practices
In 2008 Annex 6, to the Chicago Convention was amended in order to introduce a number of requirments and recommendations related to the implementation of safety management and safety management systems by operators of commercial air transport aircraft and helicopters. The following paragraphs pertain to the implementation of OFDM:
Annex 6, Part I - International Commercial Air Transport - Aeroplanes
3.3.5 An operator of an aeroplane of a maximum certificated take-off mass in excess of 27 000 kg shall establish and maintain a flight data analysis programme as part of its safety management system.
Note.- An operator may contract the operation of a flight data analysis programme to another party while retaining overall responsibility for the maintenance of such a programme.
3.3.6 A flight data analysis programme shall be non-punitive and contain adequate safeguards to protect the source(s) of the data.
Note 1.- Guidance on flight data analysis programmes is contained in the Safety Management Manual (SMM) (Doc 9859).
Note 2.- Legal guidance for the protection of information from safety data collection and processing systems is contained in Annex 13 , Attachment E.
Annex 6, Part III - International Operations - Helicopters
1.3.5 'Recommendation' - An operator of a helicopter of a certified take-off mass in excess of 7 000 kg or having a passenger seating configuration of more than 9 and fitted with a flight data recorder should establish and maintain a flight data analysis programme as part of its safety management system.
Note.- An operator may contract the operation of a flight data analysis programme to another party while retaining overall responsibility for the maintenance of such a programme.
1.3.6 A flight data analysis programme shall be non-punitive and contain adequate safeguards to protect the source(s) of the data.
Note 1.- Guidance on flight data analysis programmes is contained in the Safety Management Manual (SMM) (Doc 9858).
Note 2.- Legal guidance for the protection of information from safety data collection and processing systems is contained in Annex 13 , Attachment E.
Benefits
FDM strongly contributes to increased flight safety and operational efficiency by:
Providing data to help in the prevention of incidents and accidents. Fewer flight accidents not only reduce material losses and insurance costs, but also keep passengers' confidence high.
Improved operational insight: providing the means to identify potential risks and to modify pilot training programs accordingly.
Improved fuel consumption: FDM provides the ability to identify and make adjustments to company operating procedures or specific aircraft with unusually high fuel burn rates.
Reduction in unnecessary maintenance and repairs: FDM data can be used to help reduce the need for unscheduled maintenance, resulting in lower maintenance costs and increased aircraft availability.
Improved ground conditions and airports: in certain cases, airlines can use the data captured from their FDM program to support requested changes to air traffic control and airport procedures.
Reduced number of ACARS messages: non-critical data (e.g. take-off reports, stable cruise reports) that are sent via ACARS messages, can be acquired, recorded and transmitted via flight data monitoring equipment
Reduced reliance on flight data recorders: flight-monitoring data can be transmitted automatically over the Internet and be analyzed without delay.
Adherence to noise restrictions: flight data monitoring helps airlines demonstrate adherence to noise restrictions in terms of being able to verify or deny actual infringement, and avoid incurring fines.
Improved monitoring of flight crew's cosmic radiation exposure: flight data monitoring can assist in tracking radiation exposure
Flight Data Monitoring (FDM) programmes provide a powerful tool for the proactive hazard identification.
Related Articles
European Operators Flight Data Monitoring (EOFDM) Forum
Further Reading
ICAO Annex 6 - Operation of aircraft, Part 1
UK CAA CAP 739: Flight Data Monitoring
Checklists and Monitoring in the Cockpit: Why Crucial Defenses Sometimes Fail, July 2010
A Practical Guide for Improving Flight Path Monitoring, November 2011
Guidance Material: Performance assessment of pilot compliance to Traffic Alert and Collision Avoidance System (TCAS) using Flight Data Monitoring (FDM), IATA and EUROCONTROL, Edition 1, January 2019.
Flight Data Services Case Studies
Case Study 1: Stowing Takeoff Flap
Case Study 2: Low Speed After Take Off
Case Study 3: Go-Around Procedure
Case Study 4: Landing in Snow
Case Study 5: Fuel Conservation For Short-Haul Operators
Case Study 6: Winglets and Low Power Approaches
Tanımlar
Uçuş Verileri Analizi, Kuzey Amerika'da Uçuş Operasyonları Kalite Güvencesi (FOQA) olarak bilinen Operasyonel Uçuş Verileri İzleme (OFDM) üzerine kurulmuştur. Uçuş işlemlerinin güvenliğini artırmak için kayıt cihazındaki verileri düzenli olarak yakalayan ve analiz eden bir işlemdir.
Uçuş Verileri Analizi. Uçuş işlemlerinin güvenliğini artırmak için kaydedilen uçuş verilerini analiz etme işlemi. (ICAO Ek 6 - Uçağın işletimi)
Operasyonel Uçuş Verileri İzleme (OFDM), havacılık güvenliğini artırmak için rutin operasyonlardan kaydedilen uçuş verilerinin proaktif kullanımıdır.
Açıklama
Havacılık topluluğu, emniyetin iyileştirilmesi için sürekli baskı altındadır. Operasyonel Uçuş Verileri İzleme (OFDM) bu zorluğa etkin bir çözüm sunar. OFDM bir dereceye kadar bir kalite güvence sürecidir, ancak aynı zamanda hayati bir Emniyet Yönetimi boyutuna sahiptir. Düzenli ve rutin olarak hava aracı uçuş kaydedici verilerinin indirilmesini ve analiz edilmesini içerir. Uçuş operasyonları trendlerini takip etme ve değerlendirme, risk öncüllerini belirleme ve uygun düzeltici eylemi gerçekleştirme becerisi sunarak, çeşitli operasyonel alanlarda düzeltici eylemleri bilgilendirmek ve kolaylaştırmak için dünya çapındaki uçak operatörleri tarafından yaygın olarak kullanılmaktadır. OFDM programlarının potansiyeli, artık rutin olarak uçakta taşınan dijital kaydediciler kullanılarak yakalanabilen veri parametrelerinin sayısındaki hızlı genişleme ile büyük ölçüde arttırılmıştır.
ICAO Standartları ve Önerilen Uygulamalar
2008 yılında, Ek 6'da, ticari hava taşımacılığı uçakları ve helikopterlerinin işletmecileri tarafından emniyet yönetimi ve emniyet yönetimi sistemlerinin uygulanması ile ilgili bir dizi öneri ve tavsiye sunmak amacıyla Chicago Sözleşmesine değişiklik yapılmıştır. Aşağıdaki paragraflar OFDM'nin uygulanması ile ilgilidir:
Ek 6, Bölüm I - Uluslararası Ticari Hava Taşımacılığı - Uçaklar
3.3.5 Maksimum sertifikalı bir kalkış kitlesinin 27.000 kg'ı aşan bir uçağının işletmecisi, emniyet yönetim sisteminin bir parçası olarak bir uçuş veri analiz programı oluşturmalı ve sürdürmelidir.
Not - Bir operatör, bir uçuş veri analizi programının işleyişini başka bir tarafla sözleşme yaparken, böyle bir programın sürdürülmesinde genel sorumluluğu elinde tutabilir.
3.3.6 Bir uçuş veri analizi programı cezalandırılmayacaktır ve verilerin kaynağını / kaynaklarını korumak için yeterli önlemleri alacaktır.
Not 1.- Uçuş veri analizi programlarına dair rehberlik Emniyet Yönetimi El Kitabında (SMM) bulunmaktadır (Doc 9859).
Not 2.- Bilgilerin güvenlik veri toplama ve işleme sistemlerinden korunmasına ilişkin yasal rehber Ek 13, Ek E'de verilmiştir.
Ek 6, Bölüm III - Uluslararası Operasyonlar - Helikopterler
1.3.5 'Tavsiye' - 7000 kg'ı aşan sertifikalı bir kalkış kitlesine sahip bir helikopter veya 9'dan fazla yolcu oturma düzenine sahip olan ve bir uçuş verisi kayıt cihazı ile donatılmış bir uçuş verisi analizini oluşturmalı ve sürdürmelidir. güvenlik yönetim sisteminin bir parçası olarak program.
Not - Bir operatör, bir uçuş veri analizi programının işleyişini başka bir tarafla sözleşme yaparken, böyle bir programın sürdürülmesinde genel sorumluluğu elinde tutabilir.
1.3.6 Bir uçuş veri analizi programı cezalandırılmayacaktır ve verilerin kaynağını / kaynaklarını korumak için yeterli önlemleri alacaktır.
Not 1.- Uçuş veri analizi programlarına dair rehberlik Emniyet Yönetimi El Kitabında (SMM) bulunmaktadır (Doc 9858).
Not 2.- Bilgilerin güvenlik veri toplama ve işleme sistemlerinden korunmasına ilişkin yasal rehber Ek 13, Ek E'de verilmiştir.
Yararları
FDM, uçuş güvenliğine ve operasyonel verimliliğe, Olayların ve kazaların önlenmesine yardımcı olacak veriler sağlamak. Daha az uçuş kazası sadece maddi kayıpları ve sigorta maliyetlerini düşürmekle kalmaz, aynı zamanda yolcuların güvenini de yüksek tutar. Gelişmiş operasyonel içgörü: potansiyel riskleri tanımlamak ve pilot eğitim programlarını buna göre değiştirmek için araçlar sunar.
Geliştirilmiş yakıt tüketimi: FDM, olağandışı yüksek yakıt yanma oranlarına sahip şirketin işletme prosedürlerini veya belirli uçakları tanımlama ve ayarlama olanağı sunar.
Gereksiz bakım ve onarımlarda azalma: FDM verileri, programlanmamış bakım ihtiyacını azaltmaya yardımcı olmak için kullanılabilir; bu da daha düşük bakım maliyetleri ve artan uçak kullanılabilirliği sağlar.
İyileştirilmiş zemin koşulları ve havaalanları: Bazı durumlarda, havayolları FDM programlarından elde edilen verileri hava trafik kontrolü ve havaalanı prosedürlerinde istenen değişiklikleri desteklemek için kullanabilirler.
Azalan ACARS mesajı sayısı: ACARS mesajları ile gönderilen kritik olmayan veriler (örn. Kalkış raporları, sabit seyir raporları) uçuş verisi izleme ekipmanı aracılığıyla edinilebilir, kaydedilebilir ve iletilebilir
Uçuş veri kayıt cihazlarına daha az güven: Uçuş izleme verileri İnternet üzerinden otomatik olarak iletilebilir ve gecikmeden analiz edilebilir.
Gürültü kısıtlamalarına bağlılık: uçuş verilerinin izlenmesi, havayollarının gerçek ihlali doğrulayabilmeyi veya reddedebilmeyi ve para cezalarını önleyebilmek için gürültü kısıtlamalarına uyduğunu göstermesine yardımcı olur.
Uçuş ekibinin kozmik radyasyona maruz kalmasının iyileştirilmiş izlenmesi: uçuş verilerinin izlenmesi radyasyona maruz kalmanın izlenmesine yardımcı olabilir
Uçuş Verileri İzleme (FDM) programları proaktif tehlike tanımlaması için güçlü bir araç sağlar.
LOW VISIBILITY PROCEDURES ( DÜŞÜK GÖRÜŞ PROSEDÜRLERİ )
Contents
1 IR-OPS and EU-OPS 1 Definitions
2 Description
2.1 Hazards
2.2 Aerodromes
2.3 Operators
IR-OPS and EU-OPS 1 Definitions
Low visibility procedures (LVP) means procedures applied at an aerodrome for the purpose of ensuring safe operations during lower than standard category I, other than standard category II, category II and III approaches and low visibility take-offs. (IR-OPS Annex I)
Low visibility take-off (LVTO) means a take-off with an RVR lower than 400 m but not less than 75 m. (IR-OPS Annex I)
Note that ICAO requires LVP for all departures below 550m Runway Visual Range (RVR), not just LVTO
Description
Low visibility procedures exist to support Low Visibility Operations at Aerodromes when either surface visibility is sufficiently low to prejudice safe ground movement without additional procedural controls or the prevailing cloudbase is sufficiently low to preclude pilots obtaining the required visual reference to continue to landing at the equivalent of an ILS Cat 1 DH/DA. It should be noted that in the latter case, surface visibility may be relatively good but the TWR visual control room may be in cloud/fog.
Low visibility on Runway
Hazards
On aerodromes where the ground marking and lighting is adequate, ground traffic at reasonable flow rates can often be sustained safely in reduced visibility. An aeroplane on the ground is at its most vulnerable during the landing and the take-off phases of flight when the options for avoiding action, if an obstruction is encountered, may be very limited. The aircraft is likely to be badly damaged or destroyed if it collides, at high speed, with any sizeable object.
Making the necessary transition to visual reference during the final stages of an approach to land in poor visibility is critical and certain requirements must be met to reduce the risk of a Runway Excursion. Low visibility take off also requires careful attention to correct runway alignment before the take off is commenced; an Instrument Landing System (ILS) LLZ signal can be used for verification if available. If an Rejected Take Off is carried out, pilots must maintain awareness of runway length remaining using whatever external visual cues are available; relevant runway lighting, signage or markings may be available.
As visibility deteriorates, the potential for runway incursions by aircraft, vehicles or personnel increases. The risk of inadvertent runway incursion by taxiing aircraft is greatest at aerodromes with complex layouts and multiple runway access points. This risk can only be managed adequately by the application of procedures that provide the pilot with clear, unambiguous guidance on routing and holding points or ground traffic patterns.
The safe operation of airside vehicles depends upon drivers being adequately trained and thoroughly familiar with the aerodrome layout in all visibility conditions and on their compliance with procedures, signs, signals and ATC instructions. In low visibility conditions, extreme vigilance is required and special procedures, including restrictions on normal access, may be invoked. All of this is an essential product of the Airport Operator Safety Management System.
Controller ability to detect manoeuvring area conflicts may be reduced in poor visibility conditions, as the controllers may be unable to confirm whether their clearances are properly complied with.
Aerodromes
Aerodromes that wish to continue operating in poor visibility or are available for instrument approaches in conditions of low cloud are required to develop and maintain LVPs.
Aerodromes that provide precision instrument approaches which provide guidance below ILS Cat 1 or equivalent DA/DH are required to have additional procedures in place that ensure the protection of signals transmitted by the ground based radio equipment that is used for the approach.
The point at which LVPs are implemented may vary from one aerodrome to another depending on local conditions and facilities available. It will usually be determined by a specific Runway Visual Range (RVR) or cloud base measurement. Typically an RVR below 550 metres or a cloud base below 200 ft aal will trigger LVPs.
Adequate consideration should be given to the time taken to implement fully all of the measures required to protect operations in low visibility conditions. Provision should also be made for alerting airlines, and other organisations with movement area access, in good time prior to the introduction of LVPs. This is particularly important where companies exercise control over their own apron areas and maintenance facilities adjacent to the manoeuvring area.
Regulatory authorities offer guidelines in respect of LVP implementation and suspension. A typical example is found in UK CAP 168: Licensing of Aerodromes, Appendix 2B, which contains information on the subject. ICAO European Region guidance material on LVPs is available in ICAO EUR Doc 013 "European Guidance Material On Aerodrome Operations Under Limited Visibility Conditions".
Operators
Low Visibility Operations may only be conducted under strict conditions, which are described fully in IR-OPS Subpart E Low Visibility Operations (LVO) and associated Acceptable Means of Compliance and Guidance Material, and EU-OPS 1.440 - EU-OPS 1.460 and relevant appendices. Essentially these concern the following main areas:
Flight crew complement, training, qualification and authorisation;
Aircraft minimum equipment and certification;
Aerodrome considerations; and,
Operating procedures.
Taxi-out for departure and taxi-in after arrival in low visibility conditions is one of the most demanding phases of all-weather operations. The following good practices should be considered for inclusion in the SOPs:
A good briefing for the taxi-out or taxi-in phase (route) is extremely important; the brief of the taxi pattern should use headings for better orientation;
No paperwork whatsoever shall be done during taxi-out or taxi-in, all checks shall be done at a standstill;
F/O must have the taxi chart available during all ground operaitons during LVP;
If there is any doubt about the position of the aircraft whilst taxiing before take-off or after landing, the flight crew shall stop the aircraft and inform ATC immediately;
ATC shall be asked for guidance in standard English ATC phraseology. ATC can then immediately give the necessary urgent instructions to aircraft about to depart or land; to discontinue take-off or approach as applicable, before taxiing assistance and guidance is offered to the ‘lost’ crew;
Lights can be helpful to make the aircraft visible to others;
Never cross a lit red stop bar;
The runway shall be confirmed by both pilots before any take-off (a/c heading upon entering the runway must match the painted numbers on the runway);
When rejected take-off is carried out the crew must maintain awareness of the runway length remaining using whatever external visual cues are available (relevant runway lighting, signage or markings, remaining runway indication on the Head Up Display and shall bear in mind that:
The aircraft is/may not by visible to the tower controller;
Not all airports have surface movement radar;
It is important to inform the ATC tower once the rejected take-off is completed.
Installing Runway Awareness and Advisory System (RAAS) on the aircraft improves situational awareness both on the ground and when airborne.
IR-OPS ve EU-OPS 1 Tanımları
Düşük görünürlük prosedürleri (LVP), bir havaalanında standart kategori I'in altında, standart kategori II, kategori II ve III yaklaşımları ve düşük görünürlük koşulları dışında güvenli operasyonların sağlanması amacıyla uygulanan prosedürler anlamına gelir. (IR-OPS Ek I)
Düşük görünürlükte kalkış (LVTO), RVR'nin 400 m'den daha düşük fakat 75 m'den az olmayan bir kalkış anlamına gelir. (IR-OPS Ek I)
ICAO'nun yalnızca LVTO değil, 550m Pist Görsel Aralığı (RVR) altındaki tüm kalkışlar için LVP gerektirdiğini unutmayın.
Açıklama
Aerodromlarda Düşük Görünürlük Operasyonlarını desteklemek için düşük görünürlük prosedürleri vardır ya da yüzey görünürlüğü ek prosedürel kontroller olmadan güvenli yer hareketini önyargılamaya yetecek kadar düşük olduğunda veya geçerli bulut üssü, eşdeğerinde inişe devam etmek için gerekli görsel referansı alan pilotları engellemek için yeterince düşük olduğunda bir ILS Cat 1 DH / DA. İkinci durumda, yüzey görünürlüğünün nispeten iyi olabileceği, ancak TWR görsel kontrol odasının bulut / siste olabileceği belirtilmelidir.
ICAO Standartları ve Önerilen Uygulamalar
2008 yılında, Ek 6'da, ticari hava taşımacılığı uçakları ve helikopterlerinin işletmecileri tarafından emniyet yönetimi ve emniyet yönetimi sistemlerinin uygulanması ile ilgili bir dizi öneri ve tavsiye sunmak amacıyla Chicago Sözleşmesine değişiklik yapılmıştır. Aşağıdaki paragraflar OFDM'nin uygulanması ile ilgilidir:
Ek 6, Bölüm I - Uluslararası Ticari Hava Taşımacılığı - Uçaklar
3.3.5 Maksimum sertifikalı bir kalkış kitlesinin 27.000 kg'ı aşan bir uçağının işletmecisi, emniyet yönetim sisteminin bir parçası olarak bir uçuş veri analiz programı oluşturmalı ve sürdürmelidir.
Not - Bir operatör, bir uçuş veri analizi programının işleyişini başka bir tarafla sözleşme yaparken, böyle bir programın sürdürülmesinde genel sorumluluğu elinde tutabilir.
3.3.6 Bir uçuş veri analizi programı cezalandırılmayacaktır ve verilerin kaynağını / kaynaklarını korumak için yeterli önlemleri alacaktır.
Not 1.- Uçuş veri analizi programlarına dair rehberlik Emniyet Yönetimi El Kitabında (SMM) bulunmaktadır (Doc 9859).
Not 2.- Bilgilerin güvenlik veri toplama ve işleme sistemlerinden korunmasına ilişkin yasal rehber Ek 13, Ek E'de verilmiştir.
Ek 6, Bölüm III - Uluslararası Operasyonlar - Helikopterler
1.3.5 'Tavsiye' - 7000 kg'ı aşan sertifikalı bir kalkış kitlesine sahip bir helikopter veya 9'dan fazla yolcu oturma düzenine sahip olan ve bir uçuş verisi kayıt cihazı ile donatılmış bir uçuş verisi analizini oluşturmalı ve sürdürmelidir. güvenlik yönetim sisteminin bir parçası olarak program.
Not - Bir operatör, bir uçuş veri analizi programının işleyişini başka bir tarafla sözleşme yaparken, böyle bir programın sürdürülmesinde genel sorumluluğu elinde tutabilir.
1.3.6 Bir uçuş veri analizi programı cezalandırılmayacaktır ve verilerin kaynağını / kaynaklarını korumak için yeterli önlemleri alacaktır.
Not 1.- Uçuş veri analizi programlarına dair rehberlik Emniyet Yönetimi El Kitabında (SMM) bulunmaktadır (Doc 9858).
Not 2.- Bilgilerin güvenlik veri toplama ve işleme sistemlerinden korunmasına ilişkin yasal rehber Ek 13, Ek E'de verilmiştir.
Yararları
FDM, uçuş güvenliğine ve operasyonel verimliliğe,
• Olayların ve kazaların önlenmesine yardımcı olacak veriler sağlamak. Daha az uçuş kazası sadece maddi kayıpları ve sigorta maliyetlerini düşürmekle kalmaz, aynı zamanda yolcuların güvenini de yüksek tutar.
• Geliştirilmiş operasyonel içgörü: potansiyel riskleri tanımlamanın ve pilot eğitim programlarını buna göre değiştirmenin araçlarını sağlar.
• Gelişmiş yakıt tüketimi: FDM, olağandışı yüksek yakıt yanma oranlarına sahip şirketin işletme prosedürlerini veya belirli uçakları tanımlama ve ayarlama olanağı sunar.
• Gereksiz bakım ve onarımlarda azalma: FDM verileri, programlanmamış bakım ihtiyacını azaltmaya yardımcı olmak için kullanılabilir; bu da daha düşük bakım maliyetleri ve artan uçak kullanılabilirliği sağlar.
• İyileştirilmiş zemin koşulları ve havaalanları: Bazı durumlarda, havayolları FDM programlarından elde edilen verileri hava trafiği kontrolü ve havaalanı prosedürlerinde istenen değişiklikleri desteklemek için kullanabilirler.
• Azaltılmış ACARS mesajı sayısı: ACARS mesajları ile gönderilen kritik olmayan veriler (örneğin, kalkış raporları, sabit seyir raporları) uçuş verileri izleme ekipmanı aracılığıyla edinilebilir, kaydedilebilir ve iletilebilir
• Uçuş veri kayıt cihazlarına daha az güvenilmesi: uçuş izleme verileri İnternet üzerinden otomatik olarak iletilebilir ve gecikmeden analiz edilebilir.
• Gürültü kısıtlamalarına uyma: uçuş verilerinin izlenmesi, havayollarının gerçek ihlali doğrulama ve reddetme ve para cezalarına maruz kalmamaları açısından gürültü kısıtlamalarına uymalarını göstermesine yardımcı olur.
• Uçuş ekibinin kozmik radyasyona maruz kalmasının iyileştirilmiş izlenmesi: uçuş verileri izlemesi radyasyona maruz kalmanın izlenmesine yardımcı olabilir
• Uçuş Verileri İzleme (FDM) programları proaktif tehlike tanımlaması için güçlü bir araç sağlar.
Instrument Landing System (ILS)
Definition
Instrument Landing System (ILS) is defined as a precision runway approach aid based on two radio beams which together provide pilots with both vertical and horizontal guidance during an approach to land.
Description
An Instrument Landing System is a precision runway approach aid employing two radio beams to provide pilots with vertical and horizontal guidance during the landing approach. The localiser (LOC)provides azimuth guidance, while the glideslope (GS) defines the correct vertical descent profile. Marker beacons and high intensity runways lights may also be provided as aids to the use of an ILS, although the former are more likely nowadays to have been replaced by a DME integral to the ILS or one otherwise located on the aerodrome, for example with a VOR.
Figure 1. Localiser
The ILS LOC aerials are normally located at the end of the runway; they transmit two narrow intersecting beams, one slightly to the right of the runway centreline, the other slightly to the left which, where they intersect, define the "on LOC" indication (see Figure 1). Airborne equipment provides information to the pilot showing the aircraft’s displacement from the runway centreline.
Figure 2. Glide-slope
The ILS GS aerials are normally located on the aerodrome; they transmit two narrow intersecting beams, one slightly below the required vertical profile and the other slightly above it which, where they intersect, define the "on GS" indication (see Figure 2). Aircraft equipment indicates the displacement of the aircraft above or below the GS. The GS aerials are usually located so that the glide-slope provides a runway threshold crossing height of about 50 ft. The usual GS angle is 3 degrees but exceptions may occur, usually to meet particular approach constraints such as terrain or noise abatement.
If marker beacons are provided, they will be located on the ILS approach track at notified distances from touch-down (see Figure 2). Typically, the first marker beacon (the Outer Marker) would be located about 5 NM from touch-down while the second marker beacon (the Middle Marker) would be located about 1 NM from touch-down.
An approach may not normally be continued unless the runway visual range (RVR) is above the specified minimum. When an approach is flown, the pilot follows the ILS guidance until the decision height (DH) is reached. At the DH, the approach may only be continued if the specified visual reference is available, otherwise, a go-around must be flown.
Special categories of ILS approach are defined which allow suitably qualified pilots flying suitably equipped aircraft to suitably equipped runways using appropriately qualified ILS systems to continue an ILS approach without acquiring visual reference to a lower DH than the Category I standard of 200 feet above runway threshold elevation (arte) and do so when a lower reported RVR than the 550 metres usually associated with Category I:
Category II permits a DH of not lower than 100 ft and an RVR not less than 300 m;
Category IIIA permits a DH below 100 ft and an RVR not below 200 m;
Category IIIB permits a DH below 50 ft and an RVR not less than 50 m;
Category IIIC is a full auto-land with roll out guidance along the runway centreline and no DH or RVR limitations apply. This Category is not currently available routinely primarily because of problems which arise with ground manoeuvring after landing.
The special conditions which apply for Category II and III ILS operation cover aircraft equipment; pilot training and the airfield installations. In the latter case, both function, reliability and operating procedures are involved. An example of the latter is the designation of runway holding points displaced further back from the runway so as to ensure that aircraft on the ground do not interfere with signal propagation. Reliability requirements for Category II and III ILS include a secondary electrical power supply which should be fully independent of the primary one.
The transmission of ILS signals is continuously monitored for signal integrity and an installation is automatically switched off leading to the immediate display of inoperative flags on aircraft ILS displays selected to the corresponding frequency if any anomaly is detected. The reliability of this monitoring function is increased where approaches to minima lower than Category I are permitted and all ILS systems are subject to regular calibration flights to check that signals are being correctly transmitted. These checks only validate that the ILS is performing as intended and do not routinely investigate the indications which aircraft would receive if flown beyond signal validity.
It is very important to note that only a full ILS with LOC and GS signals is a precision approach. If only the LOC is transmitting then it can only support a Non-Precision Approach with increased minima, albeit this should be a lower minima than an equivalent VOR would enable.
Validity of ILS Guidance
An ILS is only valid if used within strict boundaries either side of the transmitted LOC and GS beams as documented on the corresponding AIPs Instrument Approach Procedure (IAP). From a pilot perspective, these limits are defined as Full Scale Deflection (FSD) of the deviation indication on the ILS displays in the flight deck, since once the deviation in respect of either the LOC or GS reaches FSD, it becomes impossible to know the extent of the deviation.
Because of this, pilots navigating their aircraft onto an ILS, whether from below the GS or above, have always been expected, when acquiring an ILS GS, to cross-check their range from touchdown against their indicated altitude/height and confirm that their aircraft is on the promulgated IAP GS.
Tanım
Aletli İniş Sistemi (ILS), karaya yaklaşırken pilotlara dikey ve yatay yönlendirme sağlayan iki radyo ışınına dayanan hassas bir pist yaklaşma yardımı olarak tanımlanmaktadır.
Açıklama
Bir Alet İniş Sistemi, iniş yaklaşımı sırasında pilotlara dikey ve yatay kılavuzluk sağlamak için iki radyo ışını kullanan hassas bir pist yaklaşma yardımcısıdır. Yerelleştirici (LOC) azimut rehberliği sağlarken, glideslope (GS) doğru dikey iniş profilini tanımlar. Marker fenerleri ve yüksek yoğunluklu pist ışıkları, bir ILS'nin kullanımına yardımcı olarak da sağlanabilir; bununla birlikte, bugünlerde, ILS'ye entegre bir DME ile değiştirilmiş veya havaalanında başka bir yere yerleştirilmiş olan bir DME ile değiştirilme olasılığı daha yüksektir; VOR.
ILS LOC antenleri normal olarak pistin sonunda bulunur; iki dar kesişen kirişi, biri pist merkez çizgisinin sağına, diğerini hafifçe sola, kesiştikleri yerde "LOC açık" göstergesini tanımlarlar (bkz. Şekil 1). Hava araçları, platforma, uçağın pist merkez hattından yer değiştirmesini gösteren bilgi sağlar.
ILS GS antenleri normal olarak havaalanında bulunur; Biri istenen dikey profilin biraz altında, diğeri biraz üstünde kesiştikleri "GS açık" göstergesini tanımlayan iki dar kesişen ışını iletirler (bkz. Şekil 2). Uçak ekipmanı, uçağın GS'nin üstünde veya altında yer değiştirmesini gösterir. GS antenleri genellikle kayma eğimi yaklaşık 50 ft'lik bir pist eşiği geçme yüksekliği sağlayacak şekilde yerleştirilir. Normal GS açısı 3 derecedir ancak genellikle arazi veya gürültü azaltma gibi belirli yaklaşım kısıtlamalarını karşılamak için istisnalar olabilir.
Eğer işaret işaretleri varsa, bunlar rötuştan bildirilen mesafelerde ILS yaklaşma yoluna yerleştirilecektir (bkz. Şekil 2). Tipik olarak, birinci marker işaretçisi (Dış İşaretleyici) rötuştan yaklaşık 5 NM içerisine yerleştirilirken, ikinci işaretleyici işaretleyici (Orta İşaretleyici) tepkimeye girmeden yaklaşık 1 NM uzakta olacaktı.
Pist görsel aralığı (RVR) belirtilen minimumun üzerinde değilse, normal olarak bir yaklaşım sürdürülemeyebilir. Bir yaklaşma yapıldığında, pilot karar yüksekliğine (DH) ulaşılana kadar ILS rehberliğini takip eder. DH'de, yaklaşım ancak belirtilen görsel referans mevcutsa devam edebilir, aksi takdirde bir etrafa uçuş yapılmalıdır.
Uygun şekilde donatılmış bir uçağı uçan uygun vasıflı pilotların uygun bir şekilde donatılmış ILS sistemlerini kullanarak uygun şekilde donatılmış pistlere uygun pistlere, pist eşik seviyesinin 200 feet üzerindeki Kategori I standardından daha düşük bir DH'ye görsel referans almadan görsel bir bilgi edinmeden devam etmesine olanak sağlayan özel kategoriler tanımlanmıştır. (arte) ve genellikle Kategori I ile ilişkilendirilen 550 metreden daha düşük bir RVR bildirildiğinde:
Kategori II, 100 ft'den daha düşük olmayan bir DH'ye ve 300 m'den daha az olmayan bir RVR'ye izin verir;
Kategori IIIA, 100 ft'nin altında bir DH ve 200 m'nin altında olmayan bir RVR'ye izin verir;
Kategori IIIB, 50 ft'in altındaki bir DH'ye ve 50 m'den az olmayan bir RVR'ye izin verir;
Kategori IIIC, pist merkez hattı boyunca yayılma rehberliği olan tam bir otomatik arazidir ve DH veya RVR sınırlamaları yoktur. Bu kategori şu an için rutin olarak mevcut değildir, çünkü inişten sonra zemin manevrasıyla ortaya çıkan sorunlar.
Kategori II ve III ILS operasyonu için geçerli olan özel koşullar uçak ekipmanını; pilot eğitimi ve havaalanı tesisatı. İkinci durumda, hem işlev, hem güvenilirlik hem de işletim prosedürleri söz konusudur. İkincisinin bir örneği, zemindeki uçakların sinyal yayılımını engellememesini sağlamak için pistten geriye doğru kaydırılan pist tutma noktalarının belirlenmesidir. Kategori II ve III ILS için güvenilirlik gereksinimleri, birincil olandan tamamen bağımsız olması gereken ikincil bir elektrik güç kaynağını içerir.
ILS sinyallerinin iletimi, sinyal bütünlüğü açısından sürekli izlenir ve herhangi bir anormallik tespit edildiğinde ilgili frekansa seçilen uçak ILS ekranlarında çalışmayan bayrakların hemen gösterilmesine yol açan bir kurulum otomatik olarak kapatılır. Bu izleme fonksiyonunun güvenilirliği, Kategori I'den daha düşük minimumlara yaklaşıma izin verildiğinde ve tüm ILS sistemlerinin, sinyallerin doğru şekilde iletildiğini kontrol etmek için düzenli kalibrasyon uçuşlarına tabi tutulduğu durumlarda arttırılır. Bu kontroller yalnızca ILS'nin amaçlandığı gibi çalıştığını doğrular ve sinyal geçerliliğinin ötesine uçarsa uçağın alacağı göstergeleri rutin olarak incelemez.
Sadece LOC ve GS sinyalleriyle dolu bir ILS'nin hassas bir yaklaşım olduğunu not etmek çok önemlidir. Eğer sadece LOC iletiyorsa, sadece minimuma sahip Hassas Olmayan Bir Yaklaşımı destekleyebilir, ancak bunun eşdeğer bir VOR'nun sağlayabileceğinden daha düşük bir minima olması gerekir.
ILS Rehberliğinin Geçerliliği
Bir ILS, yalnızca ilgili AIP Enstrüman Yaklaşım Prosedürü'nde (IAP) belgelendiği şekilde iletilen LOC ve GS ışınlarının her iki tarafındaki katı sınırlar içinde kullanıldığında geçerlidir. Pilot açıdan bakıldığında, bu limitler, uçuş güvertesinde ILS ekranlarındaki sapma göstergesinin Tam Ölçekli Saptırma (FSD) olarak tanımlanmıştır, çünkü bir kez LOC veya GS ile ilgili sapma FSD'ye ulaştığında, bunu bilmek imkansız hale gelir. sapma derecesi.
Bu nedenle, bir ILS GS alırken uçaklarını bir GSS'nin altından veya yukarısından aşağıya doğru yönlendiren pilotların, ILS GS'yi alırken menzillerini belirtilen rakım / yüksekliklerine karşı temaslarından çapraz kontrol etmeleri ve uçaklarının uçaklarını kontrol etmeleri için her zaman beklenirlerdi. ilan edilmiş IAP GS’de.
Precision Approach - Hasssas Yaklaşım
A precision approach is an instrument approach and landing using precision lateral and vertical guidance with minima as determined by the category of operation.[1]
Note. Lateral and vertical guidance refers to the guidance provided either by:
a) a ground-based navigation aid; or
b) computer generated navigation data displayed to the pilot of an aircraft.
c) a controller interpreting the display on a radar screen (Precision Approach Radar (PAR)).
Categories of precision approach and landing (including Instrument Landing System (ILS) and Autoland) operations are defined according to the applicable Decision Altitude/Height and Runway Visual Range (RVR) or visibility as shown in the following table.
Notes:
(1) Appendix 1 to JAR-OPS 1.430, Table 6, permits the use of an RVR of 300m for Category D aircraft conducting an autoland.
(2) Vertical minima:
CAT I Because the aircraft is unlikely to be flying over level ground at the same elevation as the touch-down zone when passing the Missed Approach Point, the vertical minima used in a CAT I approach is measured by reference to a barometric altimeter. In practice, this means that when flying a CAT I approach either a Decision Altitude/Height or Decision Altitude/Height may be used.
CAT II/III Because greater precision is required when flying a CAT II or CAT III approach, special attention is given to the terrain in the runway undershoot to enable a radio altimeter to be used. CAT II and CAT III approaches are therefore always flown to a DH with reference to a radio altimeter.
CAT II and CAT III instrument approach and landing operations are not permitted unless RVR information is provided.
On reaching the DH, the pilot may continue the approach to land provided that the required visual references have been established. Otherwise the pilot must commence a missed approachprocedure.
Hassas bir yaklaşım, operasyon kategorisine göre belirlenen minimum ile hassas yanal ve dikey rehberlik kullanarak bir araç yaklaşımı ve inişidir. [1]
Not. Yanal ve dikey kılavuz, aşağıdakiler tarafından sağlanan kılavuza atıfta bulunur:
a) yer temelli bir navigasyon yardımı; veya
b) uçağın pilotuna gösterilen bilgisayar tarafından üretilen navigasyon verileri.
c) ekranı bir radar ekranında yorumlayan bir kontrolör (Hassas Yaklaşım Radarı (PAR)).
Hassas yaklaşma ve iniş kategorileri (Alet İniş Sistemi (ILS) ve Autoland dahil) işlemleri, aşağıdaki tabloda gösterildiği gibi geçerli Karar İrtifa / Yükseklik ve Pist Görsel Aralığına (RVR) veya görünürlüğe göre tanımlanır.
Notlar:
(1) Ek 1 ila JAR-OPS 1.430, Tablo 6, bir otoyol taşıyan Kategori D uçakları için 300 m'lik bir RVR kullanılmasına izin verir.
(2) Dikey minima:
CAT I Missed Yaklaşım Noktası'nı geçerken uçağın düşürme bölgesi ile aynı yükseklikte düz bir zeminde uçması muhtemel olmadığı için, CAT I yaklaşımında kullanılan dikey minima bir barometrik altimetre referansı ile ölçülür. Uygulamada bu, bir CAT'i uçarken bir Karar İrtifa / Yükseklik ya da Karar İrtifa / Yüksekliğe yaklaşabileceğim anlamına gelir.
CAT II / III Bir CAT II veya CAT III yaklaşımını uçarken daha fazla hassasiyet gerektiğinden, bir radyo altimetresinin kullanılmasını sağlamak için pist alt kısmındaki araziye özel dikkat gösterilir. Bu nedenle, CAT II ve CAT III yaklaşımları her zaman bir radyo altimetre referansıyla bir DH'ye yönlendirilir.
RVR bilgisi verilmedikçe CAT II ve CAT III cihazlarının yaklaşma ve iniş işlemlerine izin verilmez.
DH'e ulaşırken, pilot gerekli görsel referansların sağlanması şartıyla araziye yaklaşmaya devam edebilir. Aksi takdirde pilot kaçırılmış bir yaklaşım prosedürü başlatmalıdır.
Decision Altitude/Height (DA/DH)- ( KARAR VERME )
Definition
The Decision Altitude (DA) or Decision Height (DH) is a specified altitude or height in the Precision Approach or approach with vertical guidance at which a Missed Approach must be initiated if the required visual reference to continue the approach has not been established. (ICAO Annex 6)
Decision altitude (DA) is referenced to mean sea level and decision height (DH) is referenced to the threshold elevation.
The DH for Category II and III approaches is invariably assessed by reference to a radio altimeter and never a barometric altimeter; therefore the minima can only be expressed as DH and not DA. For approaches with DH of 200ft or higher, radio altimeter reading would be unreliable due to the unevenness of the terrain; therfore a barometric altimeter is always used and the minima may be expressed as DH or DA.
The required visual reference means that section of the visual aids or of the approach area which should have been in view for sufficient time for the pilot to have made an assessment of the aircraft position and rate of change of position, in relation to the desired flight path. In Category III operations, the required visual reference is that specified for the particular procedure and operation.
For convenience where both expressions are used they may be written in the form "decision altitude/height" and abbreviated "DA/H"
Missed approach must be commenced at the DA/H unless the required visual reference has been established. Calculation of the DA/H takes into account that the aircraft will descend below the DA/H during the missed approach.
For more information regarding the calculation of DA/H see Aerodrome Operating Minima (AOM).
Tanım
Karar İrtifa (DA) veya Karar Yüksekliği (DH), Hassas Yaklaşımda belirtilen bir rakım veya yükseklik veya yaklaşımı devam ettirmek için gerekli görsel referans oluşturulmamışsa, Cevapsız Yaklaşımın başlatılması gereken dikey kılavuzlu bir yaklaşım. (ICAO Ek 6)
• Karar yüksekliği (DA) deniz seviyesine, karar yüksekliği (DH) eşik yüksekliğine referansta bulunur.
• Kategori II ve III yaklaşımları için DH, bir radyo altimetre ve asla bir barometrik altimetre referansı ile her zaman değerlendirilmez; Bu nedenle, minima DA olarak değil sadece DH olarak ifade edilebilir. 200 ft veya daha yüksek DH değerine sahip yaklaşımlar için, radyo altimetre okuması, alanın düzensizliğinden dolayı güvenilmez olacaktır; Bundan sonra, bir barometrik altimetre daima kullanılır ve minima DH veya DA olarak ifade edilebilir.
• Gerekli görsel referans, pilotun uçak pozisyonu ve pozisyonun değişim oranı ile ilgili olarak istenen pozisyona ilişkin bir değerlendirme yapması için yeterli süre için göz önünde bulundurulması gereken görsel alanların veya yaklaşma alanının kesitidir. uçuş güzergahı. Kategori III işlemlerinde, istenen görsel referans belirli işlem ve işlem için belirtilendir.
• Her iki ifadenin de kullanıldığı kolaylık sağlamak için "karar irtifa / yükseklik" şeklinde yazılabilir ve "DA / H" olarak kısaltılabilir.
Gerekli görsel referans oluşturulmadığı sürece DA / H'da kaçırılan yaklaşıma başlanması gerekir. DA / H'nin hesaplanması, uçağın kaçırılan yaklaşma sırasında DA / H'nin altına ineceğini dikkate alır.
DA / H'nin hesaplanması hakkında daha fazla bilgi için, bkz. Havaalanı Operasyon Minima (AOM
Missed Approach
Contents
1 Description
2 Missed Approach Procedure
3 Accidents and Incidents
Description
When, for any reason, it is judged that an approach cannot be continued to a successful landing, a missed approach or go-around is flown.
Reasons for discontinuing an approach include the following:
The required visal references have not been established by the Decision Altitude/Height (DA/DH)(DA/H) or Minimum Descent Altitude/Height (MDA/MDH) (MDA/H) or is acquired but is subsequently lost;
The approach is, or has become unstabilised;
The aircraft is not positioned so as to allow a controlled touch down within the designated runway touchdown zone with a consequent risk of aircraft damage with or without a Runway Excursion if the attempt is continued;
The runway is obstructed;
Landing clearance has not been received or is issued and later cancelled;
A go-around is being flown for training purposes with ATC approval.
Missed Approach Procedure- ( PAS GEÇME PROSEDÜRÜ)
A missed approach procedure is the procedure to be followed if an approach cannot be continued. It specifies a point where the missed approach begins, and a point or an altitude/height where it ends. (ICAO Doc 8168: PANS-OPS)
A missed approach procedure is specified for all airfield and runway Precision Approach and Non-Precision Approach procedures. The missed approach procedure takes into account de-confliction from ground obstacles and from other air traffic flying instrument procedures in the airfield vicinity. Only one missed approach procedure is established for each instrument approach procedure.
A go-around from an instrument approach should follow the specified missed approach procedure unless otherwise instructed by air traffic control.
The missed approach should be initiated not lower than the DA/H in precision approach procedures, or at a specified point in non-precision approach procedures not lower than the MDA/H.
If a missed approach is initiated before arriving at the missed approach point (MAPt), it is important that the pilot proceeds to the MAPt (or to the middle marker fix or specified Distance Measuring Equipment (DME) distance for precision approach procedures) and then follows the missed approach procedure in order to remain within the protected airspace. The MAPt may be overflown at an altitude/height greater than that required by the procedure; but in the case of a missed approach with a turn, the turn must not take place before the MAPt, unless otherwise specified in the procedure.
The MAPt in a procedure is defined by:
the point of intersection of an electronic glide path with the applicable DA/H in precision approaches; or,
a navigation facility, a fix, or a specified distance from the final approach fix in non-precision approaches.
A visual go around may be made after an unsuccessful visual approach.
A go-around is often unexpected and places special demands on the pilots, who may not often have an opportunity to practice this procedure. Some aspects of the go-around which deserve special study are:
Flying a manual go-around;
Go-around from low airspeed and/or low thrust; and,
The transition to instrument flying.
Often, if an emergency or abnormal situation develops during the approach, the approach will be continued to land. However,in some cases, such as a configuration issue, performing a missed approach, completing the appropriate drills and checklists to prepare for a non-standard approach and then conducting a second approach to a landing is the more prudent course of action.
Accidents and Incidents
The following events occurred during missed approach or involved a missed approach:
A306 / B744, vicinity London Heathrow UK, 1996 (On 5 April 1996 a significant loss of separation occurred when a B744, taking off from runway 27R at London Heathrow came into conflict to the west of Heathrow Airport with an A306 which had carried out a missed approach from the parallel runway 27L. Both aircraft were following ATC instructions. Both aircraft received and correctly followed TCAS RAs, the B744 to descend and the A306 to adjust vertical speed, which were received at the same time as corrective ATC clearances.)
A306, East Midlands UK, 2011 (On 10 January 2011, an Air Atlanta Icelandic Airbus A300-600 on a scheduled cargo flight made a bounced touchdown at East Midlands and then attempted a go around involving retraction of the thrust reversers after selection out and before they had fully deployed. This prevented one engine from spooling up and, after a tail strike during rotation, the single engine go around was conducted with considerable difficulty at a climb rate only acceptable because of a lack of terrain challenges along the climb out track.)
A306, vicinity Nagoya Japan, 1994 (On 26 April 1994, the crew of an Airbus A300-600 lost control of their aircraft on final approach to Nagoya and the aircraft crashed within the airport perimeter. The Investigation found that an inadvertent mode selection error had triggered control difficulties which had been ultimately founded on an apparent lack understanding by both pilots of the full nature of the interaction between the systems controlling thrust and pitch on the aircraft type which were not typical of most other contemporary types. It was also concluded that the Captain's delay in taking control from the First Officer had exacerbated the situation.)
A318/B739, vicinity Amsterdam Netherlands, 2007 (On 6 December 2007 an Airbus A318 being operated by Air France on a scheduled passenger flight from Lyon to Amsterdam carried out missed approach from runway 18C at destination and lost separation in night VMC against a Boeing 737-900 being operated by KLM on a scheduled passenger flight from Amsterdam to London Heathrow which had just departed from runway 24. The conflict was resolved by correct responses to the respective coordinated TCAS RAs after which the A318 passed close behind the 737. There were no abrupt manoeuvres and none of the 104 and 195 occupants respectively on board were injured.)
A319 / A320, Naha Okinawa Japan, 2012 (On 5 July 2012, an Airbus A319 entered its departure runway at Naha without clearance ahead of an A320 already cleared to land on the same runway. The A320 was sent around. The Investigation concluded that the A319 crew - three pilots including one with sole responsibility for radio communications and a commander supervising a trainee Captain occupying the left seat - had misunderstood their clearance and their incorrect readback had not been detected by the TWR controller. It was concluded that the controller's non-use of a headset had contributed to failure to detect the incorrect readback.)
A319, Luton UK, 2012 (On 14 February 2011, an Easyjet Airbus A319 being flown by a trainee Captain under supervision initiated a go around from below 50 feet agl after a previously stabilised approach at Luton and a very hard three point landing followed before the go around climb could be established. The investigation found that the Training Captain involved, although experienced, had only limited aircraft type experience and that, had he taken control before making a corrective sidestick input opposite to that of the trainee, it would have had the full instead of a summed effect and may have prevented hard runway contact.)
Açıklama
Herhangi bir sebepten dolayı, bir yaklaşımın başarılı bir inişe devam edilemeyeceğine karar verildiğinde, kaçırılmış bir yaklaşım veya dolaşma dolaşılır.
Bir yaklaşımı durdurma nedenleri arasında şunlar bulunmaktadır:
Gerekli vizal referanslar, Yükseklik / Yükseklik Kararı (DA / DH) (DA / H) veya Minimum İniş Yükseklik / Yükseklik (MDA / MDH) (MDA / H) Kararı ile oluşturulmamıştır veya daha sonra kaybedilmiştir;
Yaklaşım ya da dengesizleşti;
Uçak, belirlenmiş bir pist konma bölgesi içerisinde kontrollü bir şekilde aşağı inmesine izin verecek şekilde konumlandırılmayacak ve sonuçta eğer denemeye devam edilirse bir Pist Gezisi ile veya bu olmadan uçak hasarı tehlikesi ortaya çıkacak;
Pist tıkanmış;
İniş izni alınmamış veya verilmemiş ve sonra iptal edilmiş;
ATC onaylı eğitim amaçlı bir geçiş gerçekleştiriliyor.
Kaçırılan Yaklaşım Prosedürü
Kaçırılan bir yaklaşım prosedürü, bir yaklaşıma devam edilememesi durumunda izlenecek prosedürdür. Kaçırılan yaklaşımın başladığı bir noktayı ve bittiği noktayı veya yüksekliği / yüksekliği belirtir. (ICAO Doc 8168: PANS-OPS)
Tüm havaalanı ve pist Hassas Yaklaşım ve Hassas Olmayan Yaklaşım prosedürleri için kaçırılmış bir yaklaşım prosedürü belirtilmiştir. Kaçırılan yaklaşım prosedürü, zemin engellerinden ve havaalanı çevresindeki diğer hava trafiği uçuş enstrüman prosedürlerinden kaynaklanan çelişkiyi dikkate alır. Her enstrüman yaklaşım prosedürü için sadece bir cevapsız yaklaşım prosedürü oluşturulur.
Bir enstrüman yaklaşımından bir gözden geçirme, hava trafik kontrolü tarafından aksi belirtilmedikçe belirtilen cevapsız yaklaşım prosedürünü izlemelidir.
Kaçırılan yaklaşım, hassas yaklaşım prosedürlerinde DA / H'den düşük veya MDA / H'den düşük olmayan hassas olmayan yaklaşım prosedürlerinde belirtilen bir noktada başlatılmalıdır.
Eğer kaçırılan bir yaklaşma noktasına (MAPt) varmadan önce kaçırılmış bir yaklaşıma başlanırsa, pilotun MAPt'a (ya da hassas yaklaşma prosedürleri için ortadaki işaretleme saptaması veya belirtilen Mesafe Ölçme Ekipmanı (DME) mesafesine) ilerlemesi önemlidir. Korunan hava sahasında kalmak için kaçırılan yaklaşma prosedürünü takip eder. MAPt, prosedür tarafından gerekenden daha yüksek / yükseklikte taşabilir; ancak dönüşlü cevapsız bir yaklaşım durumunda, prosedürde aksi belirtilmedikçe, dönüş MAPT önünde yapılmamalıdır.
Bir prosedürdeki MAPt şu şekilde tanımlanır:
Bir elektronik kayma yolunun hassas yaklaşımlarda geçerli DA / H ile kesişme noktası; veya,
hassas olmayan yaklaşımlarda bir navigasyon tesisi, bir sabitleme veya son yaklaşma sabitliğinden belirli bir mesafe.
Başarısız bir görsel yaklaşımdan sonra görsel bir gezinti yapılabilir.
Gezinme genellikle beklenmedik bir durumdur ve bu prosedürü uygulama fırsatı bulamayacak olan pilotlara özel talepler getirir. Özel bir çalışmayı hak eden gezinin bazı yönleri:
Manuel bir gezinme;
Düşük hava hızından ve / veya düşük baskıdan hareket etme; ve,
Çalgının uçmasına geçiş.
Genelde, yaklaşım sırasında acil veya anormal bir durum ortaya çıkarsa, yaklaşmaya devam edilir. Bununla birlikte, yapılandırma sorunu, cevapsız bir yaklaşımın gerçekleştirilmesi, standart dışı bir yaklaşıma hazırlanmak için uygun tatbikatların ve kontrol listelerinin tamamlanması ve ardından bir inişe ikinci bir yaklaşımın uygulanması gibi bazı durumlarda daha tedbirli bir işlemdir.
Kazalar ve Olaylar
Kaçırılan yaklaşım sırasında meydana gelen olaylar ya da kaçırılmış bir yaklaşıma dahil olanlar:
Londra Heathrow İngiltere çevresindeki A306 / B744, 1996 (5 Nisan 1996 tarihinde, Londra Heathrow'daki 27R pistinden kalkış yapan bir B744, Heathrow Havalimanı'nın batısındaki bir A306 ile gerçekleşen bir A306 ile çatışmaya girdiğinde önemli bir ayrılma kaybı yaşandı. Paralel pistten (27L) kaçırılmış bir yaklaşım. Her iki uçak da ATC talimatlarını takip ediyordu: Her iki uçak da aldı ve doğru bir şekilde takip etti; bunlar, aynı zamanda, düzeltilmiş ATC açıklıklarıyla aynı zamanda alınan dikey hızı ayarlamak için TCAS RA'ları, aşağı inecek B744'ü ve A306'yı izledi.)
A306, East Midlands UK, 2011 (10 Ocak 2011 tarihinde, tarifeli bir kargo uçuşunda bir Air Atlanta İzlandalı Airbus A300-600, Doğu Midlands'ta bir sıçrama yaptı ve daha sonra seçimden önce ve sonra seçim geri dönüşlerinin geri çekilmesiyle uğraşmaya çalıştı. Bu motorların birisinin birikmesini önledi ve dönme sırasında yapılan bir kuyruk çarpmasından sonra, tek motorun etrafında dönmesi, sadece tırmanma pisti boyunca arazi zorluklarının bulunmaması nedeniyle kabul edilebilir bir tırmanma hızında ciddi bir güçlükle gerçekleştirildi. )
A306, Nagoya Japonya civarında, 1994 (26 Nisan 1994 tarihinde, bir Airbus A300-600 mürettebatı, Nagoya'ya son yaklaşırken uçaklarının kontrolünü kaybetti ve uçak havalimanının çevresine düştü. nihayetinde, çoğu diğer tipte tipte tipik olmayan uçak tipi üzerindeki itme ve perdeyi kontrol eden sistemler arasındaki etkileşimin tam doğasını belirleyen pilotlar tarafından anlaşılmayan bir eksiklik üzerine kurulmuş olan kontrol zorlukları tetiklenmiştir. Kaptan'ın Birinci Subay kontrolünü ele geçirme konusundaki gecikmesi durumu daha da kötüleştirmişti.)
A318 / B739, Amsterdam Hollanda, 2007 (6 Aralık 2007 tarihinde, Air France tarafından Lyon'dan Amsterdam'a tarifeli bir yolcu uçağı tarafından işletilen bir Airbus A318, 18C pistinden hedefe kaçırılan yaklaşımı uyguladı ve VMC'de Boeing 737'ye karşı gece ayrımı kaybetti -900, KLM tarafından Amsterdam'dan Londra Heathrow'a, sadece pist 24'ten ayrılan bir uçak seferinde işletiliyor. Bu çatışma, A318'in 737'nin arkasından geçtiği ilgili koordineli TCAS RA'larına verilen doğru cevaplarla çözüldü. ani manevralar yaptı ve gemide bulunan 104 ve 195 kişiden hiçbiri yaralandı.)
A319 / A320, Naha Okinawa Japonya, 2012 (5 Temmuz 2012 tarihinde, bir Airbus A319, Naha'daki kalkış pistine, aynı pistte karaya çıkarılmış bir A320'den önce boşluk bırakmadan girmiştir. A320 etrafına gönderilmiştir. A319 mürettebat - biri telsiz iletişimi için tek sorumluluğu olan üç pilot ve sol sandalyeyi işgal eden bir stajyeri denetleyen bir komutan - onların izinlerini yanlış anladılar ve yanlış geri dönüşleri TWR kontrolörü tarafından tespit edilmedi. Bir kulaklığın kullanılması, yanlış okumaların tespit edilememesine neden oldu.)
A319, Luton İngiltere, 2012 (14 Şubat 2011 tarihinde, bir stajyer Kaptan tarafından gözetim altında uçulan bir Easyjet Airbus A319, Luton'da daha önce dengelenmiş bir yaklaşım ve ardından çok sert bir üç nokta inişinden sonra 50 metreden daha az bir tur atmaya başladı. Soruşturma, Eğitim Kaptanının, deneyimli olmasına rağmen, yalnızca uçak tipi deneyimini sınırlı tuttuğunu ve stajyerinin tersine düzeltici bir sidestick girdisi yapmadan önce kontrolü ele geçirdiğini tespit etti. Toplanmış etki yerine tam ve sert pist temasını engellemiş olabilir.)
Distance Measuring Equipment (DME)-( İNİLECEK MEYDANA KALAN MESAFE )
Definitions
Distance Measuring Equipment (DME) is defined as a navigation beacon, usually coupled with a VOR beacon, to enable aircraft to measure their position relative to that beacon. Aircraft send out a signal which is sent back after a fixed delay by the DME ground equipment. An aircraft can compute its distance to the beacon from the delay of the signal perceived by the aircraft's DME equipment using the speed of light.
Distance Measuring Equipment (DME) is defined as a combination of ground and airborne equipment which gives a continuous slant range distance-from-station readout by measuring time-lapse of a signal transmitted by the aircraft to the station and responded back. DMEs can also provide groundspeed and time-to-station readouts by differentiation.
Tanımlar
Uzaklık Ölçme Ekipmanı (DME), uçağın bu işarete göre konumlarını ölçmesini sağlamak için genellikle bir VOR işaretiyle birleştirilmiş bir seyir işaret lambası olarak tanımlanmaktadır. Uçak, DME yer ekipmanı tarafından sabit bir gecikmeden sonra geri gönderilen bir sinyal gönderir. Bir uçak, ışığın hızını kullanarak uçağın DME ekipmanı tarafından algılanan sinyalin gecikmesinden işarete olan mesafeyi hesaplayabilir.
Uzaklık Ölçme Ekipmanı (DME), uçak tarafından istasyona iletilen bir sinyalin zaman atlamalı değerini ölçerek, istasyondan mesafeye sürekli bir eğim aralığı veren, yer ve havadan taşınan ekipmanın bir kombinasyonu olarak tanımlanmaktadır. DME'ler aynı zamanda yer hızı ve zamana göre zaman okumalarını farklılaştırma yoluyla sağlayabilirler.
SORU 1 – Uçuş operasyon (Flight operations) türlerinden 10 tanesini Türkçe ve İngilizce olarak yazınız ?
1 – COLD WEATHER OPERATIONS / Soğuk Hava Operasyonları
https://www.skybrary.aero/…/Cold_Weather_Operations_Checkli…
https://www.skybrary.aero/bookshelf/books/3404.pdf
2 - LOW VISIBILITY OPERATIONS / Zayıf görüş Operasyonları (Gece / Sis vs)
https://tr.scribd.com/d…/182955985/Low-Visibility-Operations
3 – IFR, VFR OPERATIONS / IFR, VFR Operasyonları
https://www.skybrary.aero/ind…/Instrument_Flight_Rules_(IFR)
https://www.skybrary.aero/…/Instrument_Meteorological_Condi…
http://aviationknowledge.wikidot.com/aviation:visual-flight…
4 – RVSM OPERATIONS / 29.000 Feet üzeri operasyonlar
5 - TOUCH-AND-GO OPERATIONS / Piste teker koyup tekrar kalkış operasyonları
https://www.youtube.com/watch?v=Mt5gXqlzu6M
https://www.youtube.com/watch?v=D-wqCRwbb7o
6 – MISSED APPROACH (GO AROUND) / Pas geçme operasyonları
7 – PARALLEL LANDING OPERATIONS / Paralel İniş Operasyonları
https://www.youtube.com/watch?v=Hh9G7VPhbGA
https://www.youtube.com/watch?v=qfuwMBBfs0o
8 – ETOPS OPERATIONS / Uzun Menzilli uçuşlarda tek motor operasyonları
https://www.hezarfendergi.com/2014/06/09/etops-nedir/
9 – NORTH ATLANTIC OPERATIONS / Kuzey Atlantik operasyonları
https://slideplayer.com/slide/11237633/
10 – AUTOPILOT OPERATION (Automatic Flight) / Oto pilotla uçuş operasyonları
1 – COLD WEATHER OPERATIONS / Soğuk Hava Operasyonları
Cold Weather Operations Checklist for VFR Flights
COLD WEATHER OPERATIONS
Aircraft and their components are designed to operate within certain temperature ranges. If information about these ranges is not available, operators should consult the manufacturer as to precautions to be taken in extremely cold weather operations. Also the advice of operators and mechanics permanently located in the area of operation is of great value.
Contents
1 1. Aircraft Preparation For Cold Weather Operations
2 2. Preflight Actions
3 3. Engine Start
4 4. Taxiing
5 5. Takeoff
6 6. Climb
7 7. Enroute
8 8. Descent and Approach
9 9. Landing
10 10. After the Flight
11 Further Reading
1. Aircraft Preparation For Cold Weather Operations
a) in extremely cold temperatures all oil lines, oil pressure lines and tanks, in aircraft with reciprocating engines, should be inspected for proper insulation to preclude the possibility of oil congealing. Insulation must be fireproof and the installation accomplished by an experienced mechanic.
b) baffles, winter fronts and oil cooler covers are recommended by some manufacturers (check for manufacturer’s approval)
c) check if oil and grease grades are as those specified by the manufacturer
d) special care is recommended during the preflight to assure that the crankcase breather system (reciprocating engines) is free of ice. Check if modification of the system is necessary and if yes, if it is approved.
e) inspect all hose lines, tubings, seals for any deterioration. Check all clamps and fittings.
f) inspect the cabin heater system to eliminate the possibility of carbon monoxide entering the cockpit/cabin.
g) check all control cables
h) remember that feathering of oil pressure controlled propellers, in extreme cold, may lead to the situation where congealed oil will not allow the propeller to be unfeathered.
i) if the airplane must be parked outside, wet cell batteries should be either kept fully charged or removed from the aircraft to prevent loss of power cause by cold temperatures. Dry cell batteries are resistant to power loss by freezing.
j) look out for any mud or slush which thrown into wheel wells, during taxi and takeoff, may freeze in flight and cause landing gear operational problems. If possible, avoid surfaces covered with mud or slush and remove wheel pants (fixed-gear aircraft) to prevent the possibility of frozen substance locking the wheels/brakes.
2. Preflight Actions
a) even in low temperatures, when conditions might entice the pilot to hurry the preflight phase, conduct full preflight inspection
b) check for fuel contamination which is very likely to happen when the aircraft was parked warm with half full tanks as this leads to water condensation in tanks. To check for contamination use all installed fuel sumps.
c) check for fuel source, use the best fuel available from modern fuelling facilities. If not available – filter the fuel as it goes into the tanks. Use good, commercial filter.
d) preheat the engine and cabin to minimise changes in the viscosity of oils, maximize the effectiveness of batteries and avoid situations when instruments stick.
e) to make preheating safe follow these precautions:
- preheat the aircraft by storing in a heated hangar,
- use only heaters in good condition and do not refuel the heater when it is operating,
- do not leave the aircraft unattended during the heating process.
- keep a fire extinguisher handy (fire extinguisher with CO2 should be fully charged)
- do not place heat ducting so it will blow hot air directly on combustible parts of the aircraft
- when using a “fire pot”, use a wire mesh in the ducting to prevent flaming pieces of carbon from entering the aircraft or engine compartment.
f) remove all frost, ice and snow from all airfoil and control surfaces and around the static system sensing point.
g) if an aircraft is parked in an area of blowing snow, put special attention to openings in the aircraft where snow can enter, freeze and then obstruct operations. There openings are:
- pitot tubes and static system sensing ports,
- fuel vents,
- heater intakes, carburettor intakes,
- wheel wells,
- tail wheel area (check for any frozen snow around the elevator and rudder controls).
h) in ski operation check all safety cables and shock cords.
i) if you are to fly over big, sparsely populated areas, consider carrying appropriate survival kits and proper clothing. It may save your life in case of forced landing.
3. Engine Start
a) in moderate cold an engine may be started without preheat. Use care as it may be difficult due oil being partially congealed.
b) avoid the tendency to overprime. It may lead to cylinder walls scoring, poor compression and hard starting. It may also be a cause of engine fire.
c) the reason for hard starting may be icing over sparkplug electrodes. To avoid it, heating is necessary and, if heat is not available then the plugs should be removed and heated to the point where no more moisture is present.
d) remember that during prolonged idling of the engine it may stop as insufficient heat is produced to keep the plugs from fouling out. When engine stops after long idling check plugs for icing.
e) remember that turbine engines can accumulate internal ice overnight and resist rotation when starting is attempted. Therefore with any indication of locked rotor, unusual noise or low RPM – discontinue the start.
4. Taxiing
a) in ski operation: exercise caution during downwind/crosswind taxiing and turning, especially when skis have no brakes.
b) in deep snow or on packed snow or ice, during wheel operation, braking action is poor.
c) avoid snow banks along the sides of runways as they may be frozen solid.
5. Takeoff
a) do not overboost supercharged or turbine engines. Use power charts for the pressure altitude and temperature to determine appropriate manifold pressure and engine pressure ratio.
b) remember that on multiengine aircraft the critical engine-out minimum control speed (Vmc) will be higher than the published figure.
c) with reciprocating engines use carburetor heat as required. On some occasions, in extremely cold weather, it may be advisable to use carburetor heat on takeoff.
d) use anti-ice and deice equipment as outlined in Flight Manual. In turbine powered aircraft remember that use of bleed air will, in most cases, affect aircraft performance.
6. Climb
a) in aircraft equipped with reciprocating engines, keep a close watch on cylinder head temperature. If the head temperature nears the critical stage, increase the airspeed or open the cowl flaps or both.
7. Enroute
a) if You are to fly into snow shower be prepared to revert to instruments as visual reference may be lost.
b) if a “white out” (a condition in which there are no contrasting ground features in pilot’s visibility range) occurs - immediately shift to instrument flight.
c) in icing conditions use anti-ice equipment in the manner for which it was designed (anti-ice equipment is to prevent ice formation, not to eliminate which has already built-up)
8. Descent and Approach
a) during descent, there may be a problem keeping the engine warm enough. It may be desirable to use more power than normal, which may require extension of gear or/and flaps to keep the airspeed within limits. Use of carburetor heat may be necessary to prevent induction icing as well as to heat the carburetor to help vaporise the fuel.
b) keep in mind that two conditions are commonly associated with clear en-route weather: blowing snow and ice fog. Check the forecast carefully as these conditions are hazardous and may require alternate actions.
9. Landing
a) be aware of the potential for snow banks on the sides of the runways
b) try to obtain runway surface conditions prior to your landing decision. If such information is not readily available take your time to hold and wait for it.
c) remember that the use of reversible propellers or thrust reverses may reduce your forward visibility due to blowing snow.
10. After the Flight
a) during reciprocating engine shutdown a good practice is to turn off the fuel and run the carburetor dry. This lessens the fire hazard during preheat before next flight.
b) fill the tanks with the proper grade of fuel, especially if the aircraft is going to be parked in a heated hangar. Do it as soon as possible after the landing.
c) if the aircraft is to be left outside install engine and pitot tubes covers.
d) if snow or “clear and colder” conditions are forecast – install wing covers if available.
e) use control locks and tie down the aircraft if it is to be let outside.
f) check for manufacturer’s recommendations for engine oil dilution.
2 - LOW VISIBILITY OPERATIONS / Zayıf görüş Operasyonları (Gece / Sis vs)
Low Visibility Procedures (LVP)
Contents
1 IR-OPS and EU-OPS 1 Definitions
2 Description
2.1 Hazards
2.2 Aerodromes
2.3 Operators
3 Related Articles
4 Further Reading
IR-OPS and EU-OPS 1 Definitions
Low visibility procedures (LVP) means procedures applied at an aerodrome for the purpose of ensuring safe operations during lower than standard category I, other than standard category II, category II and III approaches and low visibility take-offs. (IR-OPS Annex I)
Low visibility take-off (LVTO) means a take-off with an RVR lower than 400 m but not less than 75 m. (IR-OPS Annex I)
Note that ICAO requires LVP for all departures below 550m Runway Visual Range (RVR), not just LVTO.
Description
Low visibility procedures exist to support Low Visibility Operations at Aerodromes when either surface visibility is sufficiently low to prejudice safe ground movement without additional procedural controls or the prevailing cloudbase is sufficiently low to preclude pilots obtaining the required visual reference to continue to landing at the equivalent of an ILS Cat 1 DH/DA. It should be noted that in the latter case, surface visibility may be relatively good but the TWR visual control room may be in cloud/fog.
Low visibility on Runway
Hazards
On aerodromes where the ground marking and lighting is adequate, ground traffic at reasonable flow rates can often be sustained safely in reduced visibility. An aeroplane on the ground is at its most vulnerable during the landing and the take-off phases of flight when the options for avoiding action, if an obstruction is encountered, may be very limited. The aircraft is likely to be badly damaged or destroyed if it collides, at high speed, with any sizeable object.
Making the necessary transition to visual reference during the final stages of an approach to land in poor visibility is critical and certain requirements must be met to reduce the risk of a Runway Excursion. Low visibility take off also requires careful attention to correct runway alignment before the take off is commenced; an Instrument Landing System (ILS) LLZ signal can be used for verification if available. If a Rejected Take Off is carried out, pilots must maintain awareness of runway length remaining using whatever external visual cues are available; relevant runway lighting, signage or markings may be available.
As visibility deteriorates, the potential for runway incursions by aircraft, vehicles or personnel increases. The risk of inadvertent runway incursion by taxiing aircraft is greatest at aerodromes with complex layouts and multiple runway access points. This risk can only be managed adequately by the application of procedures that provide the pilot with clear, unambiguous guidance on routing and holding points or ground traffic patterns.
The safe operation of airside vehicles depends upon drivers being adequately trained and thoroughly familiar with the aerodrome layout in all visibility conditions and on their compliance with procedures, signs, signals and ATC instructions. In low visibility conditions, extreme vigilance is required and special procedures, including restrictions on normal access, may be invoked. All of this is an essential product of the Airport Operator Safety Management System.
Controller ability to detect manoeuvring area conflicts may be reduced in poor visibility conditions, as the controllers may be unable to confirm whether their clearances are properly complied with.
Aerodromes
Aerodromes that wish to continue operating in poor visibility or are available for instrument approaches in conditions of low cloud are required to develop and maintain LVPs.
Aerodromes that provide precision instrument approaches which provide guidance below ILS Cat 1 or equivalent DA/DH are required to have additional procedures in place that ensure the protection of signals transmitted by the ground based radio equipment that is used for the approach.
The point at which LVPs are implemented may vary from one aerodrome to another depending on local conditions and facilities available. It will usually be determined by a specific Runway Visual Range (RVR) or cloud base measurement. Typically an RVR below 550 metres or a cloud base below 200 ft aal will trigger LVPs.
Adequate consideration should be given to the time taken to implement fully all of the measures required to protect operations in low visibility conditions. Provision should also be made for alerting airlines, and other organisations with movement area access, in good time prior to the introduction of LVPs. This is particularly important where companies exercise control over their own apron areas and maintenance facilities adjacent to the manoeuvring area.
Regulatory authorities offer guidelines in respect of LVP implementation and suspension. A typical example is found in UK CAP 168: Licensing of Aerodromes, Appendix 2B, which contains information on the subject. ICAO European Region guidance material on LVPs is available in ICAO EUR Doc 013"European Guidance Material On All Weather Operations at Aerodromes".
Operators
Low Visibility Operations may only be conducted under strict conditions, which are described fully in IR-OPS Subpart E Low Visibility Operations (LVO) and associated Acceptable Means of Compliance and Guidance Material, and EU-OPS 1.440 - EU-OPS 1.460 and relevant appendices. Essentially these concern the following main areas:
Flight crew complement, training, qualification and authorisation;
Aircraft minimum equipment and certification;
Aerodrome considerations; and,
Operating procedures.
Taxi-out for departure and taxi-in after arrival in low visibility conditions is one of the most demanding phases of all-weather operations. The following good practices should be considered for inclusion in the Standard Operating Procedures (SOPs):
A good briefing for the taxi-out or taxi-in phase (route) is extremely important; the brief of the taxi pattern should use headings for better orientation;
No paperwork whatsoever shall be done during taxi-out or taxi-in, all checks shall be done at a standstill;
F/O must have the taxi chart available during all ground operations during LVP;
If there is any doubt about the position of the aircraft whilst taxiing before take-off or after landing, the flight crew shall stop the aircraft and inform ATC immediately;
ATC shall be asked for guidance in standard English ATC phraseology. ATC can then immediately give the necessary urgent instructions to aircraft about to depart or land; to discontinue take-off or approach as applicable, before taxiing assistance and guidance is offered to the ‘lost’ crew;
Lights can be helpful to make the aircraft visible to others;
Never cross a lit red stop bar;
The runway shall be confirmed by both pilots before any take-off (a/c heading upon entering the runway must match the painted numbers on the runway);
When rejected take-off is carried out the crew must maintain awareness of the runway length remaining using whatever external visual cues are available (relevant runway lighting, signage or markings, remaining runway indication on the Head Up Display and shall bear in mind that:
The aircraft is/may not by visible to the tower controller;
Not all airports have surface movement radar;
It is important to inform the ATC tower once the rejected take-off is completed.
Installing Runway Awareness and Advisory System (RAAS) on the aircraft improves situational awareness both on the ground and when airborne.
3 – IFR, VFR OPERATIONS / IFR, VFR Operasyonları
Instrument Flight Rules (IFR)
Instrument Flight Rules (IFR)
Description
Instrument Flight Rules (IFR) are rules which allow properly equipped aircraft to be flown under instrument meteorological conditions (IMC).
IFR are detailed in ICAO Annex 2: Rules of the Air, Chapter 5: Instrument Flight Rules.
JAR-OPS 1.652 and associated guidance material specifies the flight and navigational instruments and associated equipment required for IFR or night operations. This may be supplemented by requirements contained in national Aeronautical Information Publications (AIPs). Minimum equipment lists (MELs) detail the conditions under which IFR flight may be commenced or continued when elements of aircraft equipment are unserviceable.
JAR-OPS 1.960 details qualification requirements for pilots to carry out IFR flights.
Instrument Meteorological Conditions (IMC)
Description
Instrument meteorological conditions (IMC) are meteorological conditions expressed in terms of visibility, distance from cloud, and ceiling, less than the minima specified for visual meteorological conditions (VMC). (ICAO Annex 2)
VMC are detailed in ICAO Annex 2: Rules of the Air, Chapter 4: Visual Flight Rules. Essentially, they are:
When above 3,000ft or 1,000ft above terrain, whichever is higher:
1500m horizontally and 1,000 ft vertically from cloud;
Flight visibility 5km below 10,000ft and 8km above 10,000ft.
When below 3,000ft or 1,000ft above terrain, whichever is higher:
Clear of cloud and in sight of the surface;
Flight visibility 5km.
Visual Flight Rules (VFR)
Visual flight rules (VFR) are the regulations that specify the cloud and visibility limitations for aircraft operating with visual reference to terrain. For a pilot to continue flight under VFR, the conditions must be equal to or greater than those specified by the governing body.
In New Zealand, this minima is contained in Civil Aviation Rules Part 91 - Subpart D (Visual Flight Rules). Should these requirements not be met, aircraft may operate under instrument flight rules (IFR) and in certain cirucmstances, a special VFRclearance may be issued by air traffic control.
Visual Flight Requirements
The basic premise of VFR is that the pilot will be able to navigate and manipulate the aircraft with reference to external cues only. Pilots are also required to avoid other aircraft using the "see and avoid" technique. To achieve this, the following requirements shall be met (Image from Civil Aviation Authority, n.d.):
For more on airspace classification, see Airspace classification.
Additional Requirements
Several additional requirements exists within Subpart D of Part 91. These relate to the minimum cloud ceiling required for aircraft to operate under VFR. These are:
Within Control Zones
- 1500 feet ceiling
- 5 km visibility
Within Uncontrolled Airspace
- 600 feet ceiling (Day)
- 1500m visibility (Day)
- 1500 feet ceiling (Night)
- 8 km visibility (Night)
Fuel Requirements
Fixed wing aircraft are required to carry enough fuel to fly to the point of intended landing, in the forecast weather conditions plus an additional 30 minutes . At night, this requirement is increased to 45 minutes. Should a situation occur where the aircraft is unable to land at the intended airfield, this additional fuel can be used to hold or divert to a suitable landing place.
Helicopters differ in that they must have fuel to fly for a further 20 minutes, or a time period equal to the intended flight time of the flight is less than 20 minutes long.
Minimum Heights
Aircraft are required to fly at a minimum of 1000 feet when operating over a built up area (such as towns and cities). Away from built up areas, this is reduced to 500 feet. Obviously, such requirements do not apply to aircraft carrying out an approach to land, balked landing or taxiing.
Additionally, Part 91 makes provision to fly below these heights if there if the pilot in command is an instructor and is carrying engine failure training or if the aircraft is operating in a low flying zone.
Direction of Flight Under VFR
When an aircraft is operating above 3000 feet AGL up to 13,000 feet, the pilot is required to conform to the cruising table altitudes for the direction of flight.
For northerly flights (270 to 089 magnetic heading) fly at an odd altitude + 500 feet.
For southerly flights (090 to 269 magnetic heading) fly at an even altitude + 500 feet,
Example: The aircraft heading is 045, a northerly heading and therefore the pilot should select an odd cruising level + 500 feet. (3500, 5500, 7500, 9500 feet etc.)
In other parts of the world, these requirements may be based on Easterly and Westerly headings. Given the North/South layout of New Zealand, the above method was adopted.
References
1. Civil Aviation Authority (n.d.) VFR MET Minima.http://www.caa.govt.nz/Publications/Other/VFR_Met_Minima_card.pdf, n.d.
Reduced Vertical Separation Minima (RVSM)
Contents
1 Description
2 Implementation
3 Approval for RVSM Operations
4 Regulatory Requirements
5 Separation standards within RVSM Airspace
6 Contingency procedures when unable to maintain RVSM
7 RVSM related phraseology
8 Further Reading
Description
A program was initiated by International Civil Aviation Organisation (ICAO) in 1982 involving worldwide studies to assess the feasibility of a reduction of the Vertical Separation Minima (VSM) above FL290 from 2,000 feet to 1,000 feet.
The principal benefits which the implementation of the reduced VSM were expected to provide were:
A theoretical doubling of the airspace capacity, between FL290 and FL410; and
The opportunity for aircraft to operate at closer to the optimum flight levels with the resulting fuel economies.
The program relies on the carriage and serviceability of specified aircraft equipment and the existence of appropriate operating procedures to ensure that the risk of loss of separation is no greater than it would be outside RVSM airspace.
Implementation
Between 1997 and 2005 RVSM was implemented in all of Europe, North Africa, Southeast Asia, North America, South America, and over the North Atlantic, South Atlantic, and Pacific Oceans.
Approval for RVSM Operations
State airworthiness authorities are responsible for verifying that an aircraft is technically capable of meeting and maintaining the stringent altimetry system performance requirements. Crews must be trained in appropriate procedures in RVSM airspace. Providing all these requirements are met, an authority will issue an RVSM Operational Approval. Operators indicate RVSM approval by filing a W in field 10 of the ICAO model flight plan. It is a violation of ICAO European regional supplementary procedures for a non-approved aircraft to file a W. The Regional Monitoring Agency (RMA) is responsible for verifying the approval status of aircraft operating in RVSM airspace and reporting violations to the appropriate state authority.
An important element of the certification process is the confirmation of the aircraft height keeping performance across the entire operational flight envelope. The flight envelope covers all combinations of speed, altitude and weight/atmospheric pressure ratio that the aircraft would expect to operate across in RVSM airspace. The assessment of the aircraft performance across the flight envelope, together with the service bulletin, continuing airworthiness instructions and the amendment to the aircraft flight manual are collectively known as the RVSM approval data package. Confirmation of the RVSM approval data package is a fundamental requirement before any RVSM operational approval is issued.
Regulatory Requirements
An operator shall not operate an aeroplane in defined portions of airspace where, based on regional air navigation agreement, a vertical separation minimum 300 m (1000ft) applies unless approved to do so by the Authority (RVSM Approval). EASA IR-OPS SPA.RVSM.100 and SPA.RVSM.110, EU-OPS 1.241 See also EU-OPS 1.872.
Prior to granting the RVSM approval... the State shall be satisfied that:
a) the vertical navigation performance capability of the aeroplane satisfies the (laid down requirements);
b) the operator has instituted appropriate procedures in respect of continued airworthiness (maintenance and repair) practices and programmes; and
c) the operator has instituted appropriate flight crew procedures for operation in RVSM airspace.
Note: An RVSM approval is valid globally on the understanding that any operating procedures specific to a given region will be stated in the Operations Manual or appropriate crew guidance. (ICAO Annex 6 Part I Chapter 7, Para 7.2.5.)
An operator shall ensure that aeroplanes operated in RVSM airspace are equipped with:
Two independent altitude measurement systems;
An altitude alerting system;
An automatic altitude control system; and
A secondary surveillance radar (SSR) transponder with altitude reporting system that can be connected to the altitude measurement system in use for altitude keeping. (IR-OPS SPA.RVSM.110, EU-OPS 1.872)
Separation standards within RVSM Airspace
Within RVSMairspace (between FL290 and FL410 inclusive) the vertical separation minimum is:
1000ft (300m) between RVSM-approved aircraft, and
2000ft (600m) between non-RVSM approved state aircraft and any other aircraft operating within RVSM airspace.
2000ft (600m) between non-RVSM aircraft operating as general air traffic (GAT) and any other aircraft within RVSM airspace.
There is no exemption for state aircraft to operate as GAT within RVSM airspace with a 1000 ft vertical separation minimum without an RVSM approval. The absence of such approval does require a separation of 2000 ft to be observed. State aircraft which are exempted from having to meet the RVSM Minimum Aircraft System Performance Specification (MASPS) in Field 18 of the ICAO FPL, shall request special handling by filling “STS/NONRVSM”.
Formation flights are to be considered non-RVSM compliant irrespective of the RVSM status of the individual aircraft within the formation and are not permitted within RVSM airspace with a 1000 ft vertical separation minimum.
Contingency procedures when unable to maintain RVSM
The pilots shall notify ATC of any equipment failure, weather hazards such as severe turbulence etc., which may affect the ability to maintain the cleared level or the RVSM requirements. When an aircraft operating in RVSM Airspace encounters severe turbulence due to weather or wake vortex which the pilot believes will impact the aircraft’s capability to maintain its cleared flight level, the pilot shall inform ATC. ATC is required to establish either an appropriate horizontal separation minimum, or an increased vertical separation minimum of 2000ft;
Where a meteorological forecast is predicting severe turbulence within the RVSM Airspace, ATC shall determine whether RVSM should be suspended, and, if so, the period of time, and specific flight level(s) and/or area.
When notified by ATC of an assigned altitude deviation of more than 300ft (90 m), the pilot shall take action to return to the cleared level as quickly as possible.
In the event of a pilot advising that the aircraft is no longer capable of RVSM operations, it is particularly important that the first ATS unit made aware of the failure performs the necessary co-ordination with subsequent ATS units.
RVSM related phraseology
ATC wishes to determine the RVSM status of a flight - CONFIRM RVSM APPROVED
Pilot response in case that the flight is RVSM approved - AFFIRM RVSM
Pilot response in case that the flight is not RVSM approved - NEGATIVE RVSM
Pilot of State aircraft responding that the flight is not RVSM approved - NEGATIVE RVSM STATE AIRCRAFT
ATC refuses to issue a clearance into RVSM Airspace - UNABLE CLEARANCE INTO RVSM AIRSPACE, MAINTAIN [or DESCEND TO, or CLIMB TO] FL ...
Pilot reporting severe turbulence / weather affecting ability to maintain RVSM height keeping requirements - UNABLE RVSM DUE TURBULENCE
Pilot reporting equipment degradation below RVSM requirements - UNABLE RVSM DUE EQUIPMENT
ATC requesting the pilot to report when able to resume RVSM - REPORT ABLE TO RESUME RVSM
Pilot ready to resume RVSM after equipment/weather contingency - READY TO RESUME RVSM
5 - TOUCH-AND-GO OPERATIONS / Piste teker koyup tekrar kalkış operasyonları
Go-around Decision Making
Contents
1 The Background
2 Risk Management
3 Non-Compliance with Stabilised Approach Procedures
3.1 It’s OK
3.2 It’s the SOP
3.3 We’ll decide later
3.4 I don't agree with the detail of these procedures
3.5 I can see the runway
3.6 It’s our job
3.7 Unexpected and/or Unwilling
3.8 Inadequate Go-Around Specific Training
3.9 Semantics
4 Go-Around Decision Making Flexibility
5 Threats and Go-Around Decisions
6 Improving Go-Around Decision Making
7 Go-Around Safety Forum (2013) Findings and Conclusions
7.1 Strategies to Ensure Go-Around Decision Making
7.2 Air Operator Conclusions
8 Related Articles
9 Further Reading
10 References
The Background
In 1998 a Flight Safety Foundation (FSF) Study concluded that the failure to recognise the need for and then execute a missed approach was an important contributor to approach-and-landing accidents, including but not limited to those involving controlled flight into terrain (CFIT)[1]. This Study found that only 17% of accident/incident flight crews had initiated go-arounds when conditions indicated that go-arounds should have been conducted. It was stated that the majority of go-arounds were made because of weather (forward visibility, ceiling (cloud base), wind velocity and turbulence).
This Study led to the creation of the Approach and Landing Accident Reduction Toolkit, in which Stabilised Approaches[2] and Being Prepared to Go-Around[3] were highlighted as two interrelated key elements for improving safety. Central to both them was the principle of decision-making becoming more closely guided by SOPs.
Since these recommendations were made, many aviation safety regulators have introduced a requirement for aircraft operators to define and apply Stabilised Approach procedures suitable for their operations, but this fairly recent development has been merely a recognition of best practice on stabilised approaches which had already begun to be adopted by leading operators outside the USA well before the FSF Study, especially in Europe.
In 2013 at the Go-Around Safety Forum (supported by SKYbrary)[4][5], more recent studies and analyses were cited by presenters. These studies indicate that:
Between 3 and 4% of all approaches are reported/recorded as unstablised
Yet, only 3% of these result in a go-around being flown
In other words, 97% of unstabilised approaches continue to be flown to a landing contrary to airline Standard Operating Procedures (SOPs)
Risk Management
Since current accident rates are so low (e.g. 1:2,000,000), the vast majority of these 97% unstabilised approaches self-evidently land without incident. However, perhaps not always considered by the pilots making these decisions to land (or not to go-around) is the substantial increase in risk when flying an unstabilised aircraft down the final approach.
This raises many questions, including:
Why are pilots deciding to ignore their stabilised approach procedures?
What do pilots typically consider when making decisions to continue an unstabilised approach?
How can compliance with stabilised approach procedures be increased?
These questions should be considered by aircraft operators against the picture painted by their own operational performance data, from both Flight Data Monitoring (FDM) (OFDM) Programmes and pilot self-reporting. Using this data, and the presentations from the Go-Around Safety Forum flight operations departments are encouraged to open discussions on this topic, including:
are our stabilised approach procedures properly predicated on approach and landing risk management?
if and when this is so, can demonstration of it to pilots be used to improve compliance?
if compliance is going to lead to more go arounds, are we sure that they will be flown at least as competently as any other 'normal' flight phase?
Non-Compliance with Stabilised Approach Procedures
Procedural non-compliance usually precedes a violation and a violation often precedes an accident. So, why do pilots continue with unstabilised approaches instead of going around[6]? A number of explanations have been put forward:
It’s OK
The fact that so many (97%) of unstabilised approaches are flown to a safe landing can reinforce several “landing-minded” views, including: unstabilised approaches as defined are not necessarily all equally risky.
It’s the SOP
Since many pilots have discovered that continuing and recovering from what is defined as an unstabilised approach so that a normal landing follows is likely can reinforce both personal and more widespread view that the procedures are unwarranted as specified. They may then be considered either as 'flexible' or as too restrictive and impractical. Some pilots may view the procedures as merely guidance which doesn’t need to apply to me right here, right now, in this particular situation. It may also be possible that the extant procedure is too complex and therefore difficult to use.
We’ll decide later
Because flying an approach to land is a dynamic process of continuous correction and decision making, there can be an undue focus (and this may be discussed between pilots during an approach) that there is always the option to go-around all the way to touchdown - which of course is true with or without stabilised approach procedures.
I don't agree with the detail of these procedures
Stabilised Approach 'Gates' where specific criteria must be met, vary considerably between operators, sometimes for entirely justified reasons. However, pilots who change employer may then encounter difference which they find are not satisfactorily explained by the operator. Even those who don't may feel that they haven't been given a credible explanation of the connection between the applicable SOP and safety. Stabilised approach gates vary in their number, their rigidity, the height above touchdown they are set at and whether they are different in different visibility conditions or for different types of approach. When asked in a recall survey to explain their behaviour, many pilots stated that they had been quite sure that they were capable of continuing safely whilst out of compliance with their stabilised approach criteria.[7]. It has been suggested too that encountering a situation which can destabilise an aircraft carries more risk if the physical and mental attention of the pilot is already focussed on flying an unstabilised approach. Since the pilot has already predicted that a safe landing will be possible, any additional complication such as a sudden adverse change in wind velocity may significantly impact on their capacity to react appropriately. It may even compound existing errors. If such a situation occurs very close to touchdown, then the time available to react will be just a few seconds and only a fully vigilant and attentive pilot will be able to react adequately.
I can see the runway
Being visual with your “goal” is a strong motivating factor in influencing a decision to continue, and when correcting from an unstable condition, it can be used to judge predicted progress quite efficiently. Therefore, seeing the runway and judging progress visually is how most pilots learned to fly, without any thought to meeting parameters such as rate of descent, drift angle, and heading. In fact when flying visually, it may be only power settings and speed that a pilot checks his instruments for regularly. However, it is interesting to note that just as many unstable approaches occur in Visual Meteorological Conditions (VMC) as they do in Instrument Meteorological Conditions (IMC),[8].
It’s our job
Commercial pressure and professional pride always appear somewhere in a pilot’s thinking (unconsciously or consciously) and this can influence the decision to continue or to go-around. Fir some pilots, this is implied by the tightly-defined fuel loading policies which are widespread these days.
Unexpected and/or Unwilling
For many pilots, go-arounds are rare events and the conditions that require a go-around decision rarely encountered. If pilots are not confident that they can fly a go around just as well as any other normal flight phase' then they are unlikely to be prepared to make a decision to go-around until they see it as inevitable - which is likely to make the transition to it much more difficult than if they had taken the decision at the most appropriate time. And whilst a thorough approach briefing [3] can help timely decision making, it does not guarantee it.
Inadequate Go-Around Specific Training
Without effective training, both in the classroom and in the simulator, the chances of a pilot automatically selecting go-around when it is the right option will be reduced. Decision making is often heavily biased towards the first option that comes to mind which is usually a continuation of the approach being flown.
Semantics
It has been suggested that that the specific word “unstabilised” can have a subtle effect on pilot decision making. Simply in terms of definition, “unstable” means loss of equilibrium, or in layman’s terms “about to topple”. However, the majority of “unstable” approaches are anything but this as they pass the qualifying threshold. It may be difficult logically to associate “unstable” with a situation where, say the speed is 15 knots above Vref, the thrust is at flight idle, the rate of descent is 1000 fpm and or the land flap is still in transit as the aircraft passes 500 feet, especially if whichever of these apply are gradually trending to the criteria which will make the approach "stable".
Go-Around Decision Making Flexibility
Placing more emphasis on the option to go around above as well as below the formal challenges of the stabilised approach gate(s) may have at least three major beneficial impacts:
making the option of a go-around both natural and 'normal' at any time
supporting dynamic decision making
reducing the cognitive capacity required to make correct decisions when under a high workload and thereby increasing the ability to respond to unforeseen circumstances.
Options for go-around decision making
From the representative profile above, it can be seen that at the time and place a go-around decision is required, a dynamic (rapidly changing) situation is very likely. This in turn will occupy a large part of a pilot’s attention and cognitive capacity. In such situations, it has been proposed that potential decisions need to be “armed” ready to be to be triggered by previously-considered threats so that decision making becomes reactive and automatic.
Underlying each decision making phase, as shown, is an effective procedure which can be learnt and applied in training, discussed and refreshed during briefings and “triggered” automatically when required.
Stabilised Approach and go-around procedures and policies can be seen as the ultimate in pre-planning for decision making and van be seen as containing when X then Y, and, if A then B clauses. Such an approach can also encourage effective cross-monitoring and task-sharing, by reinforcing the concept that go-around decision making is a collective responsibility resulting in a “command”.
Threats and Go-Around Decisions
Central to effective go-around decision making is a comprehensive knowledge and understanding of situations, threats and circumstances that should, or may, require a go-around to be flown. Whilst a stabilised approach procedure may highlight the symptoms, it is the threats to flying a stabilised approach, threats preventing a safe landing and the threats to decision making capacity that need to be fully understood. Typical threats include:
lack of preparation – “rushed” approach[9]
a late runway or approach procedure change
an inadequate approach briefing
challenging prevailing wind velocity
inappropriate energy management
inadequate traffic spacing
unfamiliar approach - maybe a straight in non-precision or circling
inappropriate aircraft configuration
runway surface condition
a predicted late touchdown point
unexpected runway occupancy after clearance to land
degraded aircraft systems status
the effect of fatigue
the effect of commercial and personal pressure (stress)
Each of these threats presents a different decision-making scenario depending where the aircraft is on the approach (see decision making profile above). For example, some wind-shear, or a runway incursion, whilst the aircraft is still at 800ft may demand a different response than if they occur at 100ft. Knowledge and understanding of potential threats must include all stages of an approach, especially the part below DA/DH where, the pilot mind-set is that a landing will now be possible.
Improving Go-Around Decision Making
As shown in the go-around decision making profile above, improvements to go-around decision making begin made well in advance of flying an approach and a lot of improvement can probably be made pre-flight! But pilots need the right kind of support and the following points need to be seriously considered:
Operation of a non-punitive policy for go-arounds and diversions is essential. This goes beyond not taking any action against pilots for going-around, but also requires management not to show displeasure! Care needs to be taken in how any de-briefing after such events is conducted.
In return for making the effort to properly understand the prevailing fuel loading policy, the pilot-in-command must not perceive undue interference with their final decision on fuel to be carried on a specific flight. It would serve no useful purpose, for example, for an airline to publish 'league tables' of fuel burn per route per pilot!
It would be prejudicial to safety to predicate personal-performance bonus schemes on flight punctuality
The stabilised approach procedure must be able to be justified to the pilots required to comply with it as proportionate risk management.
Procedures that clarify the role and responsibilities of any supernumerary pilots on the flight deck should be available and should clearly state when and how they might intervene of the operating crew are observed to be breaching significant SOPs.
Realistic and regular Go-around Training must be provided and must adequately cover the decision to go around from both specified decision points such as stabilised approach gates and instrument approach decision altitudes and the ad hoc decision.
Approach briefing procedures must require appropriate reference to the circumstances which might require a go around and the way it would the be flown.
The potential benefits of the Monitored Approach system for cross monitoring should be carefully considered.
Having decided to go-around is not the end of decision making! Executing a go-around places the pilots and the aircraft in a new situation, perhaps one that is rarely practiced and which contains new threats. Over 60% of go-arounds introduce increased risk[10], this increases to over 70% where the pilots had a problem on approach.
Go-Around Safety Forum (2013) Findings and Conclusions
The Findings and Conclusions from the June 2013 Go-Around Safety Forum held in Brussels contain many useful ideas for consideration including Strategies and Conclusions for various stakeholders. These conclusions are not necessarily recommendations, but are valuable for airlines to use as starting points to improve go-around decision making amongst their pilots. Some of these are summarised below.
Strategies to Ensure Go-Around Decision Making
Strategy 1 – Enhance crew dynamic situational awareness.
Strategy 2 – Refine the go-around Policy (stable approach parameters and stable approach height).
Strategy 3 – Minimise the subjectivity of go-around decision
making.
Air Operator Conclusions
AO1 / AO2 – Develop SOPs to discuss instability threat factors during approach briefings prior to descent, and briefly throughout the approach.
AO3 – Develop ‘active’ communications procedures similar in concept to EGPWS or TCAS systems.
AO4 – Ensure unstabilised approach and go-around policies are clear, concise and unambiguous, including follow up procedures for non-compliance.
AO5 – Avoid directive or suggestive calls that may compromise on-going decision making, e.g., announcing, “Landing” at minimums.
AO6 – Re-define the stable approach criteria and stable approach height(s). In redefinition there is a valid argument to separate the profile (vertical and lateral) from the other stable approach criteria.
AO7 – Provide ongoing training to enhance awareness of psychosocial and management pressures that contribute to non-compliance during the approach phase.
AO8 – Cross monitoring effectiveness must recognise the importance of integrating low experience pilots into effective contribution to go around decision and
execution.
AO9 – Pilots and their employers should understand that approach minima violation, is unacceptable because the evidence indicates that if a go-around
then has to be made, the chances of a successful transition are reduced.
AO10 – The incidence of go-arounds should be continually tracked by Aircraft Operators based on a requirement for all PICs to file on the day of occurrence reports which explain the circumstances of the go-around. This will provide context to triggered OFDM events.
AO11 – Operations Manuals must contain a strongly worded policy statement which
shows that, provided a full explanatory report is provided on any go-around made, no punitive action will follow. In addition, any ‘feedback’ will be
provided in writing and be incapable of interpretation by a dispassionate expert observer as prejudicial to future operational safety.
AO12 – Pilots must be able to demonstrate that they are able to safely execute go-arounds commenced from high energy and low energy states at the point
where the go-around decision is indicated.
AO13 – Pilots must be able to exercise tactical judgment as well as procedural
compliance when deciding to go-around below the mandatory stabilised approach gate so that safe execution is not prejudiced by an inappropriate
delay in the decision. Validation of this must be achieved by realistic training scenarios.
AO14 – Go-Around training should include a range of operational scenarios, including go-arounds from positions other than DA/MDA and the designated Stabilised Approach Gate. Scenarios should involve realistic simulation of surprise, typical landing weights and full power go-arounds.
AO15 – include lessons learned from operational events/incidents into go-around training.
AO16 – Clear guidance should be provided to pilots on how to act in respect of the three stages of cross-monitoring during approach, landing and go around i.e. - noticing/alerting/taking control. Observing members of augmented crews should have a clear understanding of their monitoring role.
AO17 – Pilot training to execute GA in automatic modes should be explicitly included and Aircraft Operator automation policy should address the go-around procedure.
AO18 – Pilots should have a clear understanding of how the pitch control system works on the aircraft type they fly. This should be validated by both theoretical testing and suitable simulator exercises conducted with full rather than reduced power/thrust available at typical landing weights.
6-MISSED APPROACH (GO AROUND) / Pas geçme operasyonları
Missed Approach
Contents
1 Description
2 Missed Approach Procedure
3 Accidents and Incidents
4 Related Articles
5 Further Reading
Description
When, for any reason, it is judged that an approach cannot be continued to a successful landing, a missed approach or go-around is flown.
Reasons for discontinuing an approach include the following:
The required visal references have not been established by the Decision Altitude/Height (DA/DH)(DA/H) or Minimum Descent Altitude/Height (MDA/MDH) (MDA/H) or is acquired but is subsequently lost;
The approach is, or has become unstabilised;
The aircraft is not positioned so as to allow a controlled touch down within the designated runway touchdown zone with a consequent risk of aircraft damage with or without a Runway Excursion if the attempt is continued;
The runway is obstructed;
Landing clearance has not been received or is issued and later cancelled;
A go-around is being flown for training purposes with ATC approval.
Missed Approach Procedure
A missed approach procedure is the procedure to be followed if an approach cannot be continued. It specifies a point where the missed approach begins, and a point or an altitude/height where it ends. (ICAO Doc 8168: PANS-OPS)
A missed approach procedure is specified for all airfield and runway Precision Approach and Non-Precision Approach procedures. The missed approach procedure takes into account de-confliction from ground obstacles and from other air traffic flying instrument procedures in the airfield vicinity. Only one missed approach procedure is established for each instrument approach procedure.
A go-around from an instrument approach should follow the specified missed approach procedure unless otherwise instructed by air traffic control.
The missed approach should be initiated not lower than the DA/H in precision approach procedures, or at a specified point in non-precision approach procedures not lower than the MDA/H.
If a missed approach is initiated before arriving at the missed approach point (MAPt), it is important that the pilot proceeds to the MAPt (or to the middle marker fix or specified Distance Measuring Equipment (DME) distance for precision approach procedures) and then follows the missed approach procedure in order to remain within the protected airspace. The MAPt may be overflown at an altitude/height greater than that required by the procedure; but in the case of a missed approach with a turn, the turn must not take place before the MAPt, unless otherwise specified in the procedure.
The MAPt in a procedure is defined by:
the point of intersection of an electronic glide path with the applicable DA/H in precision approaches; or,
a navigation facility, a fix, or a specified distance from the final approach fix in non-precision approaches.
A visual go around may be made after an unsuccessful visual approach.
A go-around is often unexpected and places special demands on the pilots, who may not often have an opportunity to practice this procedure. Some aspects of the go-around which deserve special study are:
Flying a manual go-around;
Go-around from low airspeed and/or low thrust; and,
The transition to instrument flying.
Often, if an emergency or abnormal situation develops during the approach, the approach will be continued to land. However,in some cases, such as a configuration issue, performing a missed approach, completing the appropriate drills and checklists to prepare for a non-standard approach and then conducting a second approach to a landing is the more prudent course of action.
Accidents and Incidents
The following events occurred during missed approach or involved a missed approach:
A306 / B744, vicinity London Heathrow UK, 1996 (On 5 April 1996 a significant loss of separation occurred when a B744, taking off from runway 27R at London Heathrow came into conflict to the west of Heathrow Airport with an A306 which had carried out a missed approach from the parallel runway 27L. Both aircraft were following ATC instructions. Both aircraft received and correctly followed TCAS RAs, the B744 to descend and the A306 to adjust vertical speed, which were received at the same time as corrective ATC clearances.)
A306, East Midlands UK, 2011 (On 10 January 2011, an Air Atlanta Icelandic Airbus A300-600 on a scheduled cargo flight made a bounced touchdown at East Midlands and then attempted a go around involving retraction of the thrust reversers after selection out and before they had fully deployed. This prevented one engine from spooling up and, after a tail strike during rotation, the single engine go around was conducted with considerable difficulty at a climb rate only acceptable because of a lack of terrain challenges along the climb out track.)
A306, vicinity Nagoya Japan, 1994 (On 26 April 1994, the crew of an Airbus A300-600 lost control of their aircraft on final approach to Nagoya and the aircraft crashed within the airport perimeter. The Investigation found that an inadvertent mode selection error had triggered control difficulties which had been ultimately founded on an apparent lack understanding by both pilots of the full nature of the interaction between the systems controlling thrust and pitch on the aircraft type which were not typical of most other contemporary types. It was also concluded that the Captain's delay in taking control from the First Officer had exacerbated the situation.)
A318/B739, vicinity Amsterdam Netherlands, 2007 (On 6 December 2007 an Airbus A318 being operated by Air France on a scheduled passenger flight from Lyon to Amsterdam carried out missed approach from runway 18C at destination and lost separation in night VMC against a Boeing 737-900 being operated by KLM on a scheduled passenger flight from Amsterdam to London Heathrow which had just departed from runway 24. The conflict was resolved by correct responses to the respective coordinated TCAS RAs after which the A318 passed close behind the 737. There were no abrupt manoeuvres and none of the 104 and 195 occupants respectively on board were injured.)
A319 / A320, Naha Okinawa Japan, 2012 (On 5 July 2012, an Airbus A319 entered its departure runway at Naha without clearance ahead of an A320 already cleared to land on the same runway. The A320 was sent around. The Investigation concluded that the A319 crew - three pilots including one with sole responsibility for radio communications and a commander supervising a trainee Captain occupying the left seat - had misunderstood their clearance and their incorrect readback had not been detected by the TWR controller. It was concluded that the controller's non-use of a headset had contributed to failure to detect the incorrect readback.)
A319, Luton UK, 2012 (On 14 February 2011, an Easyjet Airbus A319 being flown by a trainee Captain under supervision initiated a go around from below 50 feet agl after a previously stabilised approach at Luton and a very hard three point landing followed before the go around climb could be established. The investigation found that the Training Captain involved, although experienced, had only limited aircraft type experience and that, had he taken control before making a corrective sidestick input opposite to that of the trainee, it would have had the full instead of a summed effect and may have prevented hard runway contact.)
... further results
Related Articles
Go Around
Go-around Decision Making
Precision Approach
Non-Precision Approach
Visual References
Decision Altitude/Height (DA/DH)
Minimum Descent Altitude/Height (MDA/MDH)
Bird Strike on Final Approach: Guidance for Flight Crews
Pilot Workload
7 – PARALLEL LANDING OPERATIONS / Paralel İniş Operasyonları
Parallel Runway Operation
Contents
1 Objective
2 Modes of Operation
2.1 Simultaneous parallel approaches
2.2 Simultaneous parallel departures
2.3 Segregated parallel approaches/departures
2.4 Semi-mixed parallel operations
2.5 Mixed mode parallel operations
3 Factors Affecting Simultaneous Operations on Parallel Instrument Runways
4 Factors to Consider When Determining the Mode of Operations
5 Operational Issues
6 Safety-Related Issues Affecting Independent Approaches to Closely-Spaced Parallel Instrument Runways
7 Safety-Related Issues Affecting Dependent Approaches to Closely-Spaced Parallel Instrument Runways
8 Near-Parallel Runways
9 New Concepts and Procedures
10 Related Articles
11 Some airports operating parallel runways
12 Further Reading
13 Notes
Objective
The main objective of implementing simultaneous operations on parallel or near-parallel runways is to increase runway capacity and aerodrome flexibility. The largest increase in overall capacity often includes the use of independent approaches to parallel or near-parallel runways.
The safety of parallel runway operations in controlled airspace is affected by several factors such as the accuracy and use of the associated radar monitoring system, the effectiveness of the process of controller intervention when an aircraft deviates from the correct Instrument Landing System (ILS)localiser or Area Navigation Systems course and the precision with which aircraft can and do fly the approach.
Modes of Operation
In ATC terms, the various modes of operation available for the use of parallel or near-parallel instrument runways are distinguished as:
Simultaneous parallel approaches
Mode 1, independent parallel approaches: simultaneous approaches to parallel instrument runways where radar separation minima are not prescribed between aircraft using adjacent ILS; and
Mode 2, dependent parallel approaches: simultaneous approaches to parallel instrument runways where radar separation minima between aircraft using adjacent ILS are prescribed.
Simultaneous parallel departures
Mode 3, independent parallel departures: simultaneous departures for aircraft departing in the same direction from parallel runways.
It should be noted that when the spacing between two parallel runways is lower than the specified value determined by wake turbulence considerations, the runways are considered as a single runway with regard to vortex wake separation.
Segregated parallel approaches/departures
Mode 4, segregated parallel operations: simultaneous operations on parallel runways where one runway is used for approaches and landings, and one runway is used for departures.
In the case of segregated parallel approaches and departures there may be semi-mixed modes of operations.
Semi-mixed parallel operations
One runway is used exclusively for approaches while approaches are being made to the other runway, or departures are in progress on the other runway.
One runway is used exclusively for departures while other is used for both departures and arrivals.
Mixed mode parallel operations
At least one runway is used for both take offs and landings.
Factors Affecting Simultaneous Operations on Parallel Instrument Runways
Factors which may have an impact on the maximum capacity or the desirability of operating parallel runways simultaneously are not limited to runway considerations. Taxiway layout and the position of passenger terminals with reference to the runways may make it necessary for traffic to cross active runways, a situation which may not only lead to delays but also to a decrease of the safety level due to the possibility of runway incursions by either arriving or departing aircrsft.
Factors to Consider When Determining the Mode of Operations
Theoretical studies and practical examples indicate that maximum aerodrome capacities can be achieved by using parallel runways in a mixed mode of operation. In many cases, however, other factors such as the land-side/air-side infrastructure, the mix of aircraft types, and environmental considerations result in a lower achievable capacity.
Other factors such as non-availability of landing aids on one of the parallel runways or restricted runway lengths may preclude the conducting of mixed operations at a particular aerodrome.
Because of these constraints, maximum runway capacity may, in some cases, only be achieved by adopting a fully segregated mode of operation, i.e. one runway is used exclusively for landings while the other is used exclusively for departures.
The advantages to be gained from segregated parallel operations as compared to mixed parallel operations are as follows:
a) separate monitoring controllers are not required;
b) no interaction between arriving and departing aircraft on the same runway and a possible reduction in the number of missed approaches;
c) a less complex ATC environment overall for both radar approach controllers and aerodrome controllers; and
d) a reduced possibility of pilot error following undetected selection of the wrong ILS.
Operational Issues
Parallel Runway Operation need to be carefully managed in such a manner as to minimise the risk of runway incursion or wrong runway use. Closely-spaced parallel runways may affect the pilots' situational awareness or lead to their distraction or confusion.
A potential problem with close parallel runway spacing is the possibility that an aircraft may make an approach to the wrong runway. Two scenarios can be considered:
The wrong ILS frequency is selected. Pilot Standard Operating Procedures (SOPs) for approach clearance acceptance and subsequent setting of the required navigation equipment should be robust and attract 100% compliance. The role of the PM (and if present the augmenting crew occupying supernumerary seats) in a multi crew flight deck in cross checking that correct actions are taken is crucial.
The wrong runway is visually acquired. If a pilot cleared for an instrument approach acquires visual reference with the aerodrome when some distance from landing, it is possible in the absence of the right level of crew discipline and interaction for alignment with the wrong runway to follow.
Safety-Related Issues Affecting Independent Approaches to Closely-Spaced Parallel Instrument Runways
Independent operations on closely-spaced parallel runways are significantly safety critical and should be used only after a proper risk assessment has been undertaken. In this process, the issues listed below, which are contained in ICAO Doc 9643 Manual on Simultaneous Operations on Parallel or near parallel Instrument Runways (SOIR), should be considered:
a) weather limitations — independent instrument approaches to parallel runways spaced by less than 1,525 m but not less than 1,035 m between centre lines should, as prescribed by the appropriate ATS authority, be suspended under certain adverse weather conditions including windshear, turbulence, downdrafts, crosswind and severe weather such as thunderstorms, which might increase ILS localiser deviations to the extent that safety may be impaired and/or an unacceptable number of deviation alerts would be generated;
b) ILS flight technical error — the track of aircraft using the ILS localiser course is subject to errors from several sources, including the accuracy of the signal, the accuracy of the airborne equipment, and the ability of the pilot or autopilot to follow the navigational guidance (flight technical error (FTE)). Deviations from the ILS localiser course may vary with the runway under consideration; it is therefore essential that the FTE is measured at each installation and the procedures adapted to ensure that false deviation alerts are kept to a minimum;
c) communications — when there is a large deviation from the final approach track, communication between controllers and pilots involved is critical. For independent parallel approaches two aerodrome controllers are required, one for each runway, with separate aerodrome control frequencies;
d) obstacle evaluation — since aircraft may need to be turned away from the final approach track at any point during the approach, an obstacle survey and evaluation must be completed for the area opposite the other parallel runway; this is necessary in order to safeguard early turns made to avoid potential penetration of the adjacent final approach;
e) pilot training — operators should ensure that flight crews conducting simultaneous independent approaches to parallel runways are familiar with the issues that arise. It should be noted that if an immediate missed approach is instructed by ATC, the required manoeuvres may differ from the promulgated standard missed approach;
f) controller training — training is required for air traffic controllers prior to being assigned monitoring duties. This training should include instructions in the specific duties required of a monitoring radar controller.
g) risk analysis — a risk analysis using available data should indicate that the probability of having a miss distance of less than 150 m (500 ft) between aircraft is expected to be less than 1 per 56,000,000 approaches. Wherever independent approaches to closely-spaced parallel runways are envisaged, a risk analysis must be completed for each location to ensure satisfactory levels of safety;
h) airborne collision avoidance system (ACAS) — during operational evaluations of ACAS II, some unnecessary missed approaches occurred as a result of “nuisance” resolution advisories (RAs). To remedy this situation, a number of modifications were made to the collision avoidance logic. However, these modifications did not completely eliminate such occurrences. Accordingly, the use of “traffic advisory (TA) only” mode during parallel approach operations should be recommended and indicated on the published approach charts;
i) transponder failure — If an aircraft without an operating transponder arrives at an aerodrome, ATC will have to create a gap in the arrival flow so that the aircraft will not require monitoring. If an aircraft transponder fails during an instrument approach, the monitoring radar controller will instruct any adjacent aircraft to cancel their approach;
j) fast/slow aircraft — if a fast aircraft deviates towards a slower aircraft on the adjacent approach, the slower aircraft may not be able to move away quickly enough to assure safe spacing. ATC must create a gap in the arrival flow to safeguard the approaches of slower aircraft;
k) approach chart notation — the charts showing instrument approach procedures to runways used for simultaneous parallel instrument operations should indicate such operations, particularly using the term “closely-spaced parallel runways”. The terminology should be reflected in the title of the approach chart including the runway identification;
l) unnecessary cancelled approaches — an unnecessary cancelled approach is a situation in which the monitoring radar controller initiates a cancelling approach and the deviating aircraft subsequently remains in the normal operating zone (NOZ). The number of alerts, both true and false, should be monitored as a method of assessing the performance of the system. It may be necessary to amend the parameters of the alerting mechanism if too many false alerts are experienced; and
m) autopilots — older models of autopilots mean a higher FTE. Modern autopilots are much more acccurate and their FTE is less.
Safety-Related Issues Affecting Dependent Approaches to Closely-Spaced Parallel Instrument Runways
The minimum spacing between two aircraft in the event of a deviation is calculated using techniques similar to those used for independent parallel approaches.
Two factors apply:
since the radar separation is applied diagonally, less distance between runways means a greater in-trail distance between the aircraft; and
less distance between runways also means that the deviating aircraft crosses the adjacent approach track more quickly.
Near-Parallel Runways
Near-parallel runways are non-intersecting runways whose extended centre lines have an angle of convergence/divergence of 15 degrees or less.
No special procedures have been developed as yet for simultaneous operations to near-parallel runways. Each situation is considered on a case-by-case basis and is dependent on a number of variable conditions.
New Concepts and Procedures
In order to maximise the capacity there are some concepts such as High Approach Landing System (HALS) that were developed and deployed (for a given period of time only) to allow aircraft to land simultaneously on closely spaced parallel runways at Frankfurt Airport. The concept involved adopting a second, strongly displaced landing threshold for the southern runway to mitigate against wake turbulence by flying above the vortices of the leading aircraft.
Related Articles
Runway Incursion
Wrong Runway Use
Runway Designators
Some airports operating parallel runways
Abilene Regional Airport
Abu Dhabi International Airport
Adams Field/Bill and Hillary Clinton National Airport
Amsterdam Airport Schiphol
Ashgabat
Atlanta/Hartsfield-Jackson International
Auckland Airport
Austin-Bergstrom International Airport
Bangkok/Suvarnabhumi International Airport
Barcelona/El Prat Airport
Billings Logan International Airport
Boise
Boston/Logan International
Boulder City Municipal Airport
Brownsville/South Padre Island International Airport
Calgary International Airport
Capital Region International Airport
Cavern City Air Terminal
Charlotte/Douglas
Chicago/O'Hare International Airport
Cincinnati Municipal Airport
Colorado Springs
Columbus Air Force Base
Copenhagen Airport, Kastrup
Da Nang International
Dallas Love Field
Dallas-Fort Worth International Airport
Dayton International Airport
Daytona Beach International Airport
DeKalb-Peachtree
Delhi/Indira Gandhi International Airport
Dubai International Airport
Dyess Air Force Base
Eppley Airfield
Eugene Airport
Frankfurt am Main Airport
Fresno Yosemite International Airport
Gerald R. Ford International Airport
Grand Forks International Airport
Gwalior Airport
Hanoi International
Henderson Executive Airport
Hong Kong International Airport
Honolulu International Airport
Houston Intercontinental
Huntsville
Indianapolis International Airport
Jackson-Evers International Airport
Jeddah/King Abdul Aziz International Airport
Joint Base Andrews
8 – ETOPS OPERATIONS / Uzun Menzilli uçuşlarda tek motor operasyonları
ETOPS Nedir?
Amerikalılar bir kavramı veya nesneyi tanımlarken bir sürü kelimeyi yan yana ekleyip, sonra da kısaltmayı çok severler. Hele bir de kısaltıldığında başka bir İngilizce kelime ortaya çıkıyorsa….
Extended Twin-Engine Operations‘ın kısaltmasıdır ETOPS. Zaman zaman “Engines Turn or Passengers Swim” de denilmekte.
Özetle ETOPS; çift motorlu uçakların acil durumlarda tek motorla ne kadar bir süre havada kalabileceklerini düzenlemektedir. Uçağın rotası da buna göre çizilir ve acil bir durumda inilecek havaalanının uçağın rotasından bir saatlik mesafeyi aşmamasına dikkat edilir.
Ancak havayoluna ve uçağın arıza kayıtlarına göre bu süre uzatılabilir. Örneğin, Airbus’ın dört motorlu modeli A340 karşısında ETOPS düzenlemesinin dezavantajını yaşayan Boeing 777 şu anda maksimum 208 dakikaya kadar ETOPS izni alabilmektedir.
Ancak kullandığı bir B777 ile motor sorunu yaşayan havayolu, ETOPS süresinde kısıtlamayla karşılaşabilir.
Bunun yanında son gelen bilgilere göre ise FAA (Federal Aviation Administration), ETOPS konusunda yeni bir düzenlemeye giderek Boeing’in bu derdine çare bulacakmış.
9 – NORTH ATLANTIC OPERATIONS / Kuzey Atlantik operasyonları
Presentation on theme: "1 International Flight Operations Efficiency Enhancements: Oceanic Navigation and the North Atlantic Track System (NATS) Presented by Frank Ketcham."— Presentation transcript:
1 1 International Flight Operations Efficiency Enhancements: Oceanic Navigation and the North Atlantic Track System (NATS) Presented by Frank Ketcham
2 2 Flight Ops Background Airline Pilot for major US carrier Commercial Aviation Specialist, UC Berkeley Airline Transport Pilot Rating currently flying Airbus A330 FAA Dispatcher Rating Flight Engineer Rating Commercial Glider, Seaplane, Single Engine FAA Certified Advanced Ground instructor Previous Aircraft: 727, MD-80, DC-9, DC-10, 747, A320 Turboprops and light aircraft
3 3 Objective Highlight increased efficiency within international flight operations We will focus on the North Atlantic Track System We will conclude with exploring existing challenges and research opportunities
4 Definition of North Atlantic Track System NATS The North Atlantic Track System (NATS) is the principal system of routes between Europe and North America. The exact location of the tracks changes daily according to weather and traffic demands. 4
5 Structure of North Atlantic Track System NATS Each individual track consists of an entry point, a series of latitude and longitude waypoints and an exit point. Each individual track consists of an entry point, a series of latitude and longitude waypoints and an exit point. The system is comprised of several tracks in parallel running easterly and westerly The system is comprised of several tracks in parallel running easterly and westerly 5
6 The purpose of the NATS Provide: Separation of aircraft Separation of aircraft Optimize winds Optimize winds Allow aircraft to fly at efficient altitudes Allow aircraft to fly at efficient altitudes 6
7 Track System 7
8 Flight Plan/Clearance/FMS Dispatch proposed routing from Airline Operations Center (AOC) Dispatch proposed routing from Airline Operations Center (AOC) Submitted to Air Traffic Control (ATC) Submitted to Air Traffic Control (ATC) Assigned by ATC as a Clearance Assigned by ATC as a Clearance Entered into Flight Management System (FMS) Entered into Flight Management System (FMS) Displayed on Flight Deck Displayed on Flight Deck Modified with FMS keypad Modified with FMS keypad 8
9 9 Flight Management System (FMS) Tracks routing via waypoints Tracks routing via waypoints Routing, Altitudes, Fuel, Time Routing, Altitudes, Fuel, Time Ability to modify route Ability to modify route Lateral and vertical restrictions Lateral and vertical restrictions
10 10 Flight Plan/FMS
11 11 Flight Plan Tracking/Sequencing
12 Daily Formation of North Atlantic Track System NATS Collaborative decision making Collaborative decision making Jetstream drives structure Jetstream drives structure Weather Weather Turbulence Turbulence Random routes are available Random routes are available 12
13 Transatlantic Operations Non radar environment Non radar environment No Navaids No Navaids Class 2 airspace Class 2 airspace Adverse weather Adverse weather Limited Alternate Airports Limited Alternate Airports High demand airspace High demand airspace 13
14 Legacy Communications 2 VHF Radios 2 VHF Radios 2 HF Radios 2 HF Radios Position Reports via HF radio Position Reports via HF radio Non radar/surveillance Non radar/surveillance 14
15 Position Reports consist of: Fix (waypoint) Fix (waypoint) Time Time Altitude Altitude Fuel Fuel Time estimate of forward sequenced waypoint Time estimate of forward sequenced waypoint Next waypoint Next waypoint 15
16 NAT Traffic Approximately 390,000 Flights transit the Atlantic airspace per year Of those ~310,000 transit Gander and Shanwick airspace of these ~160,000 are on the organized track system NATS UK traffic 2014 16
17 North Atlantic Track System 17
18 Traditional Separation Requirements Vertical Separation 2000 feet Vertical Separation 2000 feet Longitude separation by 10 minutes at constant Mach Longitude separation by 10 minutes at constant Mach Tracks are built on degrees of latitude, one degree of latitude is equal to 60 miles Tracks are built on degrees of latitude, one degree of latitude is equal to 60 miles 18
19 Advancements Glass Cockpit/Advanced Flight Management Systems Glass Cockpit/Advanced Flight Management Systems Satcom, satellite communications Satcom, satellite communications GPS, Global Positioning System GPS, Global Positioning System ADS-B Automatic Dependent Surveillance – Broadcast ADS-B Automatic Dependent Surveillance – Broadcast CPDLC Controller Pilot Data Link Communications CPDLC Controller Pilot Data Link Communications RVSM Reduced Vertical Separation Minimums RVSM Reduced Vertical Separation Minimums Automatic position reporting Automatic position reporting 19
20 Aircraft and Equipage 20
21 Surveillance and Communication ADS-B now provides surveillance ADS-B now provides surveillance CPDLC provides communication CPDLC provides communication Satcom provides voice communications if needed Satcom provides voice communications if needed ADS Interrogation ADS Interrogation 21
22 CPDLC 22
23 FMS Capabilities Required Time of Arrival (RTA) capable Required Time of Arrival (RTA) capable Constant Mach Constant Mach Cost indexing Cost indexing Required Navigational Performance (RNP Nav) Required Navigational Performance (RNP Nav) 23
24 RTA and Constant Mach 24
25 Capacity Enhancements 2000 ft. separation reduced to 1000 ft. (1997) 2000 ft. separation reduced to 1000 ft. (1997) 10 minutes longitudinal separation going to as low as 5 minutes in some cases 10 minutes longitudinal separation going to as low as 5 minutes in some cases Lateral separation 60 miles or 1 degree going to 30 miles or.5 degrees (started in initial trial 2015) Lateral separation 60 miles or 1 degree going to 30 miles or.5 degrees (started in initial trial 2015) 25
26 Vertical Efficiency Max Altitude, based on aircraft weight and temp Max Altitude, based on aircraft weight and temp Optimum Altitude will enable the aircraft, at a given weight, to burn the lowest amount of fuel over the entire flight (takes into account winds and temp within 500 nm) Optimum Altitude will enable the aircraft, at a given weight, to burn the lowest amount of fuel over the entire flight (takes into account winds and temp within 500 nm) Winds and Temperature: flight plan VS actual Winds and Temperature: flight plan VS actual 26
27 Fuel Efficiency 84% of fuel consumption takes place at cruise 84% of fuel consumption takes place at cruise Initial FL340-FL350 Initial FL340-FL350 Refine flight plan mileage for ETA Refine flight plan mileage for ETA 1000 ft. step climbs based on 90 minutes/20,000 lbs. of fuel burned (lighter for climb) 1000 ft. step climbs based on 90 minutes/20,000 lbs. of fuel burned (lighter for climb) Adjust Tactical Cost Index Adjust Tactical Cost Index 27
28 Climb Conflict 28
29 Fuel Penalty for Off Opt Penalty for Off OPTIMUM Cruise Type+2000+1000+500 OPTIMUM -1000-2000-4000-6000 A330-2001.8%0.9%.45%0.7%1.3%4.2%8.4% A300-3003.0%1.5%.75%0.5%1.0%3.2%7.2% 29
30 Altitude Selection 30
31 Flight Planning Limitations 70% of flights have a conservative Top of Climb (initial cruise altitude) below FL350 70% of flights have a conservative Top of Climb (initial cruise altitude) below FL350 Restricted from step climb on NATS/OTS Restricted from step climb on NATS/OTS Flight plan uses older winds and temperatures (over the FMS updated winds and temp) Flight plan uses older winds and temperatures (over the FMS updated winds and temp) Flight plan uses a cost index based on scheduled off time Flight plan uses a cost index based on scheduled off time Flight plan is based on estimated aircraft weight Flight plan is based on estimated aircraft weight Biased Fuel on Arrival (FOA) Biased Fuel on Arrival (FOA) 31
32 Informational Asymmetry/Transparency Climb Availability? Climb Availability? Go to Max Altitude? Go to Max Altitude? Turbulence? Turbulence? How good is your input data? How good is your input data? 32
33 Crew Actions Verify Opt TOC Verify Opt TOC Refine mileage Refine mileage Update winds and temperature Update winds and temperature Assess turbulence on route Assess turbulence on route Step climb to maintain Opt Step climb to maintain Opt Adjust tactical cost index (TCI) Adjust tactical cost index (TCI) Is there a better way? What is the role of a Pilot? 33
34 What does a Pilot do on a 12 hour Oceanic Flight? Deals with: Flying the aircraft Flying the aircraft Diversion airport weather Diversion airport weather Destination weather Destination weather Destination alternate weather Destination alternate weather Fuel monitoring Fuel monitoring Flightplan tracking Flightplan tracking Passenger service issues Passenger service issues Passenger Medical issues Passenger Medical issues Mechanical issues Mechanical issues ATC Reroutes ATC Reroutes ETOPS Alternate weather ETOPS Alternate weather Monitor Equal time points Monitor Equal time points Worries About: Track escape maneuver Track escape maneuver Rapid Decompression Rapid Decompression Engine failure Engine failure Medical diversion Medical diversion Onboard fire Onboard fire Gross navigational error Gross navigational error Fuel leak Fuel leak Security issue Security issue System failure System failure Destination diversion Destination diversion Communications failure Communications failure CAT Clear Air Turbulence CAT Clear Air Turbulence 34
35 Future Research Opportunities Nextgen technology has greatly enhanced the capacity and efficiency of the NAT System. We need to export what have been learned Nowgen: ADS, Satcom and CPDLC have been key players Nowgen: ADS, Satcom and CPDLC have been key players There remains a significant gap in flight planning estimates vs actual FMS values. There remains a significant gap in flight planning estimates vs actual FMS values. Relying on flight crews to address these shortcomings leads to varied outcomes. Relying on flight crews to address these shortcomings leads to varied outcomes. How do we close the gap? 35
36 Questions and Comments 36
10 – AUTOPILOT OPERATION (Automatic Flight) / Oto pilotla uçuş operasyonları
SORU 2 – Havaalanı operasyon (Airport Operations) türlerinden 10 tanesini Türkçe ve İngilizce olarak yazınız.
1 – AIRCRAFT REFUELLING / yakıt ikmali
2 – AIRCRAFT DE-ICING / buz ve kardan temizleme
3 – AIRCRAFT CATERING / yemek verme
4 – PASSENGER TRANSPORTING / yolcu taşıma
5 – AIRCRAFT LOADING / UNLOADING / yükleme-boşaltma
6 – AIRCRAFT PUSHBACK / uçağı geri itme
7 – AIRCRAFT RESCUE AND FIREFIGHTING (ARFF) / Uçağı kurtarama ve yangın söndürme
8 – AIRCRAFT MAINTENANCE / uçağa bakım
9 – AIRCRAFT MARSHALLING / uçağı karşılama
10 – AIRCRAFT ENGINE STARTING (with Air Start Units)
SORU 3 – Havaaracı işletme türlerine göre operasyon çeşitlerini Türkçe ve İngilizce yazınız.
- AIRPLANES / Uçaklar
- HOT AIR BALLOONS ( ballooning)
- GLIDERS ( Gliding / Paragliding / Hang gliding)
- HELICOPTERS.
- ULTRALIGHTS.
1 – AIRLINE, AIR CHARTER, AIR CARGO / Airliner uçaklarıyla yapılan uçuş ops.
2 - AIR AMBULANCE / Hava ambulans uçaklarıyla yapılan ops.
3 - AEROBATICS / Akrobasi uçaklarıyla yapılan ops.
4 - AIR TAXI / Hava Taksi uçuş ops.
5 - FLIGHT TRAINING / Eğitim uçuşları
6 – AIR RACING / Hava Yarışları uçuş ops.
7 – AERIAL PHOTOGRAPHY / Havadan fotoğraf çekme uçuş ops.
8 – AERIAL FIREFIGHTING / Havadan yangın söndürme uçuş ops.
9 – AERIAL ADVERTISING / Havadan reklam amaçlı uçuş ops.
10 - AGRICULTURAL AIRCRAFT / Havadan Zirai Mücadele uçuş ops.
SORU 4 – Hava araçlarında meydana gelen emergency operationlar hangileridir? İngilizce ve Türkçe olarak yazınız.
– BRAKES / Brake Problems
Air speed brakes / Thrust Reversers /
– LANDING GEAR failure.
– ELECTRIC / Electrical Problems
– ENGINES / Engine Failure / Engine Fire
– FUEL / Shortage of fuel / Fuel Dumping
– HYDRAULICS / Hydraulic Problems
– ICING / In-flight Icing
– STRUCTURE / Structural failure of the aircraft
------------------------------
– INFORMATION / Misleading Information / Lack of Information
– COMMUNICATION / Communication Failure
– EVACUATION / Emergency Evacuation on Land
– EXPLOSION / In-flight explosion /
– FIRE / In-flight Fire / Engine Fire / Cabin Fire
– INCAPACITATION / Cockpit Crew Incapacitation./ Pilot Incapacitation.
– LOSS / Loss of altitude / Loss of Cabin Pressurisation
– STRIKE / Bird Strike / Wildlife Strike
– UNLAWFUL INTERFERENCE / Terrorism / Bomb Warning.
– BAD WEATHER CONDITIONS /
Lightning / Ice, snow, hail / Turbulence / Windshear or microburst
SORU 5 – Havacılıkta Operasyon konularıyla ilgili bildiğiniz İngilizce kısaltmaları yazınız
1 – ETOPS / Extended Range Operation with Two-Engine Airplanes
2 – RVSM / Reduced Vertical Separation Minimum
3 – PAPI / precision approach path indicator
4 – RVR, DH / Runway Visual Range, Decision Height
5 – ILS / Instrument Landing System.
6 – IFR, VFR / Instrument Flight Rules, Visual Flight Rules,
7 – ATC / Air Traffic Controller
8 – MTOW / Max Take Off Weight.
9 – GSE / Ground Support Equıipment
10 – APU / Auxilıary Power Unit.
hjgh
fgfd
tfyrtytyrty