! " #
*# +
!"#
- #.
/
(
)$ &
# $% & ' ( )
, ( -' ( )
!
!"# $%
!
!
&
"#$!%
&
&
"
$
##
%
#
$
%
#
#
#
$%
#
#
!
&
#
$
#
'
%
$
(
$
%
%
#
$ %
#)
$* %
##
$ %
#
!
!
!
&
$ %
!
&
+
$+%
##
$ , %
#
"
#
$"%
!
"#$!%
'$
$ %
#
#
$
!
&
%
$) %
##
#
$ %
$ %
"
#
#
(
!
.
'(
)*' +,-'./0,
##
%
1
(
!
!"# $%
&
+
+
!
!
!
!
!
!
!
'
&
#
$ %
#
$) %
)
!
'$
!
!
!
!
!
!
!!
!&
!
!
!
!
!
!
&
! ((
!
(
#
#
#
!
!!
!&
!
&
&
&
#
#
+
#
#
(
#
#
#
+
)
#
#
#
(
(
(
(
(
"
(#
#
#
#
#
#
#
+
+
+
0
#
#
'(
)*' +,-'./0,
///////////////////////
#
////////////////
///// // ////
#
)
#
#
////
/////////////////////////////
%
#
&
!
!"# $%
•
•
•
$)(
$ )0
( 1
0
) 2 # 3 3 #'
# (5 3 # )
) )
( 1 "
) - ) " #
"# +
, ( - ' ( ) )" ) # ( 05
+ #
$ # 56
($ - #
(
)
3
" #
$
1 .)
( "
)) # 5 3 $
(
( #()
'
)
7"# )) ( # $ )
6 $ 8 # ( , &6
( )
3
- ) ) #
$
-5
3
)
" #6
!
* + *,
!
"
&( $ )*
$ +, $ , &!
- !$
$
! ! . /$ )*
$
0, 1$
2 $$ 2
$3 & .
&44 $$
)$$
(( &%$ )* $ % .
2 $$ 2 % &
&, 3 .
#$% &
4
3 $
$ #)
(
" #6 # $ , #
( 3 (0 &)
5 " ) 0 3 #. #( (
*# 3
($ #
9 6
"
3 '1
# -6
( )= &
>
= &
: ; <6
&
'
5 4 . * 6 2 .,
$2 & &6
2$ 3
. $ $
- ,3
'
$2 &
$ 2$&.&2 3 ..* ,
).$ (
&! $
3&, *&4$ $%
2 $
0, 1$
&! $ '& .
%$ &33, $
$$
4 7&
(
&! $ ($
,.
. & )$$
% $ )* & 2 $
0, 1$ - ), $ $ '$ $
$. %$.* !$'
,4)$ &33, 2
4,3
. 2$ 4$
$% .
*
$3&
$ ).* .$ $
$
*
$$
0, 1$
$
$ 2 &!
,3 , $
1 2
&
33&,
$ 43
! &4 , $ &! $ $
$
0, 1$
)$3&4$ %$ *
$ $
.- ( 3,. .*
% $' &! $
$ $
3&
,3 & 3 % * .. &%$
$ 3&, *
& $ %$
(, (& $
89:; 9<
=#$3&44$
&
!& $
0, 1$ $
$ 2 &!
,3 , $ = '
(,). $
$% $ !
4$
9<<
$ ,. &!
3&..$3 $
$"($ $ 3$ 2 $
$ !
$% &
& . $ 43
!, $ 1 &'.$ 2$
3$ $ (,). 3 &
&!
-
&!
$
%
/
" #
!
!"# $%
!
$3 & . 3&44 $$ !$.
$ $$ & $% $
$
2
3& (&
2 4 *
3
2$ - ,3
$% & &! 4 (
&' 2
$ 4 3 /& $
$( 3$ $ 2
4& $
& .
(( & 3
!&
$ 2
&!
), . 2
,)6 ,3 , $ &! ) 2$
$ $ '$ $ 3&%$ $
$ $3&
$% & &!
89: ) &,2 &,
9 >
$ ,. &!
$ 3 $ $ , $ &!
$
3&
$ ).$
4&,
&!
,22$ &
'$ $ $3$ %$ !& 4& !* 2
&4$ &! $ ( &% & &! $
$ $!& $$% & &! $
'
) &,2 &,
9 ?
$ !&..&' 2 3
2$
'$ $ 3& (& $
$
$% & ;
$
3& (& $ $ 4 3 /& $
! 3&
( $% &, .* 2 %$
4,. (.* 2
! 3&
$ $3&
$% & &
4& $
& .)
)
4(&
33&,
4(&
3$ ! 3 & '$ $
& ,3$
!&
$ % * 2 $2 $$
3$ !& % &,
,3 , $
3
$ 3. , $ !&
$ 2 &! 4,. 6
& $*$ ), . 2 $ 3&$!! 3 $
&!
!.$" ) . * ' 2 %$
$ !& 4 &! 3, %$
'
$ ($3 & ($ & &! ), . 2
4& $
& . !& 4,. '
3&4) $ 4& . $ !& 3$
$
!
$' 3. , $
'$ $
$$4
& &! * & *
$.$% $
1
, $
& ,3$
43( $
&
&!
&
!&
,$
. , $ & 3& 3 $ $
4 & * 4
'$ $ 4& ! $ - 1 2
& 33&,
$
* 4 3 )$ % &, , 2 $
0, 1$
4(. ! $ !& 4,. $ !&
$ 2 !& 3$
'$ $
& ,3$ ) $ &
$ ,.
&!
$" $ %$
, $
3 $
&,
3$
$3&
$% & &!
$
'
(,). $
$ !&,
$% & - ) &,2 &,
98@- '
( $( $ & 4& !* &4$ &! $ ( &% & &!
$
$ ,. &! $"($ $ 3$ 2 $
'
$ , $ &! $
$% & ,4)$ &! 4(&
) 3 4& ! 3 &
' 6 $ ($3 & .& ! 3 & - ! $. % .,$ &! ) $
$
4& .
.*
'
& ,3$
$' 3& 3$( &! ($ !& 4 3$
! 3 & $($
2 &
$
,3 , . ! 4 2
* $4
&
$ ,3 . * &! 3&
,3 &
'
3& (& $
2, $
: !&
%$ 2$
$ 2
33$.$ &
($3
'
. &
%
-
&
!
!"# $%
!
4& ! $
4( 2
3, %$ !&
$
3& (&
/$ & ($ 3$
>> - '
$ !!
$% & ) &,2 &,
% $' & 1$$( ) $
'
$
(
$%$.&(4$
$" $ %$ $ $ 3
)$$
3 $
&,
$ ! $.
&!
$
0, 1$ $
$ 2
&! % &,
$3 $
&
,3 , $ $ 3&44 $$
3&%$
$ ( &% &
!&
!!$ $
*($ &!
,3 , $
$(
$(
5$ 3$89:
)$$ '
(.
& $ !&..&' 2 ! %$
(
;
$ $ . ( &% &
)
0,
2 &,
3
:+
$
?
$
2
,((& $
2$
@
31 . 1$
), .
$
,
.
,3 , $
4
1 6
$4)
2
.$% $
2 ' ..
,3 , $
3.,
2
14$
3&
( &% &
$ 2$ $ .
,$
((. 3 ).$ & ..
,3 , $
. &3&
( &% &
$ ($3 ! 3 &
), . 2 & .* A .$
$ & $ ' $- $
( &% &
& ?
.. )$ $
$3$
.*
3& 7, 3 & '
$ 2$ $ .
( &% &
12 3452 627589393: 54 623;93: <938=9>85943 4<
45127 6875? 4< 512 @4;2 @8A?2? ?2794A? ;9<<9@A=592?
#47 93?583@20 <47 ;2?9:3 4< 83 4B27128; C8527
583D0 432 @83 345 @4EF932 512 5C4 @4;2? C951 4A5
8 ?62@9<92; B8=A2 4< 72?643?2 72;A@5943 <8@547 $ %
23;93: <938=9>859430 ;2?9:327? E8G @43?9;27
A?93: 512 <4==4C93: ;4@AE235? 8? 72=2B835H
6 $
2 ! . / & &!
& ? &!
89:- ( &% & &!
' .. )$ $
.& 2
'
$ $.$%
3. , $ &!
89:; 98@ !&
,3 , $ & $
), . 2
-8930
0 83; -89?C8=0
0
! ""
#
"$
%
& '(
%
)0
4;2? 74I2@5 26475 4?
&)
83;
)
26875E235 4< 9B9= 3:9322793:0
836A70 @54F27
*
0
"
"$
%
% 0 3;983 48;? 43:72??0 2C 2=19
8G8=0 0
4G0 0 83; -8930
0
!
! ""
#
"$
%
"
"+ )"
0
4;2? 74I2@5 26475 4?
)
83;
!)
26875E235 4< 9B9= 3:9322793:0
836A70
@54F27
$ !&..&' 2
$
$ 4 7&
4(&
%
2
&
!
!"# $%
!
4& ! 3
&
4
$
$!!
$% & ;
$ $ 4 3 /& $ 4 (
$% $ '
& .* !&, /& $ $ &! ! %$
' .$
B& $
)$$ 4$ 2$ & B& $
5$ 3$- B& $
&$
& (($
$
$' /& 2C & .* B& $ - - D
D
&
)
$ % .,$ &!
)$$ 3
2$
$ . 3 % .,$
33$.$ &
&
$$
$ % 3$ . !$ &!
/& $
$ 4 3 /& $ ! 3 &
%$
C $ $ &' $!.$3 4& $
&! $!!$3 %$ ($ 1 2 &,
3&
$ 2
" 4,4
0, 1$
,3 , $
$ 3
$ 43
3
#$ (& $ $ 2
33$.$ &
($3
$ &' ($3 ! $ !&
$$ *($ &!
!&,
2
4$.* &31
&! & .
& .- 4$ ,4 !! & .
12 B8=A2? 4< ?29?E9@ >432 <8@547 $"% 93 512 @4;2
872 2E6979@8= 83; 18B2 F223 8779B2; 85 43 512
F8?9? 4< 23:9322793: IA;:E235 785127 5183 43 83G
7859438= 838=G?9? 4< 2J62@52;
83; ?27B9@2
=9<2
4( 3 . $"( $ & !& $ 4
2 $
!,
4$ .
, . ($ &
&! 4,. 6
& $*$ ), . 2 '
$2,. 4&4$
$
2 ! 4$
)$$ $% $
$
$% &
&(
$ ( &3$ , $ &! !
3 .3,.
2 $ 3 , . !& 3$
4 * )$
$"($ $ 3$ )* $
,3 , $ , 2 $
( &) ).$
4 " 4,4
3&
$$
$
0, 1$- ! '$ $ & $4
$.
3
$ - $ 3& 3$( &! $ (& $ $ ,3 &
,$ & ,3 .$ $!& 4 & & ! 3 & .
$ $ 2*
( &
$ 3 31
) &,2
&
$ 3& $ $"(. 3 .*- )*
& ,3 2
$ = $ (& $
$ ,3 &
! 3 & = (. 3$ &! $ $ . $ ($ !& 4 3$
! 3&
!
.&'$ )&,
($3 ! $ !&
$ $ 2
) $
$
&! ), . 2 - ) $
&
$4( 3 . $ 4 $ &!
$ !,
4$ .
, . ($ &
2
$ & .6!&,
&
* $4 ! 3 &
&(($
$ - 3. , $
& ,3$
& $ 3
$ , $ &! !&,
&
%,. $ ).$ & !!$ $
. $ .$4$
$%$ $ $ 4 3 /& $
& & . $33$ 3 * % .,$
%$ )$$
$% $ ,('
% $' &! $ &,
4 2$ &) $ %$
), . 2 '
$2,. (.
&
.
3&4)
&
,.$
*
3 512 287=927 2;95943?0 ;2?9:3 ?29?E9@ <47@2
;2623;2; 43 512 <8@547 KβL0 C19@1 93 5A73
;2623;2; 43 5G62 4< ?49= 83; 5G62 4< <4A3;85943
5 9? C2== 72@4:39>2; 5185 :74A3; ?18D93: ;2623;?
43 512 5G62 4< ?49= 83; 345 43 512 5G62 4<
<4A3;85943 23@2 93 512
2;95943 4< 512 @4;20
<8@547 β C8? ;74662;
43
%
3
&
!
!"# $%
!
.*
7
&! ), .
$ 3. , $
' $$
$3$
4(.$4$
&
2
)$$
%$
* !&
)$$
$ !$
4& $ $!!$3 %$
$
"
$% & 4( &%$4$
%$ )$$ 4
$ 2 !3
3
2$
$;
$% $
,4)$
&!
$ 3& $C
$
($3 ! 3 $ 4$ !&
!!$ $
$2,. *
)$$ ($3 ! $
)
3
"(. 3 $ 4$
'
4 & *
3., $
& & .
4(. ! $
4(. ! $
(& $
.
*($
&!
& # ! 4$ ), . 2
! .. ' ..
)$$
( &% &
4$ &
.*
%$
!&
)$$
)$$
. 0,$! 3 &
3., $
&
$ $
& . * &'
$2,. &
&
&
,3 , $
.. ,!!$
*
4 2$
, 2 $
0, 1$ &!
..
4 2 , $
)$$ $ $ %& $
&
$ ,$
!
(& ).$- ,3 , $
$
).$ & $ (& - ' &,
,3 , . 4 2$ &
&31
2 &,
1 2 &! 4& $ $
$
$
' &, & . 3&.. ( $ &
&31 2 &,
1 2 &! $ %*
$
$
.$
$ $ !&
$
$
0, 1$ $
$ 2
&!
&4 .
,3 , $ & )$ $4(
/$
$ 3 $ &! ($3 . ,3 , $ - ,3
. 2$
..
4 - .& 26 ( ) 2$ 4 7&
,
. ( &7$3 - $ 3$6 ($3 ! 3 $ .$
%$ 2 &
&,.
)$ , $ 1$
&
$%$.&(
$ 43
$ 2
3 $ - , .$
& $ ' $ ($3 ! $
$ $.$%
3. , $
&,2
$ )
!&
$ $ 2 &! !!$ $
*($ &!
,3 , $
3&%$ $
& 4(. $
$ .$
* 43
.*
&,. )$ 4 $
$%$ *
3 $
2 .* $ 4 3 $ - 3&
,3 & &!
. 4 * $ ,.
$ %*
*($ ' 3 $
$)
3& $0,$
.&
&! . !$
( &($ *- ,3
4 & *- ( 3,. .* 4,
4 & *
,)).$ 4 & *&,.
( $!$ ).* )$ %& $
& 2,
3$ &
( $3 , &
& )$ &) $ %$
$
3&
,3 & &! ), . 2 - $!$ $ 3$ 4 * )$
%
19? @4;2 679E879=G ?62@9<92? 512 @7952798 54
;2527E932 512 ?29?E9@ ;2?9:3 <47@2 12 45127
@4;2? =9D2
0
25@ 0 C19@1 @435893
512 ?29?E9@ 72MA972E235 <47 ;2?9:30 ;2589=93: 83;
@43?57A@5943 8@5 8? 8;IA3@5? 54
&
#47 8
674627 ;2?9:3 4< 83 28751MA8D2 72?9?5835 ?57A@5A720
83 23:93227 EA?5 <4==4C
& 8=43: C951 45127
?29?E9@ ;2?9:3 83; ;2589=93: @4;2?
!
&
!
!"# $%
!
4
$ &
@: <-
:8
:8 8
0, 1$ 3
3 , $
4 2$ & & .* &
33&, &! $
1 2 ' 3 $ ,. ! &4
$4 ), . & ,$ & & $ 3
$!!$3 . 1$
, 4 - ! $
.
. $ - !.&& ,( & & 3&44, 3 &
- $ $!& $4(&
& 1$ $3$
* ( $3 , &
$
2- (.
2
$ 2 &!
,3 , $
&
$* $ !$ 2
,3 $3&
*
$!!$3
. &
8751MA8D2? @83 @8A?2 ;8E8:2 93 8 3AEF27 4<
C8G? =9D2 % ;8E8:2 4< @43?57A@5943 ;A2 54
:74A3; ?18D93:0 47 ;8E8:2 ;432 FG % ?A7<8@2
7A65A720 % =83;?=9;20 % =9MA2<8@5943 25@ 1272 872
45127 64??9F9=9592? =9D2 <=44; 83; <972 5185 E8G
F728D 4A5 8? 8 ?9;2 2<<2@5 4< 83 28751MA8D2
12 @4;2 :23278==G 8;;72??2? 43=G 512 <97?5 8?62@50
9 2 0 512 9327598 <47@2 43 512 ?57A@5A72 23@2 512
23:93227 E8G 322; 54 8=?4 @8527 54 512 45127
2<<2@5? 93 @275893 @8?2?
$
$3 & . &44 $$
(( $3 $
$ $.* 3 $ ! 3
$$ 3
& )$
) &., $.* 0,
%$ )
!& /& 2
% $' &! $ 3 *
% . ).$
&,2
$
4 2 , $ &! !!$ $ $
0, 1$ ' 3
%$ &33, $
$ (
$ 1 &' &
$ & ).$
$2 $$ &!
33, 3*$
$
$ &!
$
&31 2 &,
1 2
3 , $ )* $ $ $
0, 1$
%$ & !
)$$ 4& .* $ 4 $ )*
4 2$ , %$*
$$
. .$
,4$ . $% $ 3$ &
3& &)& $
$ 3& 3., &
%$
" 4,4 $
*
!!$ $ (. 3$ 3 )$
! "$ &
3 .$ & .* &
$ )
&! $
&) $ % &
4 $
$3& $
!$
$
$
0, 1$
,
/& 2 4 ( ' 3
) $ &
$ 4 " 4,4 $
$
%$
. 1$.* & .$
&4$ 3 $ &
3& $3
3& 3., &
% $' &!
3& $3 $
$
$ 4$ &! $
$ - ) ,4 $ &
7, 24$
, 2 $ 4 2$ , %$*3
%
&
0, . *
&! $ 2
3&
,3 & &! ,3 , $ 3 , 2 %
&
*($
$" $ &!
4 2$ & $
,3 , $
!&
$
4$
$
* &!
&31
$
$3 & .
&44 $$
$ $!& $3&
$$
& . (( & 3 & $
( &).$4 '&,. )$ &
%$
/& 2 4 (
) $ & 1 &' 4 2 , $
$ 1 &'
$( 3$ $
$"
,4 2 .. & $
3&
&
)$ 2 %$ 2$
& 4& !*
,3
$ . /$
& $ 4 . 4 (
. 2 &!
$3 & 3
$" + - . &.&2*
$"
$ 4 " 4,4 $
$
$3& $
! &4
4 2$ , %$*
$ &44 $$
. & $% $'$ ,3
4 (
$ . 2 &! $
!, , $ (& ) . $
. &
(
&*
$4( $ &
' $ . $ $4 3
2 $
!!$ $ /& $ &
& )$ 3.$ &! 4(&
&' - 3 $
,
.
$ - !$
%
"
&
!
!"# $%
!
4 1 2
($3 . $" 4
& &! ,3 3 $ . .$ 4& ! 3 &
$ /& .
$4 3 &
4 * 4$
3&
$ ).$
!!$ $ 3$ & $ $3& &4 3 &!
( &7$3
$
(
&'
2
$"$
- +
$ ( $( $
) $
&
!& 4 & % . ).$ ,( & 99:
$ $ 4 3 /& 2 4 (- B& $
&!
$ 3& $4(& * 9 > /& $ 4 ( %$ )$$
4$ 2$
2 $
$ .$%$. &! B& $
$ ..
$
)$$
3., $
B& $
$3$
* 4& ! 3 &
4 $- 1$$( 2
% $' $ ( &) ) . 3
/
$% ., &
$ +$.. * &. $ /& $
)$$ $4&%$
$(
&! $ $ 3&
$
%$ &'
4.
/
&
&! $ ..
$ - $
.$%$. &! B& $
)$$ $
3$ & B& $
3& $3 $ ' B& $
&! & '
)$
$
$ $ 43 /
.$%$. '
$ ($3 & B
?> ($ 3$
1 .$%$.
>> *$
$ % 3$
. !$ 2&$ & ( &2 $ %$.* 3 $
2 ! &4
&, $ ($
,. (& & & $ 5 4 . *
4
$ 4 3 &, 3$$ $% $
$ 43
/& 2 4 (
2 %$
, &! B& $
&
4
$3 & 3
&4 )$
& '
)$
.&2 3 . & 4 . / & 1$$( 2
% $'
$
(( $ $ $
2 $
$
$ $
&4
&
2$&.&2 3 . 3&
$ &
&!
2 $ $& $3 & 3 3 % * $3& $
$ $
$
$ &
( 3,. .*
' & $! 3
$ $
* &! &31 2 &,
1 2 ,$ &
$
0, 1$ 3&,. % * .&3 ..*
* (. 3$
,$ & %
&
& . 3&
&
0, 1$
$ (& $ &! * $4 '&,. )$ !!$3 $ )*
!!$ $
*($ &! !&,
&
* $4
& &%
& &! 2 &, 4& & ,$ &
% &, *($ &! & .
&
$ 2 $ $!!$3
2&
4
$$
2 %$
2, $. $ !&
% 2
$ 2
$ 43
) $ &
!! $ &! ) $ & .
3&$!! 3 $
4(&
& &$
$ $
3&$!! 3 $ - , $
$ $ 2 &!
,3 , $$($ $
& 4 * %
! 3&
$" $4$.* !! 3,.
$ $ 4 $ $ $" 3 $ 4 3 3&$!! 3 $
$ 3 2 %$ 3 $
- $ $!& $- $3$
3 $ ) & .* $ $ 4 3 3&$!! 3 $
43
*
).$
1 &
$ >> $ & &! $ 3& $ 4$ & $ E?>
($ 3$
1 .$%$.
>> *$
&! $ % 3$
. !$ F
'
&4$'
4 .$
22 %$ ! . $ 4( $ &
$ % .,$ &!
2 %$
$ 3& $ $ !& ?> ($ 3$
1 .$%$.
,3 , $ '
>> *$
$ % 3$ . !$
5$ 3$4$ &
&' )$$
&(($
12 ?29?E9@ >4393: E86 F748;=G @=8??9<92? 3;98
9354 >432? C1272 432 @83 2J62@5 28751MA8D2
?18D93: 4< 512 E472 47 =2?? 512 ?8E2 E8J9EAE
93523?95G 12 ?18D93: 93523?95G 8??4@9852; C951
;9<<27235 >432? $ 8F=2 % 9? 8? <4==4C?
%
- /-0 1
* &
%
,
- .*
-
,
,-
,-
*
&
!
!"# $%
&
!
3&,. 2$ $ ..* )$
&( $
!!$ $ (
& /& $ &! $ 3&, * &,2 - &! 3&, $2& &,
.*
3&
$ 2 .. $ ! 3 &
%&.%$
& )$ 4 $
$ 3 $ &! ..
4(&
( &7$3
& $ &
%$
, ).$ $ 4 3 3&$!! 3 $
!& $ 2
$
$3 & .
&44 $$ $ (& ).$ !&
$
!& 4,. & &!
$4( $ &
3., $
$ 4 3 /& 2 4 (
2
!&
(, (& $
$ &)7$3 &!
4 (
&
3.
!* $ $ &! $ 3&, * &
,4)$
&! /& $
' 3 & $ 4 * $ & ).*
$"($3 $
0, 1$
1 2 &! 4& $ & .$
4$ 4 " 4,4
$
*
!, , $
$
$
*
$
*
($
&4( $ $ %$
$
* 3 .$
<@
$
* 3 .$
$"
) & .*
&3 $ '
$ % &,
/& $
D & .$ - D - D
G
)&%$ !& B& $ - - D
D $ ($3 %$.*
$ 4 " 4,4 $ 4 3 2 &,
33$.$ &
$ 3 /& $ 3
& )$ ( $ $ .* ( $ 3 $ '
33, 3* $ $ &
$$4
3 & &
( &) ) . 3 )
$ ) 3 /& $ ! 3 &
3., $
$$
$ $ & ).$ $ 4 $ &!
$!!$3 %$ ($ 1 2 &,
33$.$ &
!&
$
$ 2 &! % &,
,3 , $ 3&%$ $
B& $ ! 3 & !& &4$ 4(&
&'
$ 2 %$
$"
+ $ &. &
$ $ 2* ) & ) 2 $% 3$
4 * )$ , $ !& $
0, 1$ $
$ 2
.*
$% 3$
% 2
$ .$
$"($ 4$ .
&
$ ($ !& 4 3$ &,.
)$ , $
$ $ 2 $ 4,
$4&
$ )*
$ .$
.* $
$ $ $% 3$ ( &% $
,!! 3 $
( & $3 &
&
$ ), . 2
$0, (4$
$ % 2$
$ !& 4 3$ &! .&3 ..*
$4).$
&. &
$ $ 2* ) & ) 2 $% 3$
&,. )$
$% ., $ $"($ 4$ ..* )$!& $
$*
$
, $
( 3 3$
$ 2 &! ), . 2
$0, (4$
, 2 ,3
$% 3$
&,. )$
$% $'$ )* $ 3&4($ $
, & *
+
$
&
!,
&. &
* $4
$ !&,
($ &
,3 , $ *
4$ . ($ & .$
>
, $!,. !&
& $ '
3., 2
%
2
!*
-
- .6
3 4- 5
%7
) $83; =4C27%
)
)
)
)
( $83; 19:127%
12 93523?95G 4< :74A3; ?18D93: 9? @4EE43=G
E28?A72; 93 527E? 4< 4;9<92; 27@8==9 ?@8=2 47
$ 2;B2;2B 64312327 8739D% 93523?95G
?@8=2 $ 332J 4< 519? @4;2% 12
93523?95G
?@8=2 9? MA952 @4E6878F=2 54 512
4;9<92;
27@8==9 93523?95G ?@8=2 FA5 9? E472 @43B239235 <47
866=9@85943 93 <92=; 83; 9? C9;2=G A?2; 93 3;98
23@20 512 E235943 4<
4;9<92;
27@8==9
93523?95G ?@8=2 93 512 287=927 2;95943? 4< 512 @4;2
18? F223 726=8@2; FG
?@8=2
12 >4393: @79527943 4< 512 E86 9? F8?2; 43 =9D2=G
93523?95G 5 ;42? 345 :9B2 A? 83G 9;28 72:87;93:
14C 4<523 8 ?18D93: 4< @275893 93523?95G E8G 58D2
6=8@2 93 8 =4@85943 $5185 9?0 674F8F9=95G 4<
4@@A7723@2 47 725A73 62794;% #47 2J8E6=20 ?8G
8728
2J627923@2? 8 E8J9EAE 93523?95G )
2B27G
G287? 83; 8728
2J627923@2? 8
E8J9EAE 93523?95G )
2B27G
G287? A5
F451 512?2 8728? C9== F2 6=8@2; 93 >432 )0 2B23
514A:1 8728 18? 19:127 ?29?E9@95G 12 @A77235
5723; C47=;C9;2 9? 54 ?62@9<G 512 >432? 93 527E?
4< :74A3; 8@@2=2785943 5185 18? 8 @275893
674F8F9=95G 4< F293: 2J@22;2; 93 8 :9B23 3AEF27
4< G287?
12 @4;2 ;42? 345 674B9;2 ?62@9<9@85943? <47 512
A?2 4< F8?2 9?4=85943 ?G?52E? 47 2327:G 8F?47F93:
;2B9@2? 5 9? 2J62@52; 5185 512 ;2?9:327 C9== A?2
?62@98=9?5 =952785A72 83; @4;2? 4< 45127 @4A35792?
<47 ;2?9:3 4< ?57A@5A72? C951 295127 4< 512?2 19?
6878:7861 2E618?9>2? 512 322; <47 2J523?9B2
52?593: 4< F8?2 9?4=85943 83; 2327:G 8F?47F93:
;2B9@2?0 C19@1 E8G F2 A?2; <47 28751MA8D2
72?9?5835 ;2?9:3
32 E8G 72<27 54 <4==4C93:
6AF=9@85943? 83; @4;2 <47 E472 93<47E85943 43
F8?2 9?4=85943 ?G?52E? 83; 2327:G 8F?47F93:
;2B9@2?
%
%
43?5835934A0
0
87:A?10
#0
# "
($ ( ,
434:7861 2792?0
443:0
0 83;
443:0
%#
%
0
&
87:A?1
#0
0
83;
-
N
!
!"# $%
&
!
& .6
,3 , $
$ 3 & .$
>
%#
# "
($ ( ,
%N -413 +9=2G O 43?0 3@0
!
%
% #87>8;
/
%
%
829E0 83; -8E2?
2==G0
%
"$
,
($ (
.
"
#
$ $ N -413 +9=2G O 43?0 3@ 0
83?430
%
0 83; 443:0
0
"$
0 /
( , "
,
%#
$ N 8751MA8D2 3:9322793:
2?287@1 3?595A520
0
, *( ,
35273859438= 4;2 4A3@9=0
% !
0
12 <97?5 866=9@85943 4< F8?2 9?4=85943 93 3;98 C8?
E8;2 43 5C4 ?E8== 432 ?547G 6AF=9@ FA9=;93:? 93
9==879 B9==8:20 @=4?2 54 512 269@23527 4<
28751MA8D2
12 674I2@5 C8? @4E6=252; 93
#2F7A87G
F792< ;9?@A??943 43 519? 9?
8B89=8F=2 93H
K
/'( ) - $
2??43? 28732; B27 9E20
8751MA8D2
2792?0 )4=AE2
3:9322793: 2?287@1 3?595A520
#
L0
287393: <74E
0
8751MA8D2
0
12 8F4B2 726475 9? 8=?4 8B89=8F=2 85 512 <4==4C93:
C2F ?952H
/
122000
$
%2
%2
- 3-
/"
12 ?2@43; 866=9@85943 4< F8?2 9?4=85943 ?G?52E 93
3;98 9? 43 8
F2; 14?6958= 85 1AI $ AI8785%
8<527 512
1AI 28751MA8D2 93 AI8785
8?2 9?4=85943 93@728?2? 512 385A78= <72MA23@G 4<
512 ?57A@5A72
19:127 385A78= 62794; 9E6=92? 8
=4C27 8@@2=2785943 83; 123@2 =4C27 9327598 <47@2
9? 2J627923@2; FG 512 ?57A@5A72 $#47 2J8E6=20
72<27 #9: 4< 512 @4;2% 5 @83 51A? F2 93<2772;
5185 F8?2 9?4=85943 9? 2<<2@59B2 <47 ?1475 62794;
?57A@5A72?
$ !& 4,. & &!
- ,$
'$ 2 2$
)$$ 2 %$ &
$
& .
3&&
&
4& 2
$
( 3 3$ ( $% . 2
!!$ $ 3&, $
& & $.
2
& $ ( 3 3$
$
! $.
3&, *
3$
( 3,. .* )$$
$ %$ ! &4 $ !&..&' 2
(,). 3 & ;
A+
99@- A !& 4 +, . 2
& $$
& .
& !$ $ 3$ &! +, . 2
!! 3 . $. !&
- A
99@ +
>>:-
%
1
!
!"# $%
!
!
)
-
2$4$
- 99
-
@ >:;
, *) )
$
6 9
2
99 >>:" #$%
% (
)
'&
+,
" *
; &% & - #$(&
&
@?>- $ $ .
4$ 2$ 3*
2$ 3*2& >>@
99 - !
&
)
&3 & &! $' B$ .
$' B$ .
- 99
&!
!
. & $ &, 3 .- A
5#
99 >>:" #$%
$ & ''
% (
)
'&
+,
$
) " *
&
; &44$
*- #$(&
&
: @?>- $ $ . 4$ 2$ 3*
2$4$
2$ 3*2& A
- H , * 99 >>@
B
$
&
5#
$ & ''
$
)
&
-
A
3
$
) % & &
)
-
$.. 2 & -
D#
H - . .
/012 3 % (
'&
)4
5%
6!
- H&, .
,3 , .
2 $$ 2#
- D&.
& - ( . 99?- ((
) )
/012 3
'&
)
5 %
6 ! ''
7
8 '. H&, .
&!
,3 , .
2 $$ 2#
$
- D&.
&
- ( . 99?- (( 6 9
H % (
-
I
' '
+,
%.
. .
6> )
&
- 4$ 3
2 $$ - #$ & - D 2
9
&3 $ * &!
$ ( $(
&
&!
3&
$ ).$
3$
)$$ 2 %$ )*
$ $( 4$ &!
0, 1$
2 $$ 2A %$ * &! #&& 1$$C
, $ &!
$3 &.&2*
(, C
, $ &!
$3 &.&2* +&4) *,4) C
$&.&2 3 .
, %$* &!
C
$ $& &.&2 3 .
$( 4$ $%$ . & $ & 2 / &
2 !3
4( &%$4$
%$ . & )$$
4 $ & $ 3& $
&,2
( &7$3 $ .$ E#$% $' &! +, . 2 & $
$(
&
&! &44$
*
5
)&&1 F ' $ &
(, )*
$ ,7
$
$
2$4$
, & *
2
&,2
&. + 1 !
3$
%
#
&
!
!"# $%
!
,
2 >>:6 >>@
$,
*4)&.
, $ '
$ $4 3&%$ $ )* $
.. )$ 3&
$
&,2 &,
- , .$
($3 ! 3 ..* & $ & $ ' $
$
3&4(& &
$ (& ).$ !&
2 %$
$
&!
$
&44 $$
!& 4,. &
&!
$"
&
$ (, (& $ &! $3
2 ' $ $
( 3,.
$0, $4$
&!
3&4(. $ ' - $ ! . % .,$ &) $ %$
3 .3,. $ - $"( $
2 $ $ ,. &!
$
.* .. )$ &, $ &!!
33&
'
; 9<> =#,.$ !&
&,
2
,4$ 3 . % .,$
$% $ =
$ ,4)$
2 !3
(. 3$ $
$
$ &, $
% .,$
&,. )$ $
4$
&!
($3 ! $ % .,$
&
&
3$
&!!
&!
&!!
$
%
/
&
!
!"# $%
!
=28?2 3452 @4772@5943? 93
=4@85943? 4<
==818F8;
)87838?9
4=D858
%
-
&
!
!"# $%
!
( 4 .* $ . '
$ 4$ &! $ 4 3 .&
$ 2
(,
( 4$ $
&
% &,
,3 , $ $
0, 1$ $
$ 2 &! ), . 2
) 3 ( &% &
&
$ 43 $ 2
(,
( 4$ $
$ . & ((. 3 ).$ & ), . 2 C
$.$% $ . 0, $
2 ,3 , $ C
,
.
316 . 1$
,3 , $ C ) 2$ C 3& 3 $ $4 & *
$
4 C $4) 14$ C
$
2 ' ..
& $
,3 , $
$4(& * $.$4$
$4(& * $"3 % &
!& $
0, 1$ !& 3$
,3
$$
3 !!&. 2& )$ $ 2 $
&$
&
$ . '
!$ , $ $.
2 & $
0,
$ 2
), . 2
&
,3 , $
& 2,
3$ &
$
0,
$
3&
,3 & &! ), . 2 - $!$ $
4 * )$ 4 $ &
$ !&..&' 2
;
3&
$
,3 &
@: <:9:?
:8
-
&% & &!
3& $ $ & ((. 3 ).$- !&
. 2$
4 - ,3.$
.. &
& $
/ &,
, $ - , .$
($3 ! $
& $ ' $ )* $ ( &7$3 , & *
:8 8-
$
1$
$
1$
3$
:9 >
%
12 =852?5 B27?943? 4< 512 @4;2? E2359432; 872 8?
<4==4C?H
•
H
$ 28<<97E2;
&% ;95943
$
%
8751MA8D2 2?9?5835 2?9:3
83; 43?57A@5943 4< A9=;93:?
4;2 4<
78@59@2
•
& ! H
$ 28<<97E2;
&%
E674B93: 8751MA8D2 2?9?583@2 4< 875123
A9=;93:?
A9;2=932?
•
& & H
$ 28<<97E2;
&%
E674B93: 8751MA8D2 2?9?583@2 4< 4C
5723:51 8?437G FA9=;93:?
A9;2=932?
•
H
$ 28<<97E2;
&% ;95943
$
%
A@59=2
2589=93: 4<
293<47@2; 43@7252 57A@5A72? AFI2@52; 54
29?E9@ #47@2?
4;2 4< 78@59@2
•
H
$ 28<<97E2;
&% ;95943
$
%
26897 83; 29?E9@
5723:512393: 4< A9=;93:? A9;2=932?
2
&
!
!"# $%
!
$
$3$
!&..&' 2
* 7, 3
@?<; >>>
$
&
;
& $ &! ( 3 3$ !& (.
$ !& 3$
3& 3 $ $
(
)
,
8>>; 98@
& $ &! ( 3 3$ !&
3&
,3 &
$$.
(
8 ?
& $ &! ( 3 3$ !& $ 2 .&
& $
$
0, 1$
!&
), . 2
,3 , $ ;
;
98
; 98
$
.&
J A
'$ 2
&!
), . 2 4 $ .
&$
4 $ .
&
(
&
4(& $ .&
(
: ; 98
.&
&
(
@ ; 98
&' .&
&
(
? ; 98
2$ $ .
&
($3 .
.&
3&4)
&
.&
&
(
:@:; 98>
& $ &! ( 3 3$ !& ( $6
3& 3 $ $ )
(
:
@98; 9 >
.
!3 &
$ ! 3 & &!
&.
!&
2$ $ . $ 2 $$ 2
(, (& $ )
(
:
888; 98
89:
$ &
&
@
: ; 98
&! .&
(
:
&
$
!& $
0, 1$
$ 2
&!
,3 , $ ;
,
.
,3 , $
31 . 1$ ,3 , $
$ &
$ !&
&!
&.
)
8>9; 9
.&
$.
(
8 >; 9 9
.&
* &! $ 4
* 43 )
(
@: <; 99:
$
(
$
&.
$
$.
@
2
3.,
($ $
:
* &! $ 4
2 & & . $ 2 $$
:
$
&
*4)&.
2 )
2 &
&.
:
0, 1$ $
$ 2
3&
,3 & &! ), . 2 6 & $ &!
( 3 3$
&
(
:
%
3
&
!
!"# $%
!
<@>:; 98
:8
; 99:
& $ &! ( 3 3$ !& $ $ 4
&! )$
2 3 ( 3 * &!
!&,
&
)
(
:
&
..&'
4( &% 2 $
&! $
$ ), .
0, 1$ $
3$
2 J , $. $
:8 8; 99:
4( &% 2 $
&! .&'
$ 2
J , $. $
0, 1$ $
4 & * ), .
:9 >; 99:
,3 .$
$ . 2 &! $ !& 3$
3& 3 $ $
,3 , $
,)7$3 $
&
$ 4 3 !& 3$ 6 & $ &! ( 3 3$
:9:?; 99:
#$(
&! ), .
< <; 9
2 J
3$
2
$ 43
$ 2 $
, $. $
2
5
)&&1 !&
,3 , . $ 2 $$ ;
((. 3 & &! (.
3
$& *
$ 2 &! $$. ,3 , $
%
!
&
!
!"# $%
!
!
"#$
%
&
$ (, (& $ &!
!&..&' 2 $! &
.. ((.* ' 3
((. 3 ).$ 2$ $ ..* & .. ,3 , $
6 & $ $!
& &! $ 4 ($
&
& . 4$3
3
&.
*
$!$ $ 3$ 4 * )$ 4 $ &
8>9
8 >
!&
$
$
2
43
'
.& $.*6 ( 3$ 4& $ &!
,3 , $
$
& $ &!
, . 4& $ &! % ) & ' & $
, . ! $0,$ 3 $
!!$ ! &4 $ 3 & $ )*
> ($ 3$ & .$ &! $ .&'$ ! $0,$ 3*
"
$ 4( 2 )$*& ' 3
4& & ' .. & )$ & 3 .. & *
$ ! $$ % )
&
(
( /8- 5
$ $!!$3 &!
$ . ! 3 & - 4($ !$3
$.
3 * &! 4 $ .- . (( 2- .
2- $ 3
$ ,3 2 $ 4(. , $ &! % ) & $"( $ $
($ 3$ 2$ &! 3 3 .
4( 2 $$ : :
%
+123 8 ?G?52E 9? 8==4C2; 54 B9F7852 <722=G $C951
34 2J52738= <47@2? 8@593: 43 512 ?G?52E%0
8E6=95A;2 4< B9F785943? ;2@8G? C951 59E2 ;A2 54
=4?? 4< 2327:G 93 8 3AEF27 4< C8G? 19? 5G62 4<
B9F785943 9? @8==2; 8 ;8E62; B9F785943 8E62;
B9F785943 4< 728= =9<2 ?G?52E? 9? 8 @4E6=2J
61234E2343
4C2B270 E8512E859@8==G 95 9?
@43B239235 54 8??AE2 83 2MA9B8=235 ;8E693:
<47@2 4< E8:395A;2 67464759438= 54 B2=4@95G 83;
;972@5943 4664?952 54 512 E4B2E235 4< 512 ?G?52E
A@1 ?9E6=9<92; ;8E693: 9? 527E2; 8? B9?@4A?
;8E693: 3 728= =9<2 674F=2E?0 2B23 9< 512
;8E693: 9? 4< 45127 D93;0 83 2MA9B8=235 B9?@4A?
;8E693: 9? @43B239235 <47 @8=@A=85943?
"
&
!
!"# $%
!
)
*
"
) ( -5 !00
8 0 *9/
"
$ 2
33$.$ &
($3 ,4 $!$
&
%$ 2$ 4&& $ $ (.& 2 ( &! 4 " 4,4
33$.$ &
!, 3 &
&!
, .
! $0,$ 3* & 4$
, . ($ & &! % ) &
&!
2.$ $2 $$ &! ! $$ &4 * $4 !&
($3 ! $
4( 2
&- & )$ , $
$
$ 2
&!
,3 , $
!&
$
0, 1$
$"3
&
$ ) $ &!
2.$ $2 $$ &!
! $$ &4 * $4
+
22 @4EE23587G 4< @=8A?2
?2 4< 5C4 ;9<<27235 527E? A?2; 93 287=927 2;95943
4< 512 @4;20 38E2=G K 2?643?2 62@57AEL 83;
K 2?9:3 @@2=2785943 62@57AEL0 <47 2??23598==G
512 ?8E2 5193: 4<523 @43<A?2; 512 A?27?
1272<4720 512 527E K 2?9:3
@@2=2785943
62@57AEL 18? 34C F223 A?2; 54 93;9@852 512
:7861 4< 72?643?2 ?62@57AE C951 385A78= 62794;
5185 9? A?2; 93 ;2?9:3
,
"#$
* -
( -5 ' -
%
* 3:9 4
22 @4EE23587G 4< @=8A?2
$$
0, 1$ ' 3 3
$ & ).* )$
$"($3 $ & &33,
.$
& 3$ , 2 $
$ 2 . !$ &! $
,3 , $
$ 2 +
0, 1$ 4& &
)$$
,4$
?>K &! $ 2 &,
4& & !&
$
" 4,4
&
$$
0, 1$
$ $
0, 1$
.$%$.
!& 4
$ 2$ $ . )
&!
$
0, 1$ $
$ 2 &!
,3 , $
($
$ ( &% & &!
3& $ & & 4 .
,3 , $ - $ 3& $
,4$
$ $!!$3 &!
$ $ 2 )
$
0, 1$ 4& & & )$
& $
.! &!
,$ &
$ 4 " 4,4
3&
$$ $
0, 1$ 4& &
-
.
*
"
/
"
"0
1
!00
& /& . 33$.$ & 3&$!! 3 $
.. )$ , $ !& $ 2 &! ,3 , $
2
.
( -5 " *-1
* -0-
$
"
& /&
)*
. $ 4 3 !& 3$ ( $ 3 )$
.. )$ , $ & $ 2
,3 , $
4
7
19? 9? 512 <8@5470 C19@1 43 EA=596=G93: FG
?29?E9@ C29:15 4< ?57A@5A72 :9B2? ;2?9:3
1479>4358= ?29?E9@ <47@2 43 512 ?57A@5A72
3 "
/
6
" "!
&
%
1,
(90 - - .
&
!
!"# $%
!
,3 . * &!
,3 , $- &
4$4)$ 3 ( 3 *
&
, $ 2&
. 2$
$.
$!& 4 &
' &,
2 !3
.&
$ 2 &
!! $
5
$
$
*
$
3
&!
A@59=95G 9? 8 B27G 9E6475835 6746275G0 ?62@98==G
C123 512 ?57A@5A72 9? ?AFI2@52; 54 ?29?E9@ =48;?
A@59=2 ?57A@5A72? 18B2 F223 <4A3; 54 627<47E
EA@1 F25527 93 @4E6879?43 54 F7955=2 ?57A@5A72?
9:1 ;A@59=95G 8==4C? 8 ?57A@5A72 54 A3;27:4 =87:2
;2<47E85943? F2<472 95 @4==86?2?
"
;
$ 2$&2 ( 3 . (&
&
$ , ! 3$ &!
%$ 3 ..* )&%$
$ !&3, &!
$
0, 1$
"6 7 %8
"
0 78*1
> @ 4$
$ ? ($ 3$
4($
($3 . 33$.$ & )$ '$$ ($ &
>:
.. )$ 1$
B$ &
33$.$ &
B
$ 1
33$.$ &
$ 4 " 4,4 33$.$
$ 2 &,
2 %$
$3 & &!
1 2
$!$ & & /& . 4& &
($3 ! $ & $ ' $
8-0
*
9?583@2 <74E 269@23527 54 83G 64935 4< 935272?5 9?
@8==2; 269@23578= ;9?583@2
#47 E472 93<47E85943 43 ?29?E4=4:9@8= 527E? 432
E8G 72<27 / 122000 $
%2
2
4
!00
* -
* 9 ,
6 !7
%$ 2$
>
&
$ &
2 &,
& &!
2 &,
, .$
-59*
" *-1
5* 9 , / * ,9*- 5 /8 *- <
. * 3:9 4
#9:A72
?14C? 8 5G69@8= :74A3; E45943 72@47;
C127293 :74A3; 8@@2=2785943 9? ?14C3 43 B2759@8=
8J9? 83; 59E2 43 1479>4358= 8J9? 12 =87:2?5 B8=A2
4< :74A3; 8@@2=2785943 9? 527E2; 8? 628D :74A3;
8@@2=2785943 ?A8==G0 :74A3; E45943 9? 72@47;2;
93 5C4 EA5A8==G 627623;9@A=87 1479>4358=
;972@5943? 83; 512 B2759@8= ;972@5943 23@20
B8=A2 @83 F2 ;9<<27235 93 ;9<<27235 ;972@5943?
)2759@8=
B8=A2 9? :23278==G 58D23 8? 8
<78@5943 4< 512 1479>4358=
12 527E "274 2794;
@@2=2785943 $" %
93;9@852? 512 E8J9EAE 8@@2=2785943 2J627923@2;
FG 8 79:9; ?57A@5A72 $>274 385A78= 62794;0 9 2 0 P N
93 678@59@2
9?
?2@ 47 =2??% 3 93<93952=G
79:9; ?57A@5A72 18? >274 385A78= 62794; 83; ;42?
345 ;2<47E0 C19@1 E283? 5185 $8% 51272 9? 34
72=859B2 E45943 F25C223 95? E8?? 83; 95? F8?20 83;
$F% 512 E8?? 18? ?8E2 8@@2=2785943 8? 4< 512
%
1
&
!
!"# $%
!
:74A3; 1272<4720 >274 62794; 8@@2=2785943 9? 512
?8E2 8? 512 628D :74A3; 8@@2=2785943
12 B8=A2 4< 628D :74A3; 8@@2=2785943 @830
51272<4720 F2 728; <74E 512 8@@2=2785943 ?62@57AE
8? ?14C3 93 #9:A72
22
! <47 2?643?2
62@57AE
-59*
.8-0
* 8
3 8
00
8 0 *9/
* -
#9:A72
?14C? 512 8B278:2 ?1862 4<
8@@2=2785943 72?643?2 ?62@57AE <47 Q ;8E693:
5 @83 F2 3452; 5185 512 47;93852 85
54
?2@43;? ≈
59E2? 512 628D :74A3; 8@@2=2785943
12
2;95943 4< 512 @4;2 A?2; 519?
72=85943?196 54 ;2<932 2<<2@59B2 628D :74A3;
8@@2=2785943 $
% 12 527E 2<<2@59B2 628D
:74A3; 8@@2=2785943 18? F223 ;2<932; 93 3AE274A?
;9<<27235 C8G? 93 512 =952785A72 4C2B270 <47 512
6A764?2 4< 519? @4;20 95 9? 345 9E6475835 54
;9<<272359852 F25C223
83;
9E9=87=G0
512 A?2 4< 527E "274 2794; @@2=2785943 $" % 93
512
2;95943 4< 512 @4;2 @8A?2; ?4E2
@43<A?9430 C19=2 8== 4< 512?2 51722 527E?
2??23598==G E283 512 ?8E2 5193: 1272<4720 512
527E? "
83;
18B2 F223 ;74662; <74E
512 @4;2
*
"
"
.&&
$ (& $ ($3
($3 ,4
$
$ (& $ ($3
($3 ,4 !&
4$
&*
4& & &! !.&& $"3 $ )* 2 %$ 2 &,
4& &
!.&& 4& &
4$
&*
&)
$ )*
.*
&! 4,. 6 & $*
), . 2 $ ,3 , $ !& (( &( $ 4 $ .
4( 2 % .,$
,)7$3 $
&
($3 ! $
$
0, 1$ 4& &
$ ) $ &!
$
,3 , $
%
8
8 0*
9D2 :74A3; 72?643?2 ?62@57AE0 512 <=447
72?643?2 ?62@57AE @83 F2 ;2527E932; <47
8@@2=27859430 B2=4@95G 83; ;9?6=8@2E235 #=447
72?643?2 ?62@57AE 9? A?2; <47 ?29?E9@
MA8=9<9@85943 4< 9E6475835 2MA96E235?0 83;
8AJ9=987G ?G?52E? E4A352; 43 8 <=447 4< 8
?57A@5A72
11
&
!
!"# $%
!
09
$ & 2
2 $
0, 1$ &, 3$ &!
$
3 ' %$
$ $ $
' 3 3 , $
1 2 &! 2 &,
,$ & $
0, 1$
$
(& &
$ ! ,. ' $ $ $ . (
$.
5 9? 8=?4 527E2; 8? 1G64@23527 12 ;2651 4<
<4@A? <74E 512 :74A3; 9? @8==2; <4@8= ;2651 83; 9?
83 9E6475835 6878E2527 93 ;2527E9393: 512
;8E8:93: 64523598= 4< 83 28751MA8D2
#47 E472 93<47E85943 43 ?29?E4=4:9@8= 527E?
72<27 54
/
(
"
"
122000
$
%2
2
01
! 3& , $
& &)
$ $ 2
$ 4 3 !& 3$ $($
2 &
$ !, 3 & .
, $ &!
$
,3 , $- 3
3 $ /$
)*
/ &, 3& $0,$ 3$ &! $ 1 $ ,. 2
! &4
! ., $ 5$ $- $
1
&3 $
'
/ &, 3& $0,$ 3$ &! $ ! ., $
&!
$
,3 , $(& 6$
0, 1$
!, 3 & .
$$ & 3 % .,$- &
$3& &4 3 4(&
3$
)
"
"!
"#$
%
)
$ $
* &!
$
0, 1$
(. 3$
4$ , $ &!
$
$ 2
&!
1 2
4 !$ $
(. 3$
, 2
$
$
0, 1$3 $ )*
,4)$
33&
2 & $ 4& ! $
$ 3 .. 3 .$ &
3 .$ &! $ 4 3
$
$
$"
+
3$
-.
3523?95G 9? 8 MA8=95859B2 E28?A72 4< 512 8@5A8=
E839<2?585943 4< 28751MA8D2 ?18D93: 85 8 =4@85943
;A793: 83 28751MA8D2 12 93523?95G 85 8 6=8@2 9?
2B8=A852; @43?9;2793: 51722 <285A72? 4< ?18D93:
627@265943 FG 6246=20 627<47E83@2 4< FA9=;93:?0
83; @183:2? 54 385A78= ?A774A3;93:? 5 9? ;23452;
93 8 74E83 @86958= 3AE278= 1272 872 E83G
93523?95G ?@8=2? C4 @4EE43=G A?2; 432? 872 512
4;9<92; 27@8==9 3523?95G $
% @8=2 83; 512
@8=2 $ 332JA72
4< 519? @4;2% 451
?@8=2? 872 MA952 ?9E9=87 83; 783:2 <74E $=28?5
627@2659B2% 54 ( $E4?5 ?2B272%
"
-:9
0,$! 3 &
$ ( 4 .*
, $
3& $ & .$
&. ' $ $
$ $!!$3 %$
$
$ 2
$ ,3$ & $2. 2 ).$ % .,$
!& .. $ 2 $$ 2 (, (& $ ,$ & ' $
$
(& $ ( $ , $ 3 , $ )* % ) &
, 2
$* (( & 3 $
$ & .
$
0, 1$ ' $
3& !
2 ($ ,$
3&
& - $ &.
$
& )$ %$ . 1$ !., 4
$$
$"
%
* 3:9 4
0-
A793: 28751MA8D2 ?18D93:0 =44?2 ?85A7852; ?83;
523;? 54 ;23?9<G0 =28;93: 54 FA9=; A6 4< 6472 C8527
672??A72
? 512 =48;93: 83; A3=48;93: ;A793:
:74A3; ?18D93: 4@@A7? ?A;;23=G0 512 6472
672??A72 9? 345 8F=2 54 ;9??96852 ? 512 5458= ?572??
72E893? @43?58350 83 93@728?2 93 6472 C8527
672??A72 =28;? 54 8 ;2@728?2 93 2<<2@59B2 ?572?? ?
512 6472 672??A72 866748@12? 5458= ?572??0 512
2<<2@59B2 ?572?? 523;? 54 ;9E939?1 83; 512 ?49=
=44?2? 8== 95? ?5723:51 83; 523;? 54 F218B2 =9D2 8
1#
&
!
!"# $%
!
<=A9; E8??
-
3 "#
"
$ $ $!.$3
$
, $ &! $ 2$&.&2 3 .
!& 4 & &! $ $
L 3,
)&%$
)$ &31 3
3 $ /$ &
$ )
&! ,3
3
3$
3
3&.&, ,3 , $4 $ .&2 3 . 3&4(& &
2
/$
2 '
"
"#$ % 0
'
"
1
=
5 - 9,
* 3:9 4 6 -03 *>
5 - 9, 7
#" 9
$ 4 2 , $ &! $
0, 1$
' 3
4$ , $ &! $ $ 2* $.$
$
0, 1$
$! $
.&2
) $ > &! $ 4 " 4,4
3$
$"( $ $
43 & - ' 3
$
& 6($ &
& &
$ 4&4$ $
($ & &! > 8 - 4 2 ! 3 &
4( 2 $ .* 3 3 . '&,. $2
$ $
0, 1$
$( 3$
.
>> 14
,4)$ $
4 & $
4(. , $'
8>>
$ ,$ &
3$ &!
8:395A;2 9? MA83595859B2 E28?A72 4< 5458= ?9>2 4<
28751MA8D2
3 93@728?2 93 E8:395A;2 FG
9E6=92? 8F4A5
59E2? 19:127 C8B2<47E
8E6=95A;2 83; 8F4A5
59E2? 19:127 2327:G
72=28?2;
4?5 4< 512 2327:G 72=28?2; :42? 9354
1285 83; <78@5A793: 512 74@D0 83; 43=G 8 ?E8==
<78@5943 4< 95 :42? 9354 512 ?29?E9@ C8B2? 5185
578B2= 54 =87:2 ;9?583@2? @8A?93: ?18D93: 4< 512
:74A3; 23 74A52 83; 123@2 ;8E8:2 54 512
?57A@5A72?
3AEF27 4< ;2<9395943? 872 A?2; <47 E8:395A;20
38E2=G 9@1527 $47 4@8=% E8:395A;20 ?A7<8@2
C8B2 E8:395A;20 F4;G C8B2 E8:395A;2 83; C8B2
2327:G E8:395A;2 2589=? 4< ;9<<27235 E8:395A;2
?@8=2? 872 8B89=8F=2 93 ?583;87; F44D? 43
?29?E4=4:G
4 ' :
"#$ % 0'
$
3&
4&
$%$ $
$ $ )*
&
?-/9/
* 3:9 4 6
7
1
$
0, 1$
$!!$3
-, * ,
3AEF27 4< 527E? C951 ?4E2C185 ?9E9=87
E28393: 872 A?2; 93 512 =952785A72
8J9EAE
72;9F=2 8751MA8D2 9? 512 =87:2?5 728?438F=G
@43@29B8F=2 28751MA8D2 5185 866287? 64??9F=2
8=43: 8 72@4:39>2; <8A=5 47 C95193 8 52@5439@
674B93@2 5 9? :23278==G 83 A6627 F4A3; 4< 512
2J62@52; E8:395A;2 43 8 <8A=5 47 93 8 52@5439@
674B93@20 9772?62@59B2 4< 512 725A73 62794; 4< 512
28751MA8D2 C19@1 E8G 783:2 <74E ?8G
G287?
54
0
G287? 5 9? A?A8==G 2B8=A852; 43 512
F8?9? 4< :24=4:9@8= 2B9;23@2
5127 527E? A?2; 93 512 =952785A72 5185 872
?4E2C185 ?9E9=87 54
872 K 8J9EAE
4??9F=2
8751MA8D2L0 K 8J9EAE
J62@58F=2
8751MA8D2L0 K 8J9EAE 74F8F=2 8751MA8D2L
%
1/
&
!
!"# $%
!
83; K 8J9EAE 43?9;272; 8751MA8D2L
8J9EAE
43?9;272; 8751MA8D2 $
% 9?
;2<932; 93 512 35273859438= A9=;93: 4;2
$
% @4772?643;93: 54 83 28751MA8D2 18B93: 8
Q 674F8F9=95G 4< F293: 2J@22;2; 93
G287?0 9 2 0
0
G287 725A73 62794;
3 512 39<47E
A9=;93:
4;2
! $
%
8J9EAE
43?9;272; 28751MA8D2 9? ;2<932; 8? 83
28751MA8D2 18B93:
Q 674F8F9=95G 4< F293:
2J@22;2; 93
G287?0 9 2 0 0
G287 725A73
62794; #47 8 :9B23 87280
F8?2; 43 0
G287 725A73 62794; C9== F2 =87:27 5183 512
F8?2; 43 0
G287 725A73 62794;
3
& 0 14C2B270
E45943 ;42? 345
@4772?643; 54 83G ?62@9<9@ 674F8F9=95G 4<
4@@A7723@2 47 725A73 62794; 83; 9? ?4E2C185
?9E9=87 54 512
8J9EAE 72;9F=2 8751MA8D2
A?2; 93 45127 935273859438= @4;2?
2?9:3
8?9? 8751MA8D2 9? 512 28751MA8D2
E45943 <47 C19@1 512 ?57A@5A72 9? 54 F2 ;2?9:32;0
93 :23278=0 @43?9;2793: 93127235 @43?27B859?E 93
512 ;2?9:3 674@2?? 3 512
! 83;
0 95 @4772?643;? 54 83 28751MA8D2 18B93: Q
674F8F9=95G 4< F293: 2J@22;2; 93
G287?0 9 2 0
! G287 725A73 62794;
12 78594 4< 628D :74A3; 8@@2=2785943 <47 8
G287 725A73 62794; B27?A? 5185 <47 8
G287
725A73 62794; C9== B87G <47 ;9<<27235 ?29?E9@
72:943? #47 2J8E6=20
&
! ?14C? 519?
78594 54 F2
<47 83 #783@9?@40
& <47 83
92:40
<47 2855=20 83;
<47 4?543
4C2B270 <47 ?9E6=9@95G0 512 FA9=;93: @4;2? 523;
54 58D2 @43?5835 B8=A2 <47 519? 78594 #47 2J8E6=20
8??AE2? ;2?9:3 F8?9? 28751MA8D2 8?
5C4 5197;? 4< E8J9EAE @43?9;272; 28751MA8D2
3
& 0 512 >432 E86 9? 345 674F8F9=9?59@ 83;
512 8@@2=2785943 B8=A2? <47
83;
;4 345
@4772?643; 54 83G ?62@9<9@ 674F8F9=95G 4<
4@@A7723@2 $47 725A73 62794;%
? 83 2E6979@8=
866748@10 ;2?9:3 F8?9? 28751MA8D2 E45943 18?
F223 8??AE2; 8? 432 18=< 4< E8J9EAE @43?9;272;
28751MA8D2 83; 519? 9? 72<=2@52; FG <8@547 93 512
;234E938547 4< 2MA85943 <47 / $@=8A?2
%
12 A?2 4< 512 C47; R728?438F=GS 93 512 ;2<9395943
4< 2?9:3 8?9? 8751MA8D2 93
2;95943 4< 512
@4;2 9? B8:A2
9B23 5185 512 @4;2 ;42? 345
67464?2 ;9<<27235 ;2?9:3 28751MA8D2? <47
?57A@5A72? C951 ;9<<27235 ;2?9:3 =9B2?0 ;2<9395943 4<
;2?9:3 F8?9? 28751MA8D2 18? F223 E4;9<92; 93
@=8A?2
%
1-
&
!
!"# $%
!
5
'
'
0
1
;
& . 4
&!
,3 , $ ,)7$3 $
&
& /& . & %$ 3 .$ 3 $ 4 * )$ 2 &,
4& &
(
&! $ & . $ 4 3
4
&! $ ,3 , $
$!!$3 %$ 4& $
1 &! % ) &
$ 4& . 4
!&
2 %$
4& $
, 0,$ % .,$
$ ($3 %$ &!
3 . 2 &! $ 4& $
($
"
'
0 1
7 "
0
7
,
* -0-8 -
0 *6 7
'
5 9? 8 527E A?2; 93 ;G38E9@ 838=G?9? $@=8A?2
!& %
;< "
'
'
6
8?? 4< 512 ?57A@5A72 5185 9? 2<<2@59B2 93 432
68759@A=87 385A78= E4;2 4< B9F785943 9? 527E2; 8?
E4;8= E8?? <47 5185 E4;2 #47 ?9E6=2 =AE62;
E8?? ?G?52E?0 512 E4;8= E8?? @83 F2 4F58932;
A?93: 512 2MA85943 93 @=8A?2 ! &
AE 4<
E4;8= E8??2? 4< 8== 512 E4;2? 9? 2MA8= 54 512 5458=
E8?? 4< ?57A@5A72 23278==G0 43=G <97?5 <2C E4;2?
872 @43?9;272; <47 ?29?E9@ 838=G?9?
"
& . ( 3 ( & ! 3 & &! 4& $ 1 &!
%) &
$ 4&, )* ' 3 4& $ 1
3& ), $ &
$ &%$ .. % ) & &!
$
,3 , $ , $
& /& .
%$ 3 .
$
0, 1$ 2 &,
4& &
3$
$
4(. , $ &! 9? ($ 3$ 4& $
($ 3
)$ 3 .$
)
.*- $ % .,$ &!
! 3&
$($
&
$ 3 . 2 , $ !& 4& $
($
$$ =
,
)
#
"
1
$ (
. ( $
&! % ) & ' $
$
,3 , $
%)
2
& 4 . 4& $ 1
3 ..$
$ 4& $
($ &! % ) & &! 4& $
1
,3 , $ '
$2 $$ &! ! $$ &4
(& $ $
, . ! $0,$ 3 $
4& $
($
$ 4 " MΦN- ' 3 $ 3
4& $
($ (($
3&.,4 3 ..$
$ 4& . 4 "
$ $.$4$ Φ ;
3 ..$
$ 4& $
($ 3&$!! 3 $
&3 $ '
$2 $$ &! ! $$ &4
4& $ 1
. $
!& 4 & - ' MΦN
$
!& 4 &
4 "- , 3&,(.$
$ 3&,(.$ $0, & &!
4& &
&
$ &!
$($ $
2.$
$2 $$ &! ! $$ &4 * $4
$
* $4
%)
2
& 4 . 4& $
;* ( 3,.
&! 4$$
4(. , $ &! 4
$"( $ $
& &!
%
12
&
!
!"# $%
!
$ 4(. , $ &! & $ &! $ 4
$ &! $
* $4- 1 &'
4& $
($ 3&$!! 3 $
<;
9*
(
= "
7
0 1
, . ($ & &!
,3 , $
4$ ($ &
&! ,
4($ ! $$ % ) &
$ ! $0,$ 3 $
' 3 & 4 . 4& $ % ) &
$ (& ).$
!&
,3 , $
$ 3 ..$
$
, .
! $0,$ 3 $ &! $ ,3 , $
$ ,3 , $
& )$ % )
2
; , & 4 . 4& $
' $
! $0,$ 3* $0, . & $ ; ,
, .
! $0,$ 3*
$ ;,
, . ($ &
$ $3 ( &3 . &!
,
;
, . ! $0,$ 3* $"( $ $
5/
(
7
"
$
= "
0 1
$ !
.& 2$
4& . 4$ ($ & &!
%) &
$ .&'$
&!
$
, .
! $0,$ 3 $ &!
,3 , $
3 ..$
!,
4$ .
, .
! $0,$ 3*
$
&3 $
, . ($ &
3 ..$
$
!,
4$ .
, . ($ &
(
'
= "
$ 4& .
, . ($ &
4$
, . ($ & &! % )
)
=
7
*- , 6 7
43?9;27 8 ?93:=2 ;2:722 4< <722;4E $
#%
?G?52E
+123 ?4E2 939598= ;9?5A7F83@2
$;9?6=8@2E235 83; ,47 B2=4@95G% 9? :9B23 54 519?
# ?G?52E0 95 ?5875? B9F78593: 83; ?443 ?255=2?
9354 8 187E439@ E459430 C1272 512 E8?? ?C93:?
F8@D 83; <4751
19? B9F785943 9? @8==2; <722
B9F785943 12 59E2 72MA972; 54 @4E6=252 432
4?@9==85943 4< <722 B9F785943 9? @8==2; 385A78=
62794; 4< 512
# ?G?52E
EA=59 ;2:722 4< <722;4E ?G?52E C951 E8??2? 85
;9<<27235 =4@85943? @83 A3;27:4 <722 B9F785943
4?@9==85943? 93 ;9<<27235 347E8= E4;2 ?1862? 4<
;2<47E85943 3 28@1 4< 512?2 347E8= E4;2? 4<
B9F7859430 512 ?57A@5A72 58D2? 8 ;2<93952 8E4A35 4<
59E2 54 @4E6=252 432 @G@=2 4< E45943N 519? 59E2
58D23 54 @4E6=252 432 @G@=2 4< E45943 9? @8==2;
385A78= 62794; 4< E45943 4< 5185 347E8= E4;2 4<
B9F785943
0 1
&! 4& $ ;
&
4& $ ;
$
'
$ $ $ ($3 . ,
4($ ! $$ % ) &
' 3
.. (&
&
$
,3 , $ % ) $
4& 3 ..*
$ 4$ ! $0,$ 3* ,3
..
$ $ (&
$ 3
$
% , .
4 " 4,4
$ (& $
4,. $&, .*
* $4
& )$ % )
2
&4 .
4& $ ' $
..
4
$
4 " 4,4
% .,$
&!
(. 3$4$
& &
4,. $&, .*(
&,2 $0, . ) ,4
(& &
4,. $&, .*
+
"
8
%
13
,90 -
&
!
!"# $%
!
"
0 1
0 *6 7
$ ! 3 & )* ' 3
$ 3, .) $ $
!& 3$'&,. )$ 2$ $ $ ! $ ,3 , $
'$ $ & $4
$.
3 , 2
$ (& $ &
$ $ 2 +
0, 1$ +
1 2.. )$ $ ,3$ & &)
$ $ 2 . $ .
!& 3$ $.
3 $ (& $ &! $ ,3 , $- ,3
) $ $
$.$4$ !& 3$ $ 2 - " .
!& 3$ - $ !& 3$
)$
2 4&4$
2$ $ $ , $ $ 3 & &! $ $
0, 1$
1 2
($3 ! $
3& $$
$ ,3$ & &)
$ $ 2 % .,$ &! $
$ (& $
-
22 @4EE23587G 4< @=8A?2
"
8
A793: :74A3; ?18D93: 95 9? 64??9F=2 54 6=45 8
:7861 F25C223 :74A3; 8@@2=2785943 83; 59E2 12
93?57AE235 A?2; <47 519? 6A764?2 9? D34C3 8? 512
K8@@2=274:7861L 83; 512 72@47; 51A? 4F58932; 9?
@8==2; 512 K8@@2=274:78EL ?93: 8 @4E6A5270 432
@83 @8=@A=852 512 72?643?2 4< ?93:=2 ;2:722 4<
<722;4E $
#% ?G?52E C951 59E20 C19@1 9?
D34C3 8? 512 59E2 19?547G 4< 72?643?2
$#9:A72
% 2?643?2 E8G E283 83G 72?643?2
MA83595G 4< 935272?5 54 A?0 <47 2J8E6=20
;9?6=8@2E235 47 8@@2=2785943 85 8 649350 47
F23;93: E4E235 85 8 =4@85943 93 8 E2EF27
9?6=8@2E235 $93 93@12?%
@@2=2785943 $93 :%
$
$( $ $
&
&!
$ 4 " 4,4
$ (& $ &! $ . /$
2.$ $2 $$ ! $$ &4
* $4
% 2 3$
($ &
4( 2, 2 $
0, 1$ 2 &,
4& &
$
4 " 4,4 $ (& $
(.& $
2
$
,
4($
, . ($ &
!& % &,
4( 2 % .,$ 3
)$ $"( $ $
$ 4 &! 4 " 4,4 ) &., $ 33$.$ & 4 " 4,4 $. %$ %$.&3 *- & 4 " 4,4
$. %$
(. 3$4$
8 0 *9/
6 7
6 7
%
1!
&
!
!"# $%
!
$?%
607
-59*
6 00 *
, */
/
+607 * 8
3 8* @
6 7 * 9 ,/ 5* /7@ 6 7 -/
6*
-A ,- 8
3 * 8 0
7 *
8 0 *9/ , A
;; 7
-/ 3- *.
3- *.
0 /
8
@ ,
8 , 6 * /
12 E8J9EAE 72?643?2 @83 F2 728; <74E 512 59E2
19?547G 4< 512 72?643?2 G 72628593: 512 ?8E2
2J27@9?2 <47 ?G?52E? 18B93: ;9<<27235 385A78=
62794;?0 432 @83 ;78C 8 :7861 4< E8J9EAE
72?643?2 B27?A? 385A78= 62794; <47 8 :9B23 B8=A2
4< ;8E693: A@1 8 :7861 4< E8J9EAE 72?643?2
B27?A? 385A78= 62794; <47 8 :9B23 8@@2=274:78E 9?
@8==2; 512
$ ("
72?643?2
?62@57AE @83 F2 A?2; 54 4F5893 512 E8J9EAE
72?643?2 4< 83G
# ?G?52E <47 5185 :9B23
8@@2=274:78E 83; :9B23 B8=A2 4< ;8E693:
3=2?? 45127C9?2 E2359432;0 72?643?2 ?62@57AE
9? F8?2; 43 8 =93287 2=8?59@ ?G?52E
? ?5852;
287=9270 72?643?2 E8G E283 83G 72?643?2 MA83595G
4< 935272?5 54 A?0 =9D2H
F?4=A52 8@@2=2785943 4< 512 E8??0 512
72?643?2 ?62@57AE 4< C19@1 9? 527E2; 8?
$$ ,
$ (" #47 512
6A764?2 4< 519? ;4@AE2350 72?643?2 ?62@57AE
9E6=92? 8@@2=2785943 72?643?2 ?62@57AE
2=859B2 B2=4@95G 4< 512 E8?? C951 72?62@5 54
F8?20 512 72?643?2 ?62@57AE 4< C19@1 9?
527E2; 8? , $ #
$ ("
2=859B2 ;9?6=8@2E235 4< 512 E8?? C951
72?62@5 54 F8?20 512 72?643?2 ?62@57AE 4<
C19@1 9? 527E2; 8?
, $ "
$ ("
2
'
$
$ 43
'$ 2
=
% $
- /-0
)*
5 9? 512 ?29?E9@ C29:15 ;9B9;2; FG 512
8@@2=2785943 ;A2 54 :78B95G0 9 2 0 95 9? 93 A395? 4<
%
1"
&
!
!"# $%
!
33$.$
&
,$ & 2 % *
4
>
$ & . $
&! ($3 ! $
4&,
5
"
*
"
E8?? $D:% 785127 5183 93 A395? 4< C29:15 $ 47
D % +19=2 C47D93: 43 674F=2E? 72=852; 54
;G38E9@? 432 322;? 54 F2 @872<A= F25C223 E8??
83; C29:15 8?? 59E2? :78B95G 9? C29:150 9 2 0 512
C29:15 4< D: E8?? 9? 2MA8= 54 &
#" 0 1
.&
(.,
4(& $ .&
(( &(
$
"
;
-0-
"
"0
? 1
! 3 & $ & 2 $ $ 2 33$.$ &
$ (& $ ($3 ,4 &! $ ,3 , $ ,)7$3 $
& $
0, 1$ 2 &,
%) & $($
&
, . ($ & &! % ) &
4( 2 &! $ ,3 , $
"
8
!00
6 B 7
* -
2;95943 4< @4;2 A?2; ?2B278= 527E?0 38E2=G
K8@@2=2785943 72?643?2 <8@547LN K?57A@5A78=
72?643?2 <8@547LN K8B278:2 72?643?2 8@@2=2785943
@42<<9@9235L0 25@ 0 2??23598==G <47 512 ?8E2 5193:0
920
,%
12 527E K 2?643?2
@@2=2785943
42<<9@9235L 9? 34C A?2; @43?9?5235=G 5174A:14A5
512 @4;2
"
$
, $ &! 2$&.&2 3 . !& 4 & &! $ )$
&31
$ $
= 3,
$%$ . 2 $2 &
3
3 $ /$ )* ,3 , . !$ , $ - ,3
.&3 & & & - ! ,. - !&. 2, %&.3 &$ '
$
2$ &! !& 4 & - ' 3
$
$3 .* %&.%$
$ $
4&%$4$
&
0, 1$
$ ,. 2
$
)&%$
3& $0,$ 3$
. "
!*
!
-/ "-
.*
&! $ * 4 3 $ (& $ &!
,3 , $ $ 3
3 $4$ &! 4$- ' $
) $
,)7$3 $ &
($3 ! 3 2 &,
4& & 4$
&*
$
"
! 3 & & &)
2
33$.$
&
%
.-
G38E9@ 838=G?9? @83 F2 627<47E2; 295127 8? 59E2
19?547G 838=G?9?0 47 8? 72?643?2 ?62@57AE 838=G?9?
9E2 19?547G 838=G?9? 9? 8 E472 ?4619?59@852;
E2514; 83; 9? 7872=G A?2; <47 512 ;2?9:3 4<
47;9387G ?57A@5A72? 9E2 19?547G 838=G?9? @83 F2
627<47E2; FG E4;8= ?A62764?95943 E2514; 47 FG
A?93: ;972@5 9352:785943 4< 2MA85943? 4< E45943
3AEF27 4< 52J5 F44D? 872 8B89=8F=2 5185 @4B27
;G38E9@ 838=G?9?
0 1
$ $ 2
*. !
0 *6 7
12 B8=A2? 4< >432 <8@547 <47 ;9<<27235 ?29?E9@
#,
&
!
!"# $%
!
($3 ,4
$($
4 " 4,4 $ 4 3
)*
" 4,4 &
$ /& $
' 3
$ ) 3 /& $ !
$ $ &
($ 1 2 &,
33$.$
(
*
2 &
$ ($ 3$ %$
1
/
3
3 $ /$
$$
0, 1$
$ ,3 , $ .&3 $
3&
3., $
).$ $ 4 $ &! $!!$3 %$
&
>432? 93 3;98 872 :9B23 93 @=8A?2
18B2 F223 8779B2; 85 2E6979@8==G
23:9322793: IA;:E235
7
"
0 7*1
$ % .,$ &! 33$.$ &
($3 ,4 !&
($ &
)$.&'
! $0,$ 3 $ )&%$ :: 5/
$ (&
> >:
$
%
#
12?2
A?93:
&
!
!"# $%
!
(
!
"#$
,
%
(
&
$ (, (& $ &! $
0, 1$
$ 2 &! ), . 2
!&..&' 2 $! &
.. ((.*
(
$
-
$
,
$ .$%$.
' 3
$
!& 3$
2$ $ $
$
,3 , $ $
!$ $ &
$ !&,
& - ' 3
$
!$
$ $
!& 3$ & $ 2 &,
(
,
0 1
+
$
4$
$3 & &!
4$ $
$3 &
((
&
&!
1 2
) $-
"
$ ), . 2 .& 2
$ 4$ &
4$ $.& 2
'
$ (&
&,2 ' 3
4
$ &!
* $4
3& $ (&
&
$ 3$
4
$ &! * $4
()
$ $ ,.
&! $
3
(&
$ &! 2 % * &!
"
"
"!
$ (&
&,2 ' 3
$ $ ,.
$ & 2 !& 3$ &!
* $4 3
"
!<
&!
$
@
!
$ ), . 2 , $ 2&$ (, $
. &
$ & /& . $3 &
- & & & &
' & & & )&, %$ 3 . " - $ (&
&,2 ' 3
$ $ ,.
&! $ $ & 2
!& 3$ 3
$ 3$ $ &! 2 *
' "& "
$ &!
!<
@
$ !&..&' 2 '& $!
&
4 * )$
%
#1
&
!
!"# $%
!
, $
$
'&
$! &
4 * 2 %$
&4$'
!!$ $
% .,$
&!
$ 2
$33$ 3 * ),
$ !!$ $ 3$
& %$ *
,)
. 5$ 3$- 3 & 3$ &! $ $! &
.$! & $ $ 2 $
..6!.&& $! & ; $ $ &! $ 2 $
$
$ $ &! (&
.&3 $ & $ & $ 3 !.&& &,2 ' 3
((. 3 & &! . $ . .&
( &! .$ '&,. 3 , $ & & &
* !.&& 2, $
($
$! & - .&3 & &!
#
$($ $ & ), . 2 $
!! $
( &($ $
'$..
&
$ ((. $ . $ .
.& ( &! .$
2.$6!.&& $! & ; $ $ &! 2 * &!
!.&&
$! $
$ (& &
$ !.&& ,3
((. 3 &
&! . $ . .&
(
2
&,2
(&
&$
& 3 , $
*
& & &!
( 3,. !.&& - ' .$ $ & $
!.&& 4 * & $ 2, $
$! &
$($ $ &! ((. $ . $ . .&
.. !.&&
$!
&
)
"
(+
$
$ 2
(#
"
$ % .,$ &! $33$
!.&&
&
"! 0
3 * & )$ , $
& 3 .3,. &
$)
&
"!
1
( -5
!&
!&
22 @4EE23587G 4< @=8A?2 !
1
$ & . $ 2 . $ . !& 3$
$!
"
,
0
2.$ !.&&
$
%
##
00
*-0- . 6 7
&
!
!"# $%
!
&!
(2
,3 , $
#
& /& . & $ .* & /& . * $4
!& $" 4(.$- $ !& 3$ 3& 3 $ $ !.&&
& /& . ) 3 2 * $4 - ' 3
4
. $ . !& 3$
&
$ %$ 3 . $
2
$.$4$
- !& $" 4(.$- $ !& 3$ 3& 3 $ $
!.&&
& /& . ) 3 2 * $4
(4
+, .
' ..
$
! "
2 '
, . * $4 3&
& ) 3$
! 4$
2 ! 4$ ,3
;
&
&!
$
4&4$
$ '& * $4
$ $ 2
$
$ & .
$ 2
. $ . !&
( &(& &
&
$
. $ .
3&
$ 2 $ $ 3 & &! $ , .
.. !.&& .$%$. C
)
$ &
3$
!! $
* $4
$ 4&4$
$
2 ! 4$
$ 2 $ &
$($ $ .* $
.$
($ 3$ &! $ $ 2 ) $ $
$
?
(9
.
/
43?9;27 FA9=;93:? C951 ?1287 C8==? 83; E4E235
72?9?593: <78E2? 12 & B27?943 4< 512 @4;2
$ 8F=2 % 9E6=92; 5185 <78E2? ?14A=; F2 ;2?9:32;
54 58D2 85 =28?5 Q 4< 512 5458= ;2?9:3 ?29?E9@
=48;?
12 @4;2 34C 8==4C? <47 5C4 64??9F9=9592?H $8% 512
<78E2? 872 ;2?9:32; <47 85 =28?5 Q 4< 5458= F8?2
?1287 $527E2; 8? ;A8= ?G?52E%0 47 $F% <78E2? E8G
345 F2 ;2?9:32; <47 85 =28?5 Q 4< 5458= F8?2
?1287
J8E6=2 H 38=G?9? 93;9@852? 5185 512 <78E2?
872 58D93: Q 4< 5458= ?29?E9@ =48; C19=2 ! Q
=48;? :4 54 ?1287 C8==? #78E2? 83; C8==? C9==
F2 ;2?9:32; <47 512?2 <47@2? 83; 512 ?G?52E
C9== F2 527E2; 8? ;A8= ?G?52E
J8E6=2 H 38=G?9? 93;9@852? 5185 <78E2? 872
58D93: Q 83; C8==? 58D2 Q 4< 512 5458=
?29?E9@ =48;
4 MA8=9<G <47 ;A8= ?G?52E0
;2?9:3 512 C8==? <47
Q 4< 5458= =48;0 FA5
;2?9:3 512 <78E2? 54 72?9?5 Q 4< 5458= ?29?E9@
=48;
J8E6=2 H 38=G?9? 93;9@852? 5185 ?1287 C8==?
58D2 Q 83; <78E2? 58D2 Q 4< ?29?E9@ =48;
12 <78E2? C9== F2 ;2?9:32; <47 Q C19=2
C8==? C9== F2 ;2?9:32; <47 Q 4< 5458= ?29?E9@
=48;? $<4453452 $F% 4< 58F=2 !% 19? C9== 345
F2 8 ;A8= ?G?52E
J8E6=2 H 38=G?9? 93;9@852? 5185 ?1287 C8==?
872 58D93: Q 83; <78E2? 872 58D93: Q 4<
?29?E9@ =48; 12 ;2?9:327 18? 512 465943 54
8??AE2 5185 512 235972 =48; 9? @87792; FG 512
?1287 C8==? 12 ?1287 C8==? C9== F2 ;2?9:32;
<47
Q 4< 512 5458= ?29?E9@ =48;?0 83; 512
<78E2? C9== F2 572852; 8? :78B95G <78E2?0 9 2 0 95
9? 8??AE2; 5185 <78E2? @877G 34 ?29?E9@ =48;?
8F=2 ! 93
%
#/
& H
:9B2? 8 ;9<<27235 B8=A2
&
!
!"# $%
!
4< 72?643?2 72;A@5943 <8@547 $ % <47 ;A8= ?G?52E?
12 ;A8= ?G?52E? 627<47E EA@1 F25527 C123
?AFI2@52; 54 ?29?E9@ @43;95943? 83; 872 ;2?9:32;
<47 =4C27 B8=A2? 4< ;2?9:3 <47@2
( 5
.
#"
$ !!$ $ 3$
$ ), . 2
&!
(
,
.
0 1
.$%$. )$ '$$
&! !.&&
#"
0 1
"
$)
$
"
5$ 2 &! ), . 24$ $ - $"3., $
$
) $4$
& $*
! ) $4$
' ..
$
3& $3 $ '
$ 2 &, !.&& . ) & ! $
)$ '$$
$ ), . 2 3&.,4 - ),
3., $
$ ) $4$
& $* !
$*
$ & &
3& $3 $
$ !!$ $ 3$
.$%$. 4$ $ - )$ '$$
) $
2 $
.$%$.
(
.
/
"
,
! "
& /&
4$ !, 3 &
(
A
. ,
* $4
( 24
$ %$
$
"
$ (& & &! $ 3&.,4
3&44&
& & $ 4$4)$ - !& $" 4(.$- )$ 4 ! 4 2 &
( ( 3 "
! "
(
$
"
&! $ ,3 , . * $4
. $ . !& 3$
( )
'
! 4$
3 ( ).$ &!
"&
' 3 4$4)$
$
2 !& 3$
2 $
&
"
)
7&
$
( 4 .* )*
%
/
C
- - 5 * /
A@59=2 ?57A@5A72? 627<47E EA@1 F25527 ;A793:
28751MA8D2?0 83; 123@20 ;A@59=2 ?57A@5A72? 872
;2?9:32; <47 =4C27 ?29?E9@ <47@2? 5183 343
;A@59=2 ?57A@5A72? 19? @83 8=?4 F2 93<2772; FG
#-
&
!
!"# $%
!
!.$", $
@4E68793: 512
( )
!'
0 '
"
"&
1
4&4$ 6 $
2 ! 4$
($3 . $ . 2 $0, $4$
)$ % &,
( )
'
0 '
& 4$$ 2
!&
,3 .$
"&
"
3 E83G @4A35792?0 93527E2;9852 =2B2= 4< ;A@59=95G
72MA972E235? 872 ?62@9<92; <47 E4;27852 ?29?E9@
>432? 5 ?22E? 86674679852 54 ;2B2=46 ?4E2C185
=4C27 ;A@59=95G 72MA972E235? <47 E4E235 72?9?593:
<78E2? 4< >432
5183 514?2 93 >432? ) 83; ) 93
3;98N 512?2 <78E2? 18B2 F223 527E2; 8?
3527E2;9852 4E235 2?9?593: #78E2
1
4&4$ 6 $
2 ! 4$ ($3 ..*
$ .$
& ( &% $ ,3 .$ )$ % &,
3&4(.* '
$ $0, $4$
2 %$
@: < &
:9 > &
< <
( )
"
" '
0' 1
"
# 4&4$
($
; :9 > &
)$ '$$
*
($3 . &4$
( + =
"
$
2 ! 4$ $ .$
%$ ,3 . * $ 4$
$
&4$ #$
2
4$
#$
2
4$
<
"
! 0 1
,4)$ &!
& $* &!
), . 2
$
,4)$ &! .$%$.
)&%$
$ ) $
$"3., $
$ ) $4$
& $* - ' $ $
) $4$
' ..
$ 3& $3 $ '
$
2 &,
!.&&
$31 & ! $ )$ '$$
$
), . 2 3&.,4
+, 3., $
$
) $4$
& $* - ' $
$*
$ & &
3& $3 $
( -( +
7
*:
3 ( . "$ &! ), . 2 $ 2$ $ ..* '&
4, , ..* ($ ($ 3,.
& /& .
$3 &
(.
&!
), . 2 .& 2 ' 3
$
2$&4$ * &! $ ), . 2 & $ $
( 2( -
&
"
$ $3&
* $!!$3 &
$
4&4$
&! ! 4$ 4$4)$
,$ & 3 & &!
$ %$ 3 . .&
- $ 3 2 '
$ . $ .
(. 3$4$
&! ), . 2 $ ,. 2 ! &4
$ 4 3 !& 3$
%
B8=A2? 93 8F=2 !
#2
&
!
!"# $%
!
( 4( 2
' ..
3
2
#
>
=
$ 2 $ & $
&' (. $
( 5( 4
. $ . !& 3$
" "
3 *D
3 72@235 =952785A720 ?A@1 C8==? 872 E472
@4EE43=G F293: @8==2; 8? 57A@5A78= +8==?
!
& $
' 3
$ . $ . !! $
.$
> <> ($ 3$ &!
$ & $* )&%$
& .$
8> > ($ 3$ &! $ %$ 2$
. $ . !! $ &! $ $$ & $* )&%$
(
( 5
0 1
3$
(
" "
$
3$ )$ '$$ 3$
$ &! 2 * &! !.&&
(
"
$ ( 3$ )$ '$$
(
"
(
"
"!
$ &! 4
!
'&
7 3$
!
!.&&
"
$ $. %$
(. 3$4$ &! & $ .$%$.
$. %$ & $ & $ .$%$. )&%$ & )$.&'
)$ '$$
$ !.&&
)&%$
)$.&'
$
& $* , $ 3&
$ &
( ((
.$%$.
"
! #
0 1
$ ,4 &! $ 2 . $ . !& 3$
$
)&%$ $ & $* , $ 3&
( )( (
& $ '
.$
8>
)&%$
$
$ 2
&!
$.$4$
3&
$$
>
% "
..
&
!
D 4
3
$ & $* . $ . $ 2
> ($ 3$ &!
$ & $*
& $* . $ . $ 2
$ & .
..
$ 4 3 !& 3$- $
2
2 $ & $*
$
$
$3 &
%
* .
1272 9? 8 @=287 ;9?593@5943 F25C223 ?59<<32?? 83;
?5723:51 59<<32?? 9? 512 <47@2 322;2; 54 @8A?2 8
A395 ;9?6=8@2E235 83; 9? :9B23 FG 512 ?=462 4< 512
<47@2 ;9?6=8@2E235 72=85943?1960 C12728?0 ?5723:51
9? 512 E8J9EAE <47@2 5185 8 ?G?52E @83 58D2
$#9:A72
% 4<5 ?5472G 72<27? 54 ?59<<32?? 83;
C28D ?5472G 72<27? 54 ?5723:51
?A8==G0 8 ?4<5
?5472G E8G 8=?4 F2 8 C28D ?5472G
#3
&
!
!"# $%
!
57A@5A72 18? 19:127 ?5723:51 83; =4C27
?59<<32?? 8? @4E6872; 54 ?57A@5A72
57A@5A72 18? 19:127 ?5723:51 83; 19:127
?59<<32?? 8? @4E6872; 54 ?57A@5A72
-59*
%
#!
-
A *9
* 53
&
!
!"# $%
!
)
! <
$ *4)&.
((.* & $ ( &% &
$ 2
,
& &
&!
& /&
2 %$
. $ 4 3 3&$!! 3 $
$ 2
& /& . 33$.$
% .,$ !& 4& $ 1 &! % ) &
;
4
.&& (.
($ ($ 3,.
&
$" !&
+
$
$
3&
-
&
($3 ,4
4$ & &!
$ ), .
$ $3 & &! !& 3$
&
2
$ 3.& $.*6 ( 3$ 4& $
4$ & &! $ ), .
$3 &
' 3
$
$$
#$ (&
)$.&'
;
$ 0,
2- 4$ $ $ 4 3 !& 3$
* ,$ & $
.&
$ 2 $33$ 3 * & )$ , $
3 .3,. $
($ - 2
!.&&
3 $33$ 3 *
!.&&
$! $
3$ )$ '$$ 3$ $ &! 4
&! 2 *
$
$
3$
-8
#$ (& $ 0,
!& & /& .
* ,$ & $
1 2 .& 2 "6
0, 1$ .&
$3 &
-7
#$ (& $ 0,
!& & /& .
* ,$ & $
1 2 .& 2 *6
0, 1$ .&
$3 &
-=
#$ (& $ 0,
* ,$ & $
0, 1$ .&
!& %$ 3 .
1 2 .& 2 /6 $3 &
>
)
$ 2 . $ . !& 3$
4& $ 3&
$$
$ &&!
$ 2 . $ . !& 3$
4& $ 3&
$$
>
33$.$
&
5$ 2
,
5$ 2
4$ , $
), . 2 & !.&&
;
,3 , $-
4(&
3$ ! 3 &
#$ (&
$ 0,
&
.4
& . ( 3(
!& 3$ !.&&
$ . !& 3$
;
4$ $
! &4
$ )
$ &!
$
* ,$ & 4(& $ .&
& $*
% .,$ !&
%;
,$ & ..
&! 4& $ 1
,4)$ &!
"
$ !.&&
..
,$ & 2 % *
,
&!
,$ &
&.
& ! 3 & &! 4& $ 1
$ .
!.&&
$ 2 . $ . !& 3$
,4)$ &! 4& $
-2(
!.&&
& )$ 3&
4& $ ;
$$
($
%
#"
&
!
!"# $%
!
$
#$ (&
?
$ $ ,3 & ! 3 &
%$ 2$ #$ (& $ 33$.$
!& &31 & & . $
2 %$
).$ : ) $ &
((
($ &
4( 2 &! $
A
4($
,3 , $
, . ($ & &! % )
$3&
(( &" 4 $
$3&
A
%)
;
!,
4($
&
$ 2
.
.
$ 43)
$
$
)
($ &
&! % )
$
3 .3,. $
4$ . ($ &
!& 3$
& $*
$ 4 3 '$ 2
&!
@
$ 4 3 '$ 2
&! !.&&
&
$
,
& $*
2
$
,$ & ..
4& $ 1
$ 1 & $*
$ !& 3$
& $* ,$ & .. 4& $ 3&
@
$
$
$ 1 & $* $ !& 3$
4& $ 3&
$$
;
& &!
&! 4& $ 1 &!
, . ($ &
$ 2 ) $
(( &" 4 $ !,
*
4$
, . ($ &
$3&
,
4$
$3&
/
& 3&$!! 3 $
)* 2, $ :
&( $
, .
,3 , $
$ &&! &(
$$
,3 , $
B& $ ! 3 &
A;
& $
($ 3&$!! 3 $
!.&&
4& $ ;
B
$ 1 $ (& $ !& $" 4(.$ 4$4)$
!& 3$ (. 3$4$ - & $* !& 3$ - & $*
$
& ) $ $ 3 &
,$ & .. 4& $
3&
$$
B;
) &., $ % .,$ &! 4 " 4,4
4& $ 1
B&
) &., $ % .,$ &! 4 " 4,4 $ (& $
4& $ 3- ' $ $ 4& $ 3
3.& $.*6 ( 3$
4& $
BC
$ 1 $ (&
4& $ & .*
DE
&$!! 3 $ , $
&4)
&
3&4)
2 $ (&
F
3,.
4& $
$
,$ &
! $0,$ 3*
$ (&
$
$ 3.& $.*6 ( 3$
$ &4(.$ $ O,
3
O
4$ &
' .$
$ &! 4& $
E
I $3&
,
$
%
/,
&
!
!"# $%
!
+
8
7
*
"
+
8
+
8
( -5
7
* 9 ,
$ 3
3$
3
$
*- , & - $ 3
*
&! $ 4 3 2 &, % ) & $"($3 $
.&3 &
$($
,(&
$ 4 2 , $ &!
$
0, 1$$( &! !&3, 3$ ! &4
$ $( 3$ $ - 3
3$
3 &!
$ (
&,2 ' 3
$ $ 4 3 ' %$
%$.$ &.
& ' 3
$ ,3 , $
$
&4 $
0, 1$ 2 &,
4& & ' 3 3 , $ $
,3 , $ & % ) $- 3
)$
$ &.%$
*
$$ 4, , ..* ($ ($ 3,.
$3 &
$ ( $ &4
$3 & &!
2 &, % ) &
, , ..* & /& .
0, 1$62$ $ $ %$ 3 . $
!& 3$
$ & )$ 3&
$$
$ 2 ' $ $%$
(( &( $ , .$ 3 $31$
( &%$ )*
($3 4$ 3 .3,. &
& )$ &
2 !3
D$ 3 . 33$.$ &
&,. )$ 3&
$$
,3 , $ '
. 2$ (
- & $
' 3
). *
3 $ & !& $ 2 - & !& &%$ ..
). *
.*
&!
,3 , $ #$ ,3 &
2 % * !& 3$ ,$ & %$ 3 . 3&4(& $ &!
2 &,
4& &
3
)$ ( 3,. .*
$ 4$ . 3 $ &! ( $ $ $ & /& .
4$4)$
&! 3
.$%$ $ 4$4)$
5$ 3$- ($3 .
$ &
&,. )$ (
&
$ $!!$3 &! %$ 3 . 3&4(& $ &! $ 2 &,
4& &
&
($ $ $
& 3
.$%$ $
)$ 4 - 2 $
. )
,
*- **
' "
*- 0-8
*- 0-8
-
== ?57A@5A72? 2J627923@2 8 @43?5835 B2759@8=
8@@2=2785943 $;4C3C87;% 2MA8= 54 :78B95G $%% 85 8==
59E2?
23@20 512 B2759@8= 8@@2=2785943 ;A793:
:74A3; ?18D93: @83 F2 IA?5 8;;2; 47 ?AF578@52; 54
512 :78B95G ;2623;93: 43 512 ;972@5943 4< :74A3;
E45943 85 5185 93?5835 #47 93?583@20 @43?9;27 8
744< 8@@2=278593: A6 83; ;4C3 C951
: 5
9E6=92? 5185 95 9? 2J627923@93: 8@@2=2785943 93 512
783:2
% 54 & % 93 6=8@2 4<
: 5185 95 C4A=;
2J627923@2 C9514A5 83 28751MA8D2 12 <8@547 4<
?8<25G <47 :78B95G =48;?0 2 : 0 ;28; 83; =9B2 =48;?0
9? A?A8==G ?A<<9@9235 54 @4B27 512 28751MA8D2
93;A@2; B2759@8= 8@@2=2785943? 1A?0 ?8<25G ;A793:
1479>4358= 8@@2=2785943 9? 512 E893 @43@273 93
?29?E9@ ;2?9:3 4< 347E8= ?57A@5A72?
+
$ $ (& $ &!
,3 , $ &! 2 &,
%) &
!, 3 & &!
$
, $ &!
!&,
&
& .C 4 $ . - !& 4- /$
4& $ &! 3&
,3 & &!
,3 , $ C
$
, &
3
3$
3
&! 2 &,
4& &
($3 ! $ $ 2 !& 3$
2 !&, $ & &31 &
!&
,3 , $
& . ' 3 & & $ .$- . 0,$!* & . $ ,$
& .& &! $ 2
, 2$
0, 1$ 2 &,
%) &
%
74A3; ?18D93: @83 8<<2@5 512 ?8<25G 4< ?57A@5A72
93 8 3AEF27 4< C8G?0 =9D2H
18D93: 93;A@2? 9327598 <47@2
83;G ?49= E8G =9MA2<G
=9;93: <89=A72 4< <4A3;93: ?57858 E8G 58D2
6=8@2
#972 47 <=44; E8G F2 @8A?2; 8? ?2@43;87G
2<<2@5 4< 512 28751MA8D2
12 @4;2 679E879=G 8;;72??2? 512 <97?5 9??A20 5185
9?0 9327598 <47@2 93;A@2; FG :74A3; ?18D93: 12
/
&
!
!"# $%
!
23:93227 322;? 54 F2 @8A594A? 8F4A5 45127 2<<2@5?
+
$
$ 2
(( & 3
&( $
&$ ,$
,3 , $ (& $
.$
4 4,4
$ 2
& '
P + - ' 3 &33,
4 & $
0, 1$
! $0,$ .*- ' &,
4 2$C $
4& $ $
$
0, 1$
+
' &,
2 !3
,3 , .
4 2$
&,2
&4$
& 6
,3 , .
4 2$ 4 * &33, C
4
,3 , $ '
4 7& $
0, 1$
' &, 3&.. ( $
3 , . !& 3$
(($ &
,3 , $ , 2 $
0, 1$
$
4,3
2$ $
$
$ 2
!& 3$
($3 ! $
5&'$%$ - ,3 . *2 ! &4 $.
3 4 $ . )$ % &,
$ . 2&%$ $ 2 2 ! &4 $
& . $ $ %$ $ 2
,3 , $ &%$
)&%$ $ $ 2
$ 2 - $ $. $
,(& & 33&, !&
!!$ $ 3$
3, .
$ 2 . $ . .&
87:2 28751MA8D2? 18B2 EA@1 =4C27 <72MA23@G 4<
4@@A7723@2 5183 512 ?E8==27 28751MA8D2? ?A8==G0
8 ?57A@5A72 E8G 18B2 8 ;2?9:3 =9<2 4<
G287? 3 ?A@1 8 @8?20 95 E8G F2 A32@434E9@8= 54
;2?9:3 8 FA9=;93: ?4 5185 95 72E893? A3;8E8:2;
;A793: 8 =87:2 28751MA8D2 5185 E8G 58D2 6=8@20
?8G0 43@2 93
G287?
72<2723@2 54 8751MA8D2
96 & E8G F2 A?2<A=H
/
122000
$
%2
2
4
43B2359438==G0 ?29?E9@ ;2?9:3 619=4?461G 9?
?5852; 8?H
9347 83; <72MA235 28751MA8D2 ?14A=; 345
@8A?2 ;8E8:2
4;27852 28751MA8D2? ?14A=; 345 @8A?2
?9:39<9@835 ?57A@5A78= ;8E8:2 FA5 @4A=; 18B2
?4E2 343 ?57A@5A78= ;8E8:2 83;
8I47 83; 93<72MA235 28751MA8D2 ?14A=; 345
@8A?2 @4==86?2
23@20 512 ?57A@5A72? 872 ;2?9:32; <47 EA@1
?E8==27 <47@2? 5183 8@5A8= ?29?E9@ =48;? ;A793:
?5743: :74A3; ?18D93: 43 512 F8?9? 4< 8 3AEF27 4<
<8@547? 12?2 <8@547? 872 ;9?@A??2; 93 ;2589= 93
@4EE23587G 4< @=8A?2
#$ !& 3$
($ $ $
3& 3 $ $
4$4)$
.. )$ , ).* $ 2 $
&
$ ,$
( $4 , $ ! ., $ ,$ & $ &
)&
&$
& &33, ,)7$3
&
$
( &% & &!
()+
(
&% &
!& (( &( $ ,3 .$ $ . 2 &! $ !& 3$
3& 3 $ $ 4$4)$
$ 2 %$
4 5
$$.
,3 , $
3& $3 &
&,.
2 ,3 . * &)
%&
2 $4 , $
$.
3 ),31. 2 &!
- 4$4)$
$
)$ & ( &(& & $
$ -% $ 7+
<! ., $ ,$ & $.
3 &
* *($
$ ($3 ! $ $
0, 1$ .&
$ ) $
,(& (& 6$.
3 $ $ 2*
( &
$
,3 , $
)$3 , $ &!
! 3$
( &% & &!
!& $ 2 - $ . 2
3&
,3 &
.. )$
! $ $%$ !&
,3 , $
4$4)$
!& ' 3 .&
3&4)
&
&
& 3&
$
$
0, 1$ $!!$3
3 $ . 2$
$4
3&4)
&
3., 2 $
0, 1$
%
12 28751MA8D2 72?9?5835 ?57A@5A72? ?14A=;
:23278==G F2 ;A@59=2
H
;28=? C951 512
;A@59=2 ;2589=93: 72MA972E235? <47 7293<47@2;
@43@7252 ?57A@5A72? A@59=2 ;2589=93: 674B9?943?
<47 ?522= ?57A@5A72? 872 345 G25 8B89=8F=2 93 512
3;983 @4;2? 23@20 72<2723@2 18? F223 E8;2 54
$ 875 %0 FA5 95 728==G 72=852? 54 6=8?59@ ;2?9:3
1A?0 95 9? 8;B9?8F=2 54 72<27 54 @4;2? 4< 45127
@4A35792? 83; =952785A72 <47 ;A@59=2 ;2589=93: 4<
?522= ?57A@5A72? A359= ?9E9=87 3;983 @4;8=
674B9?943? 872 ;2B2=462;
? 4< 34C0 ;A@59=2 ;2589=93: 674B9?943? <47 672@8?5
?57A@5A72? 83; <47 672?572??2; @43@7252 ?57A@5A72
872 345 674B9;2; 93 512 3;983 @4;2? 83; ?62@98=9?5
=952785A72 47 @4;2? 4< 45127 @4A35792? E8G F2
72<2772; 54 4332@5943? 93 672@8?5 ?57A@5A72? 93
19:1 ?29?E9@ 72:943? 72MA972 ?62@98= 855235943
447 627<47E83@2 4< 672@8?5 ?57A@5A72? 18? F223
=87:2=G 85579FA52; 54 6447 627<47E83@2 4<
@4332@5943?
=8A?2
9E6=92? 5185
RE4;27852 ?18D93:S 83;
/1
72=852? 54 512
72=852? 54 512
&
!
!"# $%
!
R?5743: ?18D93:S +19=2 512 ;2<9395943 4< "432
#8@547 $"% 93 @=8A?2
@=287=G ?5852? 5185 512
9? 8??AE2; 54 F2 Q 4<
+2 @83 ?22
5185 512?2 872 85 B87983@2 C951 512 ;2<9395943? 4<
83;
:9B23 93 @=8A?2?
83;
4<
2;95943 4< 512 @4;2
8?5 6878:7861 4< @=8A?2
18? ?62@98=
72=2B83@2 54 E4;27852 ?29?E9@ 72:943?
12
;2?9:3 ?29?E9@ <47@2 674B9;2; 93 512 @4;2 9? 8
72;A@2; <47@2 @43?9;2793: 512 4B27?5723:510
72;A3;83@G 83; ;A@59=95G 23@20 2B23 9< ;2?9:3
<47@2 ;A2 54 8@5943? 45127 5183 ?29?E9@ 8@5943?
$?8G0 C93; <47@2% 2J@22; 514?2 ;A2 54 ;2?9:3
?29?E9@ <47@20 432 322;? 54 @4E6=G C951 512
?29?E9@ 72MA972E235? 43 ;2?9:30 ;2589=93: 83;
@43?57A@5943
+
(
"
"
"
"
-
$ & .6 ,3 , $
$ 3 &
$!$
& $
! &!
$
,((& 2 !&,
&
$!!$3
4$ ,4 &
$ 4& & &! ,3 , $
$ & .6
,3 , $
$ 3 & 4 * & )$ 3&
$$
$
$ 43
.*
!&
,3 , $
,((& $ & &31 & &316. 1$ 4 $ .
*90 9*
* 0-
< 51272 9? 34 ?57A@5A720 E45943 4< 512 :74A3;
?A7<8@2 9? 527E2; 8? <722 <92=; :74A3; E45943 3
347E8= 678@59@20 512 <722 <92=; E45943 9? 866=92; 54
512 ?57A@5A72 F8?2 8??AE93: 5185 512 F8?2 9? <9J2;
A5 519? 9? B8=9; 43=G <47 ?57A@5A72? 43 74@D ?952?
5 E8G 345 F2 83 86674679852 8??AE65943 <47 ?4<5
?49= ?952? 72?23@2 4< 8 ?57A@5A72 E4;9<92? 512 <722
<92=; E45943 ?93@2 512 ?49= 83; 512 ?57A@5A72
935278@50 83; 512 <4A3;85943 4< 512 ?57A@5A72
2J627923@2? 8 E45943 ;9<<27235 <74E 512 <722 <92=;
:74A3; E45943 49= ?57A@5A72 935278@5943 $ %
8@@4A35? <47 519? ;9<<2723@2 F25C223 512 5C4
E45943? 12 ?49= ?57A@5A72 935278@5943 :23278==G
;2@728?2? =85278= ?29?E9@ <47@2? 43 512 ?57A@5A720
83; 93@728?2? =85278= ;9?6=8@2E235? 83; ?2@43;87G
<47@2? 8??4@9852; C951 ;2=58 2<<2@5 #47 47;9387G
FA9=;93:?0 512 ?49= ?57A@5A72 935278@5943 9? A?A8==G
9:3472; 32 E8G 72<27 54
674B9?943? <47
?29?E9@ 72:A=85943? $#
&%0 C19@1 674B9;2 8
?9E6=2 674@2;A72 54 8@@4A35 <47 ?49= ?57A@5A72
935278@5943 93 FA9=;93:?
9? 345 54 F2 @43<A?2; C951 ?952 2<<2@5? 952
2<<2@5? 72<27 54 512 <8@5 5185 <722 <92=; E45943 85 8
?952 ;A2 54 8 :9B23 28751MA8D2 ;2623;? 43 512
674627592? 83; :24=4:9@8= <285A72? 4< 512
?AF?A7<8@2 ?49=? 8=?4
+
)
$
)
$ 2
. $ . !& 3$ ($3 ! $
.. )$ 3&
$$
$ 3 &!
'& & &2& . & /& .
$3 &
&!
,3 , $ &
,3 , $ ' 3
%$ . $
!& 3$ $
2 $.$4$
$ '& & &2&
22 @4EE23587G 4< @=8A?2
$
$
.
.
%
/#
&
!
!"# $%
!
$3 & & .*- $ $ 2 . $ . !& 3$
..
)$ 3&
$ $ .& 2 & $ $3 &
4$&
)&
$3 &
4,. $&, .*
,3 , $ % 2 . $ . !& 3$ $
2
$.$4$
!& $" 4(.$ ! 4$ $ ' ..
$3 &
& $
$ '& & &2& .
$3 & .. )$
.*/$ 3&
$ 2 $
.& 3&4)
&
($3 ! $
+
$ $ )&
!& 3$
$
3&4)
&
3&
$$
+
& /& .
1$
($3 ! $
%$ 3 . $ 4 3
33&, - .&
+
.. )$
&
+
0, (4$
& $
* $4 - ' 3
$
,((& $
% &, !.&& .$%$. &!
$
,3 , $- ' .. )$ ,)7$3 $
& 4& &
3& $ (&
2 & %) &
$
,((&
(&
4(&
3 $ 4 * )$
$3$
* & &)
!.&& $ (& $ ($3
!& $ 2 &! $0, (4$
,((&
& $ .
$!$ $ 3$ )$ 4 $ &
89:
@
+
"
*
"
"
: "
"
&
& .*
.. )$ 4
!&..&' ;
$ & $"
&
$($ $ ! &4
.. )$ $ 2 $
33&
3$
'
$0, $4$
!& $'
)
22 @=8A?2
2
$"
2
3&
$
,3 , $
,3 , $
,3 , ..*
,3 , $
,3 $
$ 43
&
&
,3 , ..*
$($ $ ! &4
$"
2
,3 , $
.. )$ $ 2 $
3&
,3 $ ,3
$ $ $
,3 , $ 3& !& 4 & $
$ 4 3 !& 3$ $
3$ $0, $4$
!&
$' ,3 , $ , .$
$ !&..&' 2
$$
3&
&
$ 3&4(. $ ' ;
$
&
$0, $4$
!&
.. 3&4(.* '
$' ,3 , $ -
$
&
..
$ 4 3 !& 3$
,3 , . $.$4$
,3 , $ )* 4& $
, .$
$ 3 ( 3 *
,)7$3 & $ 3 $
3&4(. 3$ '
&
$
3$
$ $
,3 , $
&!
$ $"
2
? ($ 3$
&! $ $.$4$
$ !& 3$
..
$
*
%
//
&
!
!"# $%
!
:
+
$
&
.. & $3 $ $ $
$ 43 $
3$ &!
*
,3 , .
$.$4$
&!
$ $"
2
,3 , $
, .$
$ ,3$ $
3$ $0, . &
& 2$ $
$0, $ !& $'
,3 , $
2
#
!
$
3
2$ &! &33,( 3* $ ,.
,3 , $ )$ 2 $63.
!$
&
2 $
4(&
3$ ! 3 &
$
,3 , $
..
3& !& 4 & $ $ 4 3 $0, $4$
!&
$'
,3 , $ '
$ 2 $ 4(&
3$
! 3&
+
*
"
! 9/8 -
$ !&..&' 2
,4( &
.. )$ 4 $
$$
0, 1$ $
$ 2 &! ,3 , $ ;
8%
4(,. %$ 2 &,
0, 1$ 3 , $
4& & - ' 3
$ 3&4(.$"
$2,.
3
3$- 3
2 2
($ &
4(. , $ $ 3
.
2 !&
4 ..
, &
$ $!& $- $ &
3$ &!
$
*($
% , . /$ , $
$ *6
$
, & . $"3
& - ' .. & &33,
'&,.
$$
4$ & ), . ,( ,3
4(. , $
6 5&'$%$ - $ $ $ $"3$( &
$ &
3$6. 1$ 3&
&
%$ )$$
&33, )$ '$$ .& 2
3$ ' %$
,3 , $ !&, $ & $$( &! & .
F%
' $$
$$ &
..
0, 1$
& . 1$.* & &33,
4,. $&, .* '
2
' - &
4 " 4,4 !.&& & 4 " 4,4 $ ' %$
%
12 3452 E2359432; 8<527 8??AE65943 $8%0 18?
F223 32@2??95852; 93 B92C 4< 2J627923@2? ?A@1 8?
5185 93 2J9@4 @95G $ & %
12 28751MA8D2 4@@A772;
DE? <74E 512
2J9@4 95G
:7285 B87985943 93 ;8E8:2? C8?
?223 93 512 2J9@4 95G 4E2 6875? 2J627923@2;
B27G ?5743: ?18D93: C12728? ?4E2 45127 6875? 4<
512 @95G 187;=G <2=5 83G E45943 12 628D :74A3;
8@@2=2785943 85 ?4<5 ?49=? 93 512 =8D2 >432 C8?
8F4A5 59E2? 19:127 5183 5185 85 512 74@D ?952?
514A:1 512 269@23578= ;9?583@2 C8? ?8E2 85 F451
512 =4@85943? J572E2=G ?4<5 ?49=? 93 =8D2 >432
8E6=9<92; C28D =43: 62794; C8B2? 12 385A78=
62794; 4< ?4<5 @=8G =8G27? 1866232; 54 F2 @=4?2 54
512 ;4E93835 62794; 4< 93@9;235 ?29?E9@ C8B2?
83; 95 @72852; 8 72?4383@2 =9D2 @43;95943?
A9=;93:? F25C223 ! 83; & ?5472G? ?A<<272;
2J523?9B2 ;8E8:2 ?93@2 512 385A78= 62794; 4< ?A@1
FA9=;93:? C8? @=4?2 54 512 62794; 4< ?29?E9@
C8B2?
12 674F8F9=95G 4< 4@@A7723@2 4< ?5743:
28751MA8D2 ?18D93: 9? =4C 4 9? 512 @8?2 C951
?5743: C93;? 1272<4720 512 64??9F9=95G 4< ?5743:
:74A3; ?18D93: 83; ?5743: C93; 4@@A7793:
?9EA=58324A?=G 9? B27G =4C 1A?0 95 9? @4EE43=G
8??AE2; 5185 28751MA8D2? 83; C93;? 4< B27G 19:1
93523?95G ;4 345 4@@A7 ?9EA=58324A?=G 9E9=87=G0
95 9? 8??AE2; 5185 ?5743: 28751MA8D2 ?18D93: 83;
E8J9EAE <=44; 47 ?28 C8B2? C9== 345 4@@A7 85 512
?8E2 59E2
/-
&
!
!"# $%
!
$ % .,$ &! $.
4 $ . - ' $ $%$
1$
!&
3
$! $ % .,$
% .
* 4 3 3&
&
8>>
@%
+
3
3 4& ,.,
&!
$0, $ - 4 * )$
.* , .$
4& $
).$ !& , $
,3
$$
@?<:@:
5 9? ;9<<9@A=5 54 672@9?2=G ?62@9<G 512 E4;A=A? 4<
2=8?59@95G 4< E852798=? ?A@1 8? @43@72520 E8?437G
83; ?49= F2@8A?2 95? B8=A2 ;2623;? 43 <8@547? ?A@1
8? ?572?? =2B2=0 =48;93: @43;95943 $?5859@ B27?A?
;G38E9@%0 E852798= ?5723:51 83; 8:2 4< E852798=
#47 ?A@1 E852798=?0 51272 523;? 54 F2 =87:2
B87985943 93 512 B8=A2 4<
#47 93?583@20
H !& 72@4EE23;2; $ P ! √ $)0 C12728?
H
18? E4;9<92; 512 B8=A2 54
√ $)N F451
A3;27 ?5859@ @43;95943 #A751270 512 8@5A8= @43@7252
?5723:51 C9== F2 ;9<<27235 <74E 512 ?62@9<92; B8=A2
4;A=A? 4< 2=8?59@95G 4< E8?437G 18? 2B23 =87:27
B87985943 5183 5185 <47 @43@7252 23@20 512 @4;2
?9E6=G 8==4C? 512 E4;A=A? 4< 2=8?59@95G <47 ?5859@
838=G?9? 54 F2 A?2; <47 28751MA8D2 838=G?9? 8=?4
<
"
<
7
"
+
3
<
"
$ $
,3 , $+
&
$
0, 1$ !& 3$
$ 3&
$$ &
$ $
.. )$ 3&4) $
($
+
' $$ $ $4
-- !& $ $ (& $ 0,
$ ,$
$
.& - 4(& $ .&
$ 2 $
0, 1$ .&
$ ($3 %$.*
+
3
"
"
"
"
C
"
$ (.
3 $ 2 &! $$.
!&..&' 2 .&
3&4)
&
33&, $ !& ;
,3 , $ - $
.. )$
-G -± :
:
-G - ± -
:@ >9
-±
+
7 "
"!
"
93@2 512 1479>4358= =48;? 872 72B27?9F=2 93
;972@59430 93 ?4E2 @8?2? ;2?9:3 9? :4B2732; FG
2<<2@5 4< 1479>4358= =48; E93A? 2<<2@5 4< :78B95G
=48;? 3 ?A@1 ?95A85943?0 8 =48; <8@547 19:127 5183
<47 :78B95G =48;? C9== E8D2 512 @8=@A=85943?
A3@43?27B859B2
23@20 8 =48; <8@547 4<
9?
?62@9<92; 43 :78B95G =48;? 93 512 <4A751
@4EF9385943 83G ;2?9:3? 4< <44593:?0 @4=AE3?0
83; 64?959B2 ?522= 93 F28E? 85 512 23;? 93 <78E2
?57A@5A72? 872 :4B2732; FG 519? =48; @4EF9385943
"
" "
"
"
"
"
"
$ .4
$ $ 2 &! $ !& 3$
( $ $ $ 3& 3 $ $ ,3 , $ - $ !&..&' 2
.& 3&4)
&
.. )$ 33&, $ !& ;
?
-Q -
%
/2
&
!
!"# $%
!
-Q - ± -
$
!:
?
-± -
2 @ >9 - ±
? -
+
.
"#$
/
"
( -5 " *-1
* 3:9 4
,- 5
% 3
+
$
$. $
& $ $
.&
$3 & - $
$ $!!$3
,$
& $ & /&
. .&
$
2 $.$4$
$
2
& &2& .
& /& .
,3 , $
.. )$ $ 2 $ !&
& !,.. $ 2 $
0, 1$ .&
4$
. $3 &
5 9? 2J62@52; 5185 512 628D :74A3; 8@@2=2785943
;42? 345 4@@A7 ?9EA=58324A?=G 93 5C4
627623;9@A=87 1479>4358= ;972@5943?
43?9;27 8
FA9=;93: 93 C19@1 1479>4358= =48; 9? 72?9?52; FG
<78E2? 47 C8==? 4792352; 93 5C4 47514:438=
;972@5943?0 ?8G 5 83; 6 $?22 #9:A72
% 19?
@=8A?2 72MA972? 5185 ;2?9:3 :74A3; E45943 F2
@43?9;272; 54 8@5 ?2687852=G 93 5 ;972@5943 83; 93
6 ;972@59430 9 2 0 512 ;2?9:3 E45943 93 512 5
;972@5943 9? 8??AE2; 54 345 8@5 ?9EA=58324A?=G
C951 5185 93 512 6 ;972@5943 < 85 8 :9B23 93?58350
E45943 9? 93 83G ;972@5943 45127 5183 5 47 60 432
@83 72?4=B2 95 9354 5 83; 6 @4E643235?0 83; 512
FA9=;93: C9== ?59== F2 ?8<2 9< 95 9? ;2?9:32; <47 5
83; 6 E45943? ?2687852=G
-59*
%
/3
)
* 3:9 4
,- 5 -
3
&
!
!"# $%
!
,-* 0 12 =48; & 93 @=8A?2
9E6=92? 28751MA8D2
=48; 93 T50 50 T6 83; 6 ;972@5943? 7293<47@2;
@43@7252 FA9=;93: C951 47514:438= ?G?52E
51272<472 322;? 54 F2 ;2?9:32; <47 512 <4==4C93:
=48; @4EF9385943?H
$
$
$
$
$
$
$
$
$
!
&
&T
&T
&T
&T
&T
&T
&
&T
&
&T
&
&T
&
&%
& T &7%
& &7%
& T &#%
& &#%
&7%
&7%
&#%
&#%
&7
&7
&#
&#
C1272
&7 P 2?9:3 28751MA8D2 =48; 93 5 ;972@5943 83;0
&# P 2?9:3 28751MA8D2 =48; 93 6 ;972@5943
+
$
$ . $ . .&
$
2 $.$4$
& & $ $
.& 2 $ & &2& . & /&
$3 & & - ' $
$ ), . 2
& &
$2,.
($ 3. , $
)&, )&
& /& .
"$ $
,3 , $
..
$ 2 $ !&
$ $!!$3
,$ & !,.. $
$
0, 1$ .&
& $ & /& .
$3
(., :> ($ 3$ &! $ $ 2 $
0,
.&
$ & $ & /& . $3 &
6 &
$ 2 $
!&
3$-
$ ), .
&2& . & /&
+
-8 ± > : -7 &
&,.
)$
'$..
7
$ '&
- - +
$(. 3$
)*
± -8 ± > : -7
±> : -8 ± -7 - ' $ $ 8
&
2
$
.
..*
$
)$
2
&
1$
.
..
$3 &
)$
-7 ± > : -8
3 ?57A@5A72? C951 343 47514:438= =85278= =48;
72?9?593: ?G?52E0 512 =85278= =48; 72?9?593:
2=2E235? E8G F2 4792352; 93 8 3AEF27 4<
;972@5943? 2?9:393: <47 ( 83; ;972@5943 =48;?
8@593: ?2687852=G E8G F2 A3@43?27B859B2 <47
2=2E235? 345 4792352; 8=43: ( 83; ;972@5943?
=85278= =48; 72?9?593: 2=2E235 $<78E2 47 C8==%
4<<27? E8J9EAE 72?9?583@2 C123 512 =48; 9? 93 512
;972@5943 4< 512 2=2E235 A5 93 ?57A@5A72? C951
343 47514:438= =85278= =48; 72?9?593: ?G?52E?0 95
E8G F2 52;94A? 54 866=G =85278= =48;? 93 28@1 4<
512 ;972@5943? 93 C19@1 512 2=2E235? 872 4792352;
3 ?A@1 @8?2?0 512 FA9=;93: E8G F2 ;2?9:32; <47
$#9:A72
%H
•
Q ;2?9:3 28751MA8D2 =48; 93 5 ;972@5943
83;
Q ;2?9:3 28751MA8D2 =48; 93 6
;972@59430 8@593: ?9EA=58324A?=G
•
Q ;2?9:3 28751MA8D2 =48; 93 6 ;972@5943
83;
Q ;2?9:3 28751MA8D2 =48; 93 5
;972@59430 8@593: ?9EA=58324A?=G
9E9=87=G0 C123 8 FA9=;93: 9? 547?9438==G
A3F8=83@2; 8F4A5 F451 512 47514:438= 8J2?0 95 9?
8;B9?8F=2 5185 512 FA9=;93: F2 838=G>2; 8? 627 512
%
/!
&
!
!"# $%
!
R
QT
Q 7A=2S ;2?@79F2; 8F4B2
12 ;972@5943? 4< 28751MA8D2 <47@2? 872 72B27?9F=2
23@20 8== @4EF9385943? 4< ;972@5943? 872 54 F2
@43?9;272; 1A?0 & 93
83;
34C
9E6=92? <4==4C93: 29:15 64??9F9=9592?H
T$ &7 T
&#%
T$
&7 T &#%
T$ &7
&#%
T$
&7
&#%
$
&7 T &#%
$
&7
$ &7 T
$ &7
&#%
&#%
&#%
1272<4720 512 5458= ;2?9:3 =48; @4EF9385943? C9==
F2
-59*
;;E F ;E *9
*3 5
. /
*
C
12
QT Q 7A=2 @83 F2 A?2; <47 FA9=;93:?
C951 47514:438= =85278= =48; 72?9?593: ?G?52E? 8=?4
3 68759@A=870 512 @47327 @4=AE3? 4< ?A@1 FA9=;93:?
872 :4B2732; FG 512
QT Q 7A=2 4C2B270
;42? 345 72MA972 512
QT Q 7A=2 <47
@47327 @4=AE3? IA?5 54 ?8B2 512 ;2?9:3 2<<475
+
; "
"#$
% 3
$ $!!$3
,$ & %$ 3 . $
0, 1$
.&
$ & )$ 3&
$$ $ $ 2
%$ 3 . !& 3$
.. )$ 3 .3,. $ !& %$ 3 .
%
/"
&
!
!"# $%
!
2 &,
+()
+
4& &
$
(
<
.$
3$ '
"
#
+
33&
"' "
3*
/ /8
-
* +
*
-
(
$ $ (& $ ! &4 $
$$ $
0, 1$
3&4(& $
$ & )$ 3&
$$ $
$ (& $
,$ & $ 3 3&4(& $ 4 * )$
3&4) $ , 2 $
,4( &
' $
$ 4 " 4,4 $ (& $ ! &4 & $ 3&4(& $
&33, - $ $ (& $ ! &4 $ & $ '&
3&4(& $
$ :> ($ 3$
&!
$
4 " 4,4 .. (& ).$ 3&4)
&
&! $
$$ 3&4(& $
-8-7
-=
3., 2 %
&
2 (., & 4 ,
.. )$ 3&
$$
, - $ $ (& $ ,$
$
0, 1$ !& 3$
$ 4 " 4,4 &!
$ (& $ ! &4 $ !&..&' 2
$$ $ &!
.& 3 $ ;
3 @4E6=2J ?57A@5A78= ?G?52E? $?A@1 8? 8 3A@=287
728@547%0 432 322;? 54 @43?9;27 28751MA8D2 E45943
93 8== 51722 ;972@5943? 8? 627 R
QT Q 7A=2S
1230 & 93
83;
E283? 512
<4==4C93: @4EF9385943?H
$8% ± &7 ±
$F% ± &# ±
$@% ± &8 ±
&# ±
&7 ±
&7 ±
&8 $& 4EF9385943?%
&8 $& 4EF9385943?%
&# $& 4EF9385943?%
1272<4720 512 5458= ;2?9:3 =48; @4EF9385943? C9==
F2 !
± -8 ± > : -7 ± > : -=
± -7 ± > : -8 ± > : -=
:
± -= ± > : -8 ± > : -7
' $$8
7 $ '& &
= %$ 3 . $3 &
+
&2&
.
$3 &
(
.$
%$ & $ ( &3$ , $ + ( $ $ (& $ - ,$ & $ 3&4) $ $!!$3
&! $
$$ 3&4(& $
3 )$ &)
$ &
$ )
&! R 0, $ && &! $ ,4 &! $
0, $ #
L
-S
-8
+
-7
+
+123 A?93:
E2514;0 512 ?9:3? 4< 512 ?572??
72?A=5835? $2 : 0 8J98= <47@20 ?1287 <47@20 F23;93:
E4E235% 4< E2EF27? 872 =4?5 1A?0 512 23:93227
?14A=; @872<A==G 8??9:3 512 ?9:3 54 512 72?643?2
MA8359592?
-=
J
$ 3&4)
& ( &3$ , $ &!
+ (
+ (
((.* &
$
4$
$ (& $ 0,
*
*- 4&4$
3&.,4
)&,
4 7&
" - &
& $*
$
! 4$
,$ & !!$ $ 3&4(& $
&! $
2 &, 4& &
+
(
$
'& 3&4(& $
4& &
* & $
& /& .
& $ %$ 3 .- & & .* '&
& /& .
$ 3&4) $ - $ $0, &
+ (
+ (
&,. )$ 4& ! $ )*
$.$ 2 $ $ 4 $( $ $
2 $ $ (& $
,$ & $ 3&4(& $ &! 4& &
& )$ 2
%
-,
&
!
!"# $%
!
3&
+
$$
)
7
<
)
"
+ )
' "
7
<
"
)
*-
$ $
0, 1$ !& 3$
$ 3&
$$
.& 2 '
& $ & 4 . $ 2 !& 3$ - $
($ 4 ).$ $ $
4 $ .$ $.
3
4$ & &! $ 2 - 4 * )$ 3 $ $ )* & $6
5&'$%$ - !&
$$.
% 2
$! $
* $.
$ - $ $ )$ . 4 $ & $ * $.
$ C !& $$. ' &,
$! $ * $. (& $ $ ' .. )$ . 4 $ & 8> ($ 3$ &! $
,. 4 $ $ 2 & > ($ 3$ ( &&! $ ' 3 $%$
4 ..$ C
($ $ $
3& 3 $ $ 4$4)$ - $ $ .$
$
$
$" $4$ ! )$
&!
$ 3& 3 $ $ 4 * )$
($ 4 $
&
& & $"3$$ '&6
&!
$ 4& ,., &! ,( , $ &! 3& 3 $ $
+
0*
-
*/- -
*
)
0*
-
*/- -
*
-
93@2 E8J9EAE 28751MA8D2 =48; 9? 4@@A7793:
43=G <47 8 ?1475 ;A785943 83; 674F8F9=95G 4< ?A@1
4@@A7723@2 9? B27G =4C0 512 @4;2 8==4C? 19:127
8==4C8F=2 ?572??2? <47 =48; @8?2? 93B4=B93:
?29?E9@ =48;? C123 512 C47D93: ?572?? ;2?9:3
E2514; 9? 8;4652;
<
)
0*
-
+
8*
9* -
$ $
0, 1$ !& 3$
$ 3., $ - $
..&' ).$ )$
2 ($ ,$
&.
.. )$
3$ $
($
).$ - $($
2 ,(&
*($ &! !&,
& &! $
,3 , $
$
*($ &! & .
& . $(&
3&
2 &! ,)4$ 2$
.&& $
&.
! .. 2 , $
3.
!3 &
'
($ $
& "6
% .,$ .$
?
$ 4 3 B& $
- D- D
.$
>
$ 4 3 B& $ - $
% ) & 3 , $ )* $
0, 1$ 4 * 3 , $
. 0,$! 3 & & $"3$ %$ & .
!!$ $
.
$ .$4$
,3
$
&,. ( $!$ ).* )$
%& $ ' .$ .&3
2 $' $ .$4$
&
4(&
( &7$3
$ ' $($3 &!
$ ( &).$4 $$
& )$ %$ 2 $
(( &( $ 4$ &
&! 3&4( 3 &
&
)./ &
&( $ & 3 $%$ , ).$ "6
% .,$
3 $
&$ : , $
).$
.$
%$.*- $$( ( .$ !&,
& 4 * )$
( &% $
1$ & $(
'$..
& $
. *$ ' 3
& . 1$.* & . 0,$!*
$
3. *
& $
$
%$ 3. *
$ . &
1 &'
& . 0,$!* ,$ & 3&.. ( $ &! & .
,3 , $
' .. $$
($3 . $ 4$
33&
2 & $ 3&
&
6
($3 .
. $
83G E4;273 @4;2?0 2 : 0 512 35273859438=
A9=;93: 4;2 $
%0 @=8??9<G 512 ?49= 5G62
8? 627 0 %/
% 93 546 E F8?2; 43H
•
•
•
5 9? 8;B9?8F=2 54 A?2 512 8B278:2 674627592? 93 512
546 E 785127 5183 IA?5 85 512 <4A3;93: =2B2=
8F=2 ;2<932? ;9<<27235 5G62? 4< ?49=? ;9<<27235=G
<74E 512
B27?943 4E2 4< 512 ?49= :74A6
?GEF4=? A?2; 93
2;95943 4< 512 @4;2 C272 345
@43?9?5235 C951 512 ?583;87; ?49= @=8??9<9@85943
?G?52E
, $ 4 * )$ $!$ $
%
49= ?1287 C8B2 B2=4@95G0 47
583;87; 62325785943 72?9?583@20 47
49= A3 ;78932; ?1287 ?5723:51
-
&
!
!"# $%
!
!&
$$4
2 . 0,$! 3 & (& $
. &!
$
$ 4$ & !& $% ., & &! . 0,$! 3 &
(& $
. 2 %$
$"
%
-1
&
!
!"# $%
&
!
<
&7
"
7
<
*
<
,
7
"
!
H2
"
I:
!
'
!
"" "
"#
"
=
7.
$ &;
#
6 $..
2 $ 2 %$.
2 %$.
4", $ '
& ' &, 3. *
) $3. *$*
(&& .*
2 $ &
3. * 4 " , $
+- +5 % 2
)&%$ :>- ' $ $
$
($ $
& % .,$
/:
I:
.$ (
2
&,2
), $
2 & & . *($
.$
& 3&%$ $ ,
# ! !&,
%
$
&. $ #
)$ 4 - &
!&,
&
%
$.. !&,
!&& 2 ' &,
, $ !& 3$
2($
)
.. & .
6
& $
'
P
>
:
:
?>
?>
?> 66
66
?
? 66
?>
?>
?> 66
?>
?
? 66
?>
?
66
?>
?
? 66
2
$
(
&
$ ..&' ).$ )$
7.
2:
$4
!&&
'
))
6 .. & . '
)$ '$$
>
:>(&& .* 2 $
&
2 %$..*
' . .$ & &
! $
'
T
?
&.
&
&4) $
&. $ #
'
$ )$ 4
%
*
7.
,$
.. )$ $ $ 4 $
33&
3$ '
<@>: &
888
!
* 3$ $
)$
2 ($ ,$
. $ * )$$ ($ 4 $ !& !& 3$ & $
$ 4 3 !& 3$ - $ & .
3$ $
..&' ).$ )$
2 ( $ , $ ' $ $ 4 3 !& 3$
. & 3., $
.. & $"3$$
$ .4
($3 ! $
)&%$
:
$
).$ 4 4,4 ! $. % .,$ &! 6 ! & . &! 4 ..$
$ $ % .,$ & $$( ( .$ !&,
& 2& 2 & & 2$
$( )$.&'
&,
4$ $
6D .,$
- D
U
V
?
>
U
V
?
>
, 3& $3 $
$ % .,$ &!
$$4 $
33&
3$ '
?
$ ( .$
<
@98
$ 4$ - 3&4( 3
&,. )$ , $
$ 4 3 B& $
$%$.
D
!& 4(&
,3 , $ & .*
@
6% .,$
% .,$
$
<@>: &
&,. )$ $ 2 $ !& . $ . .&
$ !&,
888
$2.$3
2 .$%$.
2. $ . $
: 4 * . & )$ $!$ $
%
-#
2 4 * )$
&( $
& 3 $%$
#$4 1
& % .,$ &!
$(
)$ '$$ ?4
>4- . $
$ (&. &
$3&44$ $
$
..&' ).$ )$
3$ &! & . . *$
2 ($
,$
. ).$ & . 0,$!*
.. )$
!
!"# $%
!
&. $ #
P >
!&&
$ &.
$ 3.
2'
&,
!$
$ )$ 4 - & , $ !& 3$
( !&,
!!
•
$.. 2
$%$
$ 2 %$.
$ C
•
$.. 2
$
•
&& .* 2
•
!! &
•
; &!
@98
3. *
% 2
& '
&
&& .* 2
'
&, ! $
- ..
)&%$ <- ' $ $
&. '
.$
6
% 2
'
2 ? U4
C
)&%$ :>C
$
$
?K (
$ $
2 %$.
'
&
. .$ &
$
% .,$
&! $
% 2
:>C
!! ! $62
$ & . - . 1$
% 2 )$ '$$ >
'
$ 4$
P >
•
.
&!
•
.
&! 5 2 3&4( $
•
. * &!
$ 3&4( $
•
. * &! 5 2 3&4( $
•
.
•
. '
. * &!
•
. '
. * &! 5 2 3&4( $
$ 4$
. * &!
&. &
)&
& 3. *$*
&. & $
: !&
$
4", $ '
$
!! & 4$ ,4
&4( $ ) . *
.. &!
& '$.. 2
%$. J
&& .* 2 $
)$ '$$ >
•
$$
&!
"
*($ ; #&31
& 5
&.
*($
&.
.. & )$ ($ 4 $
!&..&' ;
!
*($ ;
&.
&
&
). *
). *
$ 4$
&! &' 3&4( $
<
&, (&
).$ & .
). *
$
C
5C
$ 3&4( $
). *
$ 4$
$%
.
). *
C
5C
$ & 5 2 3&4( $
$ 3&4( $
). *
% .,$
%
-/
). *
56 5
). *
6
C
6 5&
6 5C
&
. * &! &'
&
!
!"# $%
!
+(
*
"
( -5 !00
8 0 *9/
"
* -
12 527E K 2?643?2 62@57AEL C8? 93574;A@2; 93
@=8A?2
! 29?E9@ ;2?9:3 <47@2 ?62@9<92; 93
527E? 4< 72?643?2 ?62@57AE 9? D34C3 8?
%
$ ("
43?9;27 512 8@@2=2785943 72?643?2 ?62@57AE 93
#9:A72 ! 3 512 72:943 C95193 512 @97@=20 8 ?=9:15
@183:2 93 385A78= 62794; =28;? 54 8 =87:2 B87985943
93 E8J9EAE 8@@2=2785943
85A78= 62794;? 4<
@9B9= 23:9322793: ?57A@5A72? @83345 F2 @8=@A=852;
672@9?2=G
=?40 512 628D? 83; B8==2G? 93 512
72?643?2 ?62@57AE E8G 345 4@@A7 85 512 ?8E2
B8=A2? 4< 385A78= 62794;? <47 8345127 28751MA8D2
:74A3; E45943 2B23 A3;27 ?9E9=87 ?952 @43;95943?
1A?0 512 ;2?9:3 ?62@9<9@85943? A?2; ?14A=; 345 F2
B27G ?23?959B2 54 8 ?E8== @183:2 93 385A78= 62794;
23@20 ;2?9:3 ?62@578 872 672?2352; 8? ?E4451
@A7B2? C9514A5 =4@8= 628D? 47 B8==2G? 4F?27B2; 93
@4E6A52; 72?643?2 ?62@578 <74E 93;9B9;A8=
:74A3; E45943?
-59*
!00
* -
8
8 0 *9/
2?9:3 ?62@57AE 9? 8 ;2?9:3 ?62@9<9@85943 5 EA?5
58D2 9354 @43?9;2785943 83G 9??A2? 5185 18B2
F28793: 43 ?29?E9@ ?8<25G 2?9:3 ?62@57AE EA?5
F2 8@@4E68392; FGH
•
&
$
" +,
/
"( + (
9<<27235 @149@2 4< =48; <8@547?
C9== :9B2 ;9<<27235 ?29?E9@ ?8<25G 54 512
?57A@5A72
•
" %
+ (
% )87985943 93
512 B8=A2 4< ;8E693: C9== 8<<2@5 512 ;2?9:3
<47@2
•
/
$ ,$(,
( ,
2623;93: 43 512 E4;2=93: 8??AE65943?0 432
@83 :25 ;9<<27235 B8=A2? 4< 385A78= 62794;0 83;
123@20 ;9<<27235 ?29?E9@ <47@2
•
%
--
#
, %
($ , #
2?9:3 <47@2?
&
!
!"# $%
!
@83 F2 =4C272; 9< 512 ?57A@5A72 18? 19:127
;A@59=95G
+(
&
$ (, (& $ &!
!& 3$ $ 3&, *
$ 4 3 /& $
&'
$$4
2
3.
!$
2, $
$ 43
& !&,
29?E9@ >432 E86 93 512 <97?5 2;95943 4< 512
@4;2 $
% C8? ;2B2=462; F8?2; 43 512
269@23578= ;9?579FA5943 4< 68?5 28751MA8D2? 83; 512
9?4?29?E8=? 4< ?A@1 2B235? 12 23B2=4693: =932?
E87D93: 8728? 5185 18B2 ?A?58932; ?18D93: 4<
;9<<27235 93523?95G C272 5123 6=4552; 54 4F5893 8
E86 5185 ;2E87@852; 8728? C19@1 18B2 64523598=
4< :74A3; ?18D93: 4< 93523?95G 4<H ) $47 =2??%0 ) 0
) 0 ) 0 (0 83; ( $83; 8F4B2% 12?2 ?29?E9@
>432? C272 ;23452; 8? 0 0 0 0 )0 ) 83; ) 0
72?62@59B2=G 12 E86 C8? =8527 72B9?2; 93
83; 93 ! 2;95943? 4< 512 @4;2 @43?9;2793: 512
:24=4:9@8= 83; :2461G?9@8= ;858 4F58932; <74E
52@5439@ E86 83; 512 8274 E8:3259@ 83; :78B95G
?A7B2G?
12
B27?943 4< 512 @4;2 8=?4
674B9;2; ?2B23 ?29?E9@ >432?
12
4G38
28751MA8D2 4<
! 4@@A772; C95193 ?29?E9@ >432
83; 579::272; E8I47 72B9?943 4< 512 E86 93 512
! 2;95943 5 C8? ;2@9;2; 54 72;A@2 512 3AEF27
4< >432? <74E ?2B23 54 <9B2 FG E27:93: >432?
9354 >432 0 83; >432 ) C951 >432 ) 1A?0 512
<9B2 ?29?E9@ >432? 4< 512
!
2;95943
@4772?643;2; 54 8728? =98F=2 54 ?18D93: 93523?95G
4< ) $47 =2??%0 ) 0 ) 0 ) 0 83; ( $83; 8F4B2%0
72?62@59B2=G
12 85A7 28751MA8D2 4<
4@@A772; 93 ?29?E9@
>432
72B9?943 4< 512 ?29?E9@ >432 E86 C8?
A3;2758D23 83; 93
2;95943 4< @4;2 512
?29?E9@ >432 C8? ;74662; FG E27:93: 95 C951
>432 N 83;0 ?4E2 6875? 4< 512 62393?A=87 3;98
C272 F74A:15 9354 >432
12 64?5 28751MA8D2
72@43?57A@5943 93
85A7 C8? A3;2758D23
@4772?643;93: 54 >432 ) 674B9?943? 4< 3;983
@4;2?H 512 8728 9? @=8??9<92; 93 >432
8? 627
@A77235 >432 E86
+(
$ 2
& /& . $ 4 3 3&$!! 3 $
!&
,3 , $
.. )$ $ $ 4 $ )*
!&..&' 2 $"( $ & ;
2
$
(
/
=
%
$
)
9-
&% $
!&
* ,3 , $ '
$ % .,$ &! , ' .. & )$ 1$ .$
≤>
0 *6 7
,
?I
%
"432 <8@547 $ % 8@@4A35? <47 512 2J62@52;
93523?95G 4< ?18D93: 93 ;9<<27235 ?29?E9@ >432?
$ 8F=2 0
& H
% <<475? 18B2 F223 E8;2
54 ?62@9<G
B8=A2? 5185 72672?235 8 728?438F=2
2?59E852 4<
93 512 72?62@59B2 >432 #47
93?583@20 B8=A2 4<
93 >432 ) 9E6=92? 5185 8
B8=A2 4<
% 9? 728?438F=G 2J62@52; 93 >432 )
A5 95 ;42? 345 9E6=G 5185 8@@2=2785943 93 >432 )
C9== 345 2J@22;
% #47 2J8E6=20 ;A793:
-2
&
!
!"# $%
!
'
$%$ )$
$ % .,$ &! ?$
$$
S B& $ ! 3 & 2 %$
).$ !&
$
" 4,4
&
$$
0, 1$
$ % 3$ . !$ &!
,3 , $
/& $
$ ! 3&
$ $ &4
& &!
B
, $ &
& $ ,3$ $
" 4,4
&
$$
0, 1$
/& $
! 3& &
$ ! 3 & !&
$ 2 +
0, 1$ +
S 4(&
3$ ! 3 & - $($
2 ,(&
$ !, 3 & . , $ &!
$
,3 , $ 3
3 $ /$
)*
/ &,
3& $0,$ 3$
&!
! ., $- (& 6
$
0, 1$ !, 3 & . $$ & 3 .
% .,$- & $3& &4 3 4(&
3$
).$ <
$ S #$ (& $
$ ,3 &
$($
2 &
$ ($ 3$ %$
4 2$ ($ !& 4 3$ &!
$
3
3 $ /$
)*
,3 .$ &
5&'$%$ $
$!& 4 &
.. & )$ 2 $ $
>
$ % .,$ &! # !& ), . 2
$
).$
! 3&$ 43
,3 , $) .$
& I#
).$
2 %$
? S %$ 2$ #$ (& $ 33$.$ &
3&$!! 3 $
& &31 & & .
2 %$ )*
2, $ :
).$ : ) $
&
(( &( $
, . ($ &
4( 2
&! $
,3 , $
$ $ 3, %$ $( $ $
! $$ ! $. 2 &, 4& &
& &31*- &
+ ? C
= ?>
>>I
?>
+ ?
= ?>
>>I
> ?
& 4$ ,4
+ ? C
= ?>
:<I
&.
$
> >> ≤ ≤ > >
> > ≤ ≤ > @>
> @> ≤
> >> ≤
> >> ≤
> >≤
> @> ≤
≤ @ >>
≤> >
≤> >
!& !,
!&
4$
. 4& $
2 $ 4& $
≤ > @>
≤ @ >>
$
> >> ≤
≤> >
> >≤
≤ > ??
> ?? ≤
≤ @ >>
/8 *
0
628D :74A3; 8@@2=2785943 4<
% C8? 93<2772; <74E ;858
57A@5A78= 2?643?2 2@47;27
DE? 8C8G <74E 512 269@23527
0 *6 7
29?E9@ ;2?9:3 619=4?461G 8??AE2? 5185 8
?57A@5A72 E8G A3;27:4 ?4E2 ;8E8:2 ;A793:
?2B272 ?18D93: 4C2B270 @7959@8= 83; 9E6475835
<8@9=9592? EA?5 72?643; F25527 93 83 28751MA8D2
5183 83 47;9387G ?57A@5A72 E647583@2 <8@547 9?
E2835 54 8@@4A35 <47 519? FG 93@728?93: 512 ;2?9:3
<47@2 =2B2= <47 @7959@8= 83; 9E6475835 ?57A@5A72?
8
,90 -
0 *6 7
12 ?57A@5A72 9? 8==4C2; 54 F2 ;8E8:2; 93 @8?2 4<
?2B272 ?18D93: 23@20 ?57A@5A72 9? ;2?9:32; <47
?29?E9@ <47@2 EA@1 =2?? 5183 C185 9? 2J62@52;
A3;27 ?5743: ?18D93: 9< 512 ?57A@5A72 C272 54
72E893 =93287=G 2=8?59@
& 2;95943 4< 512 @4;2
IA?5 674B9;2; 512 72MA972; ;2?9:3 <47@2 5 :8B2 34
;972@5 93;9@85943 5185 512 728= <47@2 E8G F2 EA@1
=87:27 4C0 512 @4;2 674B9;2? <47 728=9?59@ <47@2
<47 2=8?59@ ?57A@5A72 83; 5123 ;9B9;2? 5185 <47@2 FG
$ -% 19? :9B2? 512 ;2?9:327 8 728=9?59@ 69@5A72 4<
512 ;2?9:3 619=4?461G
FA9=;93: 9? 2J62@52; 54
A3;27:4 ;8E8:2 93 @8?2 4< ?5743: ?18D93: 83;
51272<472 ?14A=; F2 ;2589=2; <47 ;A@59=95G
43?9;27 8 FA9=;93: 93 >432 ) 83; ;2?9:32; 8? 627
512 @4;2 P
% :9B2? 8 728=9?59@ 93;9@85943 4<
:74A3; 8@@2=2785943 #47 P ?2@0
2%P
$#9:A72 0
& H
%0 C19@1 9E6=92? 5185 9<
512 FA9=;93: 72E893? 2=8?59@0 95 E8G 2J627923@2 8
E8J9EAE 1479>4358= <47@2 2MA8= 54 Q 4< 95?
C29:15 $
W P
% < C2 A?2 - <8@547 4<
83; 9E647583@2 <8@547 4< 0 5123 8? 627
@=8A?2
512 FA9=;93: 9? 54 F2 ;2?9:32; <47
59E2? 95? C29:15 1A?0 512 ;2?9:327 D34C?
5185 12 9? ;2?9:393: <47 43=G 432 52351 4< 512
E8J9EAE 2=8?59@ <47@20 83; 123@20 ?14A=;
674B9;2 8;2MA852 ;A@59=95G 83; MA8=95G @43574= <47
:44; 64?5 G92=; F218B94A7
B27 ?5723:510 72;A3;83@G 83; ;A@59=95G 54:25127
@43579FA52 54 512 <8@5 5185 83 28751MA8D2 72?9?5835
?57A@5A72 @83 F2 ;2?9:32; <47 EA@1 =4C27 <47@2
5183 9? 9E6=92; FG 512 ?5743: ?18D93:
$#9:A72 &%
>@>
!! & .
1AI 28751MA8D20
86674J9E852=G
4F58932; <74E 512
=4@852; 85 3I870
8%
B27 ?5723:51
12 <8@547? 5185 8@@4A35 <47
512 G92=;93: 4< 8 ?57A@5A72 85 =48;? 19:127
5183 512 ;2?9:3 =48; 872H
•
•
%
-3
87598= 8<25G #8@547?
87598= ?8<25G <8@547 43 ?29?E9@ =48;?
87598= ?8<25G <8@547 43 :78B95G =48;?
&
DRAFT
IITK-GSDMA-EQ05-V4.0
Code & Commentary IS:1893 (Part 1)
Page 58
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
CODE
COMMENTARY
Δ
Total Horizontal Force (F)
Total
horizontal
load
Significant yield
Figure C 8- Concept of Response Reduction Factor
Response Acceleration Coefficient
For very stiff structures (i.e., natural period for
first mode < 0.1sec), ductility is not helpful in
reducing the design force. Further, structures
falling on the rising arm of the spectra (i.e., those
with T<0.1s) will crack once they suffer violent
shaking, and their fundamental period will
increase leading to higher response. If structures
are designed for the rising arm coefficient, they
will sustain more lateral force once they crack,
than the design force. Hence, codes tend to
disallow the use of the rising part of the
acceleration spectrum for very short period
structures. The second paragraph of clause 6.4.2
in 2002 edition of the code attempted to ensure a
minimum design force for stiff structures.
However, there are difficulties with this restriction
and hence, to address this issue, the graphs and the
equations giving the values for response
acceleration coefficient (Sa/g) have been modified
in this revision of the code such that the rising part
of Sa/g plot between zero and 0.1 sec cannot be
used for the fundamental modes of vibration.
Soil Effect
Recorded earthquake motions show that response
spectrum shape varies with the soil profile at the
site (Figure C 9).
This variation in ground motion characteristics for
different sites is accounted for by providing
different shapes of response spectrum for each of
IITK-GSDMA-EQ05-V4.0
Page 59
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
CODE
COMMENTARY
the sites (Figure 9). The soil types I, II and III
have been defined in Table 1 of the code.
Figure C 9 – Recorded earthquake motions for
different types of soil sites (From Geotechnical
Earthquake Engineering by Kramer, 1996)
Damping Factors
The response spectrum value at zero period is
equal to peak ground acceleration (see
commentary of clause C3.11) regardless of
damping. The design acceleration spectrum given
in Figure 3 is for damping value of 5 percent of
critical damping. Ordinates for other values of
damping can be obtained by multiplying the value
for 5 percent damping with the factors given in
Table 3. Note that the acceleration spectrum
ordinate at zero period equals peak ground
acceleration regardless of the damping value.
Hence, the multiplication should be done for T ≥
0.1sec only. For T = 0, multiplication factor will
be 1, and values for 0≤T<0.1sec should be
interpolated accordingly.
6.4.3 –
Where a number of modes are to be
considered for dynamic analysis, the value of
Ah as defined in 6.4.2 for each mode shall be
determined using the natural period of
vibration of that mode.
6.4.4 –
C6.4.4 –
For underground structures and foundations
at depths of 30 m or below, the design
horizontal acceleration spectrum value shall
be taken as half the value obtained from
6.4.2. For structures and foundations placed
between the ground level and 30 m depth,
the design horizontal acceleration spectrum
When seismic waves hit the ground surface, these
are reflected back into the ground. The reflection
mechanics is such that the amplitude of vibration
at the free surface is much higher (almost double)
than that under the ground. This clause allows the
design spectrum to be one half in case the
structure is at a depth of 30m or below. Linear
IITK-GSDMA-EQ05-V4.0
Page 60
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
CODE
COMMENTARY
value shall be linearly interpolated between
Ah and 0.5 Ah, where Ah is as specified in
6.4.2.
interpolation is resorted to for structures with
depths less than 30m. The words ‘underground
structures and foundations’ have been mentioned
in this clause because this clause is also
applicable for calculation of seismic inertia force
on foundation under the ground.
One should bear in mind that in the case of a
bridge or any above-ground structure with
foundation going deeper than 30m, this clause can
be used only to reduce the seismic inertia force
due to mass of foundation under the ground and
not for the calculation of inertia force of the
superstructure.
C6.4.5 –
The design acceleration spectrum for vertical
motions, when required, may be taken as
two-thirds
of
the
design
horizontal
acceleration spectrum specified in 6.4.2.
Usually the vertical motion is weaker than the
horizontal motion. On an average, peak vertical
acceleration is one-half to two-thirds of the peak
horizontal acceleration. While the 1984 edition of
the code specified vertical coefficient as one-half
of horizontal, in the 2002 edition peak vertical
acceleration has been specified as two-thirds of
the peak horizontal acceleration.
6.4.6 –
C6.4.6 –
Figure 2 3 shows the proposed 5 percent
spectra for rocky and different soils sites and
Table 3 gives the multiplying factors for
obtaining spectral values for various other
damping.
Irrespective of the level of damping, a very stiff
structure (whose T is close to zero) will not
undergo any deformation relative to it base when
shaken at its base. Thus, all spectra with different
values of damping will start only from the PGA
value. This is explained through Figure C 10 for
the example case of Type II stiff soil site and 10%
damping.
Response Acceleration Coefficient (Sa/g)
6.4.5 –
3.0
2.5
2.0
1.5
5% damping
1.0
0.5
10% damping
0.0
0
1
2
3
4
Natural Period (s)
Figure C 10 – Scaling for acceleration
spectrum for damping other than 5 %
IITK-GSDMA-EQ05-V4.0
Page 61
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
CODE
Spectral
COMMENTARY
Figure 23 - Response spectra acceleration coefficient for 5 percent damping
IITK-GSDMA-EQ05-V4.0
Page 62
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
CODE
COMMENTARY
Table 3 - Multiplying factors for obtaining
(Sa/g) values for other damping1)
(Clause 6.4.2)
Damping (%)
0
2
5
7
10
15
20
25
30
Factors
3.20
1.40
1.00
0.90
0.80
0.70
0.60
0.55
0.50
1)
The multiplying factor for different damping
values is not to be applied to the point at zero
period.
6.4.7 –
C6.4.7 –
In case design acceleration spectrum is
developed specific to a project site, the same
may be used for design of the project as per
the discretion of the project authorities.
Seismic design codes are generally meant for
ordinary structures. For important projects, such
as nuclear power plants, dams, and major bridges,
site-specific seismic design criteria are used in
design. Development of site specific design
criteria takes into account geology, seismicity,
geotechnical conditions and nature of the project.
Site-specific criteria are developed by experts and
usually reviewed by independent peers.
Following are some of the useful references on
site-specific design criteria.
1) Reiter L., Earthquake Hazard Analysis:
Issues and Insights; Columbia University
Press, New York.
2) Kramer S.L., Geotechnical Earthquake
Engineering; Indian Reprint, Pearson
Education, New Delhi, 2003.
3) Housner, G.W. and Jennings P.C.,
Earthquake Design Criteria; Earthquake
Engineering Research Institute, 1982.
4) AERB (1 990), Seismic Studies and Design
Basis Ground Motion for Nuclear Power
Plant Sites, AERB Safety Guide No.
AERB/SG/S-11, Atomic Energy Regulatory
Board, India.
IITK-GSDMA-EQ05-V4.0
Page 63
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
CODE
COMMENTARY
7. – Buildings
C7. – Buildings
7.1 – Regular and Irregular
Configuration
To perform well in an earthquake, a building
should possess four main attributes, namely
simple and regular configuration, and
adequate lateral strength, stiffness and
ductility. Buildings having simple regular
geometry and uniformly distributed mass and
stiffness in plan and in elevation, suffer much
less damage than buildings with irregular
configurations. A building shall be considered
as irregular for this standard, if at least one of
the conditions given in Tables 4 and 5 is
applicable.
Table 4 – Definition of Irregular Buildings
– Plan irregularity (Fig 34)
(Clause 7.1)
i) (a)Torsion Irregularity
To be considered when floor diaphragms
are rigid in their own plan plane in relation to
the vertical structural elements that resist
the lateral forces. Torsional irregularity to be
considered to exist when the maximum
storey drift, computed with design
eccentricity, at one end of the structures
transverse to an axis is more than 1.2 times
the average of storey drifts at the two ends
of the structure.
Geometrically a building may appear to be
regular and symmetrical, but may have
irregularity due to uneven distribution of mass
and stiffness.
NEHRP code also has another definition for
torsionally irregular buildings: “Buildings having
an eccentricity between the static center of mass
and the static center of resistance in excess of 10
percent of the building dimension perpendicular
to the direction of the seismic force should be
classified as irregular”.
(b) Extreme torsional Irregularity *
To be considered when floor diaphragms are
rigid in their own plan in relation to the vertical
structural elements that resist the lateral forces.
Torsional irregularity to be considered to exist
when the maximum storey drift, computed with
design eccentricity, at one end of the structures
transverse to an axis is more than 1.4 times the
average of storey drifts at the two ends of the
structure
ii) Re-entrant Corners
Plan configurations of a structure and its
lateral force resisting system contain re-
IITK-GSDMA-EQ05-V4.0
Buildings with large re-entrant corners, (i.e.,
plan shapes such as L, V, +, Y, etc.) show poor
performance during earthquakes. Each wing of
such a building tends to vibrate as per its own
Page 64
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
CODE
COMMENTARY
entrant corners, where both projections of
the structure beyond the re-entrant corner
are greater than 15 percent of its plan
dimension in the given direction.
dynamic characteristic, causing a stress
concentration at the junctions of the wings.
iii) Diaphragm discontinuity
Diaphragm discontinuity changes the lateral load
distribution to different elements as compared to
what it would be with rigid floor diaphragm.
Diaphragms with abrupt discontinuities or
variations in stiffness, including those having
cut-out or open areas greater than 50
percent of the gross enclosed diaphragm
area, or changes in effective diaphragm
stiffness of more than 50 percent from one
storey to the next
iv) Out-of-Plane Offsets
Discontinuities in a lateral force resistance
path, such as out-of-plane offsets of vertical
elements
v) Non-Parallel System
The vertical elements resisting the lateral
force are not parallel to or symmetric about
the major orthogonal axes or the lateral
force resisting elements.
Out-of-Pane offset is a serious irregularity
having an out-of-plane offset of the vertical
element (for example, shear wall) that carries the
lateral loads. Such an offset imposes excessive
vertical and lateral load effects on horizontal
elements.
These systems are also known as non-orthogonal
systems. See commentary of clause 6.3.2.
* Extreme torsion irregularity (Type i (b)) is not
permitted in zones IV and V.
IITK-GSDMA-EQ05-V4.0
Page 65
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
CODE
COMMENTARY
Heavy
Mass
Vertical Components of Seismic Resisting Systems
Δ2
Δ1
Δ1
Δ2> 1.2[(Δ1+Δ2)/2]
Δ2
3A 4A Torsional Irregularity
IITK-GSDMA-EQ05-V4.0
Page 66
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
CODE
COMMENTARY
3B 4B Re-entrant Corners
IITK-GSDMA-EQ05-V4.0
Page 67
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
CODE
RIGID
COMMENTARY
FLEXIBL
O
DIAPHRAGM
P
E
N
DIAPHRAGM
Vertical Components of Seismic Resisting System
3C4C Diaphragm Discontinuity
IITK-GSDMA-EQ05-V4.0
Page 68
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
CODE
COMMENTARY
Shear
Wall
Out-of-Plane
Offset in
Shear Wall
3D 4D Out-of-Plane Offsets
3E 4E Non-Parallel System
Figure 43 – Plan irregularity
IITK-GSDMA-EQ05-V4.0
Page 69
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
CODE
COMMENTARY
Table 5 – Definition of irregular buildings
– Vertical irregularities (Fig . 4)
(Clause 7.1)
i) (a) Stiffness Irregularity (Soft Storey)#
A soft storey is one in which the lateral
stiffness is less than 70 60 percent of that in
the storey above or less than 80%70% of
the average lateral stiffness of the three
storeys above.
Soft storey buildings are known for their poor
performance during earthquakes. Typical
examples for such irregularity are the buildings
on stilts. In 2001 Bhuj earthquake, a majority of
the multi-storey buildings that collapsed had soft
ground storey.
i) (b) Stiffness Irregularity (Extreme Soft
Storey)
A extreme soft storey is one in which the
lateral stiffness is less than 60 percent of
that in the storey above or less than 70
percent of the average stiffness of the three
storeys above. For example, buildings on
STILTS will fall under this category.
ii) Mass Irregularity#
Mass irregularity shall be considered to exist
where the seismic weight of any storey floor
is more than 200 percent of that of its
adjacent storeysfloors. The irregularity need
not be considered This provision of 200
percent may be relaxed somewhat in case
of roofs.
Mass irregularity is induced by the presence of a
heavy mass on a floor, for example, as in an
intermediate service floor with water tanks and
heavy equipment for air conditioning and/or
back-up power generation.
The relaxation in case of roofs is warranted
because the seismic weight of roof is usually
much smaller than that of the typical floors.
While checking the mass irregularity of such a
building, the floor below the roof is likely to
render the building irregular, This relaxation is
not applicable particularly when large masses are
added on the roof, for instance by the addition of
a swimming pool.
NEHRP code is more conservative on this issue.
It considers a building to be irregular even if a
storey is 150 percent heavier than adjacent
storeys.
iii) Vertical Geometric Irregularity
Vertical geometric irregularity shall be
considered to exist where the horizontal
dimension of the lateral force resisting
system in any storey is more than 150
percent of that in its adjacent storey
Buildings with vertical offsets (e.g., set back
buildings) fall in this category. There is also a
possibility that a building may have no apparent
offset, but its lateral load carrying elements may
have irregularity. For instance, shear wall length
may suddenly reduce. When building is such that
a larger dimension is above the smaller
dimension, it acts as an inverted pyramid and is
particularly undesirable.
NEHRP code recommends a building to be
irregular from vertical geometry considerations
if the horizontal dimension of the lateral force
resisting system in any storey is more than 130
IITK-GSDMA-EQ05-V4.0
Page 70
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
CODE
COMMENTARY
percent of that in its adjacent storey.
iv) In-Plane Discontinuity in
Elements Resisting Lateral Force
Vertical
A An in-plane offset of the lateral force
resisting elements greater than the length of
those elements
v) Discontinuity in Capacity (Weak Storey)+
A weak storey is one in which the storey
lateral strength is less than 80 70 percent of
that in the storey above. The storey lateral
strength is the total strength of all seismic
force resisting elements sharing the storey
shear in the considered direction.
#
Vertical irregularity of Type (i) and Type (ii) do not
apply if the inter-storey drift ratio under design seismic
loads is within 130% of the storey drift ratio of the
adjacent storey. For this calculation of storey drift,
torsional effects need not be considered.
If a floor of a building is comparatively heavier
than the adjacent floors, the effect of this
irregularity can be nullified by making that
storey stiffer in comparison to adjacent storeys.
Therefore, if the mass-to-stiffness ratio of two
adjacent storeys is similar, the storey drift ratio
will be comparable and hence the footnote
allows a waiver on this basis.
+
Vertical irregularity of Type (V) is not permitted in
zones IV and V for more than 2 storey buildings.
IITK-GSDMA-EQ05-V4.0
Page 71
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
CODE
COMMENTARY
0.6 ki+1
+k
+k
⎛k
i +2
i +3
0.7⎜ i + 1
⎜
3
⎝
⎞
⎟
⎟
⎠
4A 5A Stiffness Irregularity
4B 5BMass Irregularity
IITK-GSDMA-EQ05-V4.0
Page 72
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
CODE
COMMENTARY
4C 5C Vertical Geometric Irregularity when L2 > 1.5 L1
4D 5DIn-Plane Discontinuity in Vertical Elements Resisting Lateral Force when b>a
IITK-GSDMA-EQ05-V4.0
Page 73
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
CODE
COMMENTARY
4 5E Weak Storey when Fi< 0.8 0.7 Fi+1 +1
Figure 4 5 – Vertical Irregularity
7.2 – Importance Factor I and
Response Reduction Factor R
C7.2 – Importance Factor I and
Response Reduction Factor R
7.2.1 –
The values of response reduction factor specified
in Table 7 have been arrived at empirically based
on engineering judgment. The concept of
response reduction factor has been discussed in
commentary of clause C 6.4.2.
The minimum value of importance factor, I,
for different building systems shall be as
given in Table 6. The response reduction
factor, R, for different building systems shall
be as given in Table 7.
7.2.2 – Redundancy
C7.2.2 – Redundancy
Building should have a high degree of
redundancy for lateral load resistance. More
redundancy in the structure leads to
increased level of energy dissipation and
more overstrength. The values of response
reduction factor (R) given in Table 7 for
buildings are based on the assumption that
the building has sufficient level of
redundancy. The design engineer may adopt
the value of R in the range of 0.75 to 0.90
times the values given in Table 7 for
buildings with low redundancy, e.g., lateral
load resistance provided by only two or three
shear walls in a given direction, lateral load
resisted by one-bay frames, etc.
Response reduction factors (R) were originally
developed assuming that structures possess
sufficient level of redundancy. High R values
were justified by the large number of potential
hinges that could form in such redundant systems,
and the beneficial effects of progressive yield
hinge formation. However, due to economic
pressures, much less redundant special moment
frames with relatively few bays of moment
resisting framing supporting large floor and roof
areas are being constructed. To provide aesthetics
to the buildings and to get more space, buildings
have many fewer walls than were once commonly
provided in such buildings. Similar observations
have been made of other types of construction as
IITK-GSDMA-EQ05-V4.0
Page 74
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
CODE
COMMENTARY
well.
This clause is incorporated in this edition, which
will reduce the R values for less redundant
structures and should provide greater economic
incentive for the structures with well distributed
lateral-force resisting systems.
Table 6 – Importance Factors, I
Sl.
No
Structure
I
i)
Important service and community 1.5
buildings, such as hospitals; schools;
monumental structures; emergency
buildings like telephone exchange,
television stations, radio stations,
railway
stations,
fire
station
buildings; large community halls like
cinemas, assembly halls and
subway
stations,;
and
power
stations.
ii)
All other buildings
1.0
There are several issues that should be considered
in quantifying redundancy. Conceptually, floor
area, element/story shear ratios, element
demand/capacity ratios, types of mechanisms
which may form, individual characteristics of
building systems and materials, building height,
number of stories, irregularity, number of lines of
resistance, and number of elements per line are all
important and will essentially influence the level
of redundancy in systems and their reliability.
NOTES:
1) The design engineer may choose values of
importance factor I greater than those
mentioned above.
2) Buildings not covered in SI No. (i) and (ii)
above may be designed for higher value of I,
depending
on
economy,
strategy
considerations like multi-storey buildings
having several residential units.
3) This does not apply to temporary structures
like excavations, scaffolding etc of short
duration.
4) Importance factor for industrial structures
including
those
containing
hazardous
materials shall be taken as per IS:1893 (Part
4).
Table 7 – Response Reduction Factor, R,
for Building Systems
Sl No
Lateral Load Resisting
System
‘R’
Building Frame Systems
i)
Ordinary RC moment
frame (OMRF)2)
resisting
3.0
ii)
Intermediate RC moment resisting
frame
4.0
ii) iii)
Special RC moment-resisting frame
(SMRF)3)
5.0
iii iv)
Steel frame with
a) Concentric braces
4.0
b) Eccentric braces
5.0
IITK-GSDMA-EQ05-V4.0
Page 75
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
CODE
iv) v)
COMMENTARY
Steel moment resisting
designed as per SP 6 (6)
frame
5.0
Buildings with Shear Walls4)
v) vi)
vivii)
Load
bearing
buildings5)
masonry
wall
a) Unreinforced masonry without
special seismic strengthening5)
1.5
b)
Reinforced
Unreinforced
masonry
strengthened
with
horizontal RC bands and vertical
bars at corners of rooms and jambs
of openings6)
2.5
2.25
c) Reinforced with horizontal RC
bands and vertical bars at corners
of rooms and jambs of openings
Ordinary reinforced masonry shear
wall7)
3.0
d) Special
shear wall8)
masonry
4.0
Ordinary reinforced concrete shear
6)
walls
3.0
reinforced
viiviii) Ductile shear walls7) 9)
4.0
810)
Buildings with Dual Systems
viii ix) Ordinary shear wall with OMRF
3.0
ix x)
Ordinary shear wall with SMRF
4.0
x xi)
Ductile shear wall with OMRF
4.5
xi xii)
Ductile shear wall with SMRF
5.0
1)
The values of response reduction factors are to be
used for buildings with lateral load resisting elements,
and not just for the lateral load resisting elements built
in isolation.
2)
OMRF are those designed and detailed as per IS
456 or IS 800 but not meeting ductile detailing
requirement as per IS 13920 or SP 6(6) respectively.
3)
SMRF and IMRF are defined in 4.15.2, and
4.15.3 respectively.
4)
Buildings with shear walls also include buildings
having shear walls and frames, but where:
a) Frames are not designed to carry lateral loads, or
b) Frames are designed to carry lateral loads but do
not fulfill the requirements of ‘Dual Systems’.
5)
Buildings designed unreinforced as per IS 1905.
5) 6)
Reinforcement should be as per IS 4326 or
designed as unreinforced with minimum reinforcement
as per IS 1905.
6)
Prohibited in zone IV and V.
7)
Designed as ordinary reinforced masonry with
minimum reinforcement as per IS 1905.
IITK-GSDMA-EQ05-V4.0
Page 76
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
CODE
COMMENTARY
8)
Designed as reinforced masonry with special
reinforcement for ductility as per IS 1905.
79)
Ductile shear walls are those designed and detailed
as per IS 13920.
810)
Buildings with dual systems consist of shear walls
(or braced frames) and moment resisting frames such
that:
a) the two systems are designed to resist the total
design force in proportion to their lateral stiffness
considering the interaction of the dual system at all
floor levels; and
b) the moment resisting frames are designed to
independently resist at least 25 percent of design
seismic base shear.
Note: Some of the above systems may not be
allowed in high seismic zones as per IS 4326 or IS
13920.
7.3 – Design Imposed Loads
for Earthquake Force
Calculation
C7.3 – Design Imposed Loads for
Earthquake Force Calculation
7.3.1 –
C7.3.1 -
For various loading classes as specified in IS
875 (Part 2), the earthquake force shall be
calculated for the full dead load plus the
percentage of imposed load as given in
Table 8.
This clause accounts for the fact that only a part
of imposed loads used in design may be present at
the time of earthquake shaking. Moreover, impact
contribution of live load does not generate
seismic load.
Table 8 – Percentage of Imposed Load to
be Considered in Seismic Weight
Calculation
(Clause 7.3.1)
Imposed Uniformity
Distributed Floor Loads
(kN/m2)
Percentage of
Imposed Load
Up to and including 3.0
25
Above 3.0
50
7.3.2 –
For calculation the design seismic forces of
the structure, the imposed load on roof need
not be considered.
7.3.3 –
The percentage of imposed loads given in
7.3.1 and 7.3.2 shall also be used for ‘Whole
frame loaded’ condition in the load
IITK-GSDMA-EQ05-V4.0
Earlier the code had permitted an engineer to use
“reduced imposed load” when considering both
live load and seismic load. For example, in
Page 77
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
CODE
COMMENTARY
combinations specified in 6.3.1.1 and 6.3.1.2
where the gravity loads are combined with
the earthquake loads [that is, in load
combinations (3) in 6.3.1.1, and (2) in
6.3.1.2]. No further reduction in the imposed
load will be used as envisaged in IS 875
(Part 2) for number of storeys above the one
under consideration or for large spans of
beams or floors.
buildings with imposed load of 3 kN/m2, the
combination 1.2(DL+IL+EL) effectively became
12.DL+0.3IL+1.2EL. This provision is now
dropped and the design will now be based on
1.2(DL+IL+EL). In other words, even though
seismic load is calculated on the basis of seismic
weight which includes only 25% of IL, one must
consider full design imposed load in different
load combinations. This of course, still permits
reduction in IL in view of the large floor area or
large number of storeys supported by columns or
foundations as permitted in IS:875 (Part II).
7.3.3 –
The proportions of imposed load indicated
above for calculating the lateral design forces
for earthquakes are applicable to average
conditions. Where the probable loads at the
time of earthquake are more accurately
assessed, the designer may alter the
proportions indicated or even replace the
entire imposed load proportions by the actual
assessed load. In such cases, where the
imposed load is not assessed as per 7.3.1
and 7.3.2 only that part of imposed load,
which possesses mass, shall be considered.
Lateral design force for earthquakes shall not
be calculated on contribution of impact
effects from imposed loads.
7.3.4 –
Other loads apart from those given above
(for
example
snow
and
permanent
equipment)
shall
be
considered
as
appropriate.
7.4– Seismic Weight
C7.4 – Seismic Weight
7.4.1 – Seismic Weight of Floors
It is the total dead weight of the structure plus that
part of the imposed loads that may reasonably be
expected to be attached to the structure at the time
of earthquake shaking. It includes the weight of
permanent and movable partitions, permanent
equipment, and a part of live load etc.
The seismic weight of each floor is its full
dead load plus appropriate amount of
imposed load, as specified in 7.3.1 and 7.3.2.
While computing the seismic weight of each
floor, the weight of columns and walls in any
equally
distributed
storey
shall
be
appropriately apportioned to the floors above
and below the storey.
7.4.2 – Seismic Weight of
Buildings
IITK-GSDMA-EQ05-V4.0
Page 78
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
CODE
COMMENTARY
The seismic weight of the whole building is
the sum of the seismic weights of all the
floors.
7.4.3 –
Any weight supported in between storeys
shall be distributed to the floors above and
below in inverse proportion to its distance
from the floors.
7.5 – Design Lateral Force
C7.5 – Design Lateral Force
7.5.1 –
It may be mentioned that the code no longer talks
of the two methods: seismic coefficient method
and response spectrum method as was the case in
1984 version.
Buildings and portions there of shall be
designed and constructed, to resist the
effects of design lateral force specified in
7.5.3 7.5.4 as a minimum. However,
regardless of the design earthquake or wind
forces on a building, it shall have lateral load
resisting system capable of carrying a
horizontal force not less than 1.5% (one and
a half percent) of the seismic weight of the
building. This load may be applied at different
floor levels in proportion to the seismic
weight of the respective floor.
The procedure of clause 7.5 to 7.7 does not
require dynamic analysis. Hence, this procedure
may be mentioned as static procedure or
equivalent static procedure or seismic coefficient
method. It can be noticed that this procedure
accounts for dynamics of the building in an
approximate manner.
7.5.2 –
C7.5.2 –
The design lateral force shall first be
computed for the building as a whole. This
design lateral force shall then be distributed
to the various floor levels. The overall design
seismic force thus obtained at each floor
level shall then be distributed to individual
lateral load resisting elements depending on
the floor diaphragm action.
There have been instances of the designer
calculating seismic design force for each 2D
frame separately based on tributary mass shared
by that frame. This is erroneous since only a
fraction of the building mass is considered in such
seismic load calculation (Figure C 11).
IITK-GSDMA-EQ05-V4.0
In this edition, a new provision of minimum
lateral force for seismic design is included. The
minimum load is a structural integrity issue
related to load path.
Page 79
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
CODE
COMMENTARY
Figure C 11 - Calculation of design seismic
force on the basis of tributary mass on 2D
frames leads to significant under-design
Now, clause 7.5.2 makes it clear that one has to
evaluate seismic design force for the entire
building first and then distribute it to different
frames/walls. But that does not mean that one has
to carry out 3D analysis. One could still work
with 2D frame systems.
7.5.3 –
C7.5.3 –
The value of damping for buildings may shall
be taken as 5 percent of the critical, for the
purposes of both seismic coefficient method
(as per 7.5.4) and dynamic and static
analysis (as per 7.8) for buildings of all
materials (of steel, reinforced concrete, and
or masonry) buildings.
The code specifies same value of damping (5% of
critical) for concrete, steel, or masonry buildings.
It may be argued that steel as a material exhibits
lower damping than masonry and therefore,
different damping should be specified for three
types of building materials. However, in the code,
the damping has direct bearing on design seismic
loads. Using a lower damping for steel buildings
than for RC buildings will imply a higher value of
seismic coefficient for steel buildings which
cannot be justified in view of the relative
performance of the RC and steel buildings in the
past earthquakes. Moreover, partitions and other
non-seismic members in steel building will still
contribute the same amount of energy dissipation
as in say RC building.
7.5.37.5.4 – Design Seismic Base
Shear
The total design lateral force or design
seismic base shear (VB) along any principal
direction of a building shall be determined by
the following expression:
VB = Ah W
where
Ah =
Design
horizontal
acceleration
spectrum value as per 6.4.2, using the
approximate fundamental natural period
Ta as per 7.6 in the considered direction
of vibration; and
W = Seismic weight of the building as per
7.4.2.
7.6 – Approximate
Fundamental Natural Period
IITK-GSDMA-EQ05-V4.0
C7.6 – Approximate
Fundamental Natural Period
Page 80
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
CODE
COMMENTARY
7.6.1 –
C7.6.1 –
The approximate fundamental natural period
of vibration (Ta), in seconds, of a momentresisting frame building without brick infil
panels may be estimated by the empirical
expression:
The two equations for frame buildings were taken
from NEHRP’s earlier provisions. These
equations are based on observed natural period
values on real buildings during the 1971 San
Fernando earthquake in California (See Figures
C 12, C 13 and C 14).
Ta = 0.075h 0.75 , for RC frame building
= 0.085h 0.75 , for steel frame building
where
h = Height of building, in m. This excludes
the basement storeys, where basement
walls are connected with the ground floor
deck or fitted between the building
columns. But, it includes the basement
storeys, when they are not so connected.
7.6.2 –
C7.6.2 –
The approximate fundamental natural period
of vibration (Ta), in seconds, of all other
buildings, including moment-resisting frame
buildings with brick infil panels masonry infill
panels, may be estimated by the empirical
expression:
As per experimental studies (ambient vibration
surveys) on Indian RC buildings with masonry
infills, T = 0.09h/(√d) was found to give a good
estimate. One may refer to the following:
Ta =
0.09
d
Ta =
0.09h
d
Where
h
= Height of building, in m, as defined in
7.6.1; and
d
= Base dimension of the building at the
plinth level, in m, along the considered
direction of the lateral force.
2) Arlekar, J. N., and Murty, C. V. R., “Ambient
Vibration Survey of RC Moment Resisting Frame
Buildings with URM Infill Walls”, The Indian
Concrete Journal, Volume 74, No. 10, October
2000, pp 581-586.
C7.6.3 –
7.6.3 –
For buildings with concrete or masonry shear
walls, the approximate fundamental period
shall be permitted to be evaluated by the
following expression,
Ta =
1) Jain, S. K., Saraf V. K., and Malhotra B.,
“Period of RC Frame Buildings with Brick
Infills”, Journal of Structural Engineering,
Madras, Volume 23, No. 4, pp 189-196.
0.075
Aw
h 0.75
Where Aw is the total effective area of the
walls in the first storey of the building, in m2,
which may be calculated as:
IITK-GSDMA-EQ05-V4.0
This expression, since it considers the cross
sectional area and length of the walls, may give a
better estimate of the fundamental natural period
of buildings with concrete or masonry shear
walls.
Lwi/h can become very large for squat type
buildings in which length or breadth of building is
large compared to its height. An upper limit of 0.9
on Lwi/h is specified to prevent larger values of
Aw.
Page 81
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
CODE
⎡ ⎛
⎛L
Aw = ∑ ⎢ Awi ⎜⎜ 0.2 + ⎜ wi
⎝ h
⎢⎣ ⎝
⎞⎞
⎟ ⎟⎟
⎠⎠
COMMENTARY
2
⎤
⎥
⎥⎦
Awi is the effective cross sectional area of the
wall i in the first storey of the building, in
m2; Lwi is the length of the shear wall i in
the first storey in the considered direction
of the lateral forces, in m. The value of
Lwi/h to be used in this equation shall not
exceed 0.9.
Figure C 12 - Observations on steel frame buildings during San
Fernando Earthquake (From FEMA 369, 2001)
Figure C 13 - Observations on RC frame buildings during
IITK-GSDMA-EQ05-V4.0
Page 82
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
CODE
COMMENTARY
San Fernando Earthquake (From FEMA 369, 2001)
Figure C 14 - Observations on RC shear wall buildings
during San Fernando Earthquake (From FEMA 369, 2001)
7.7 – Distribution of Design
Lateral Force
C7.7 – Distribution of Design
Lateral Force
7.7.1 – Vertical Distribution of
Base Shear to Different Floor
Levels
C7.7.1 – Vertical Distribution of Base
Shear to Different Floor Levels
The design base shear (VB) computed in
7.5.3 shall be distributed along the height of
the building as per the following expression:
Q i = VB
W i hi2
∑W
n
j =1
j
h 2j
where
Qi = Design lateral force at floor i,
Lateral load distribution with building height
depends on the natural periods, mode shapes of
the building, and shape of design spectrum. In
low and medium rise buildings, fundamental
period dominates the response and fundamental
mode shape is close to a straight line (with regular
distribution of mass and stiffness). For tall
buildings, contribution of higher modes can be
significant even though the first mode may still
contribute the maximum response. Hence,
NEHRP provides the following expression for
vertical distribution of seismic load:
Wi = Seismic weight of floor i,
hi
= Height of floor i measured from
IITK-GSDMA-EQ05-V4.0
Page 83
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
CODE
COMMENTARY
Qi = VB
base, and
n = Number of storeys in the building is
the number of levels ate which the
masses are located.
∑W h
Wi hik
n
j =1
j
k
j
Where,
k=1 for T≤0.5sec, and
k=2 for T≥2.5sec.
Value of k varies linearly for T in the range 0.5sec
to 2.5sec.
Over the years, regardless of the natural period, k
has been assigned a value 2 in IS 1893. This is a
conservative value and has been retained in the
current edition of the code too.
7.7.2 – Distribution of Horizontal
Design Lateral Force to Different
Lateral Force Resisting Elements
C7.7.2– Distribution of Horizontal
Design Lateral Force to Different
Lateral Force Resisting Elements
7.7.2.1 –
Floor diaphragm plays an important role in
seismic load distribution in a building. Consider
the RC slab. For horizontal loads, it acts as a deep
beam with depth equal to building width, and
width equal to slab thickness. Being a very deep
beam, it does not deform in its own plane, and it
forces the frames/walls to fulfill the deformation
compatibility
corresponding
to
in-plane
deformation of floor. This is known as rigid floor
diaphragm action.
In case of buildings whose floors are capable
of providing rigid horizontal diaphragm
action, the total shear in any horizontal plane
shall be distributed to the various vertical
elements of lateral force resisting system,
assuming the floors to be infinitely rigid in the
horizontal plane.
7.7.2.2 –
In case of building whose floor diaphragms
can not be treated as infinitely rigid in their
own plane, the lateral shear at each floor
shall be distributed to the vertical elements
resisting the lateral forces, considering the inplane flexibility of the diaphragms.
NOTES:
1. A floor diaphragm shall be considered to be
flexible,. If if it deforms such that the
maximum lateral displacement measured
from the chord of the deformed shape at any
point of the diaphragm is more than 1.5 times
the average displacement of the entire
diaphragm.
2. Reinforced concrete monolithic slab-beam
floors or those consisting of prefabricated /
Precast precast elements with topping
reinforced screed can be taken as rigid
diaphragms.
IITK-GSDMA-EQ05-V4.0
In symmetrical building and symmetrical loading,
the floorslabs undergo rigid body translation and
different frames or walls share the seismic forces
in proportion to their lateral stiffness.
When a building is not symmetrical, the floor
undergoes rigid body translation and rotation.
In-plane rigidity of floors is sometimes
misunderstood to mean that the beams are
infinitely rigid and that the columns are not free
to rotate at their ends. However, the rotation of
columns is governed by the out-of-plane
behaviour of slab and beam system (Figure C 15).
When floor diaphragms do not exist, or when the
diaphragm is extremely flexible as compared to
the vertical elements, the loads can be distributed
to the vertical elements in proportion to the
tributary mass.
There are instances where the floor is not rigid.
“Not rigid” does not mean it is completely
flexible. Hence, buildings with flexible floors
should be carefully analyzed considering in-plane
Page 84
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
CODE
COMMENTARY
floor flexibility. Note 1 of clause 7.7.2.2 gives the
criterion when the floor diaphragm is not to be
treated as rigid (Figure C 16). Alternatively, one
can take the design force as an envelop of (that is,
the higher of) the two extreme assumptions,
mainly,
a)
Rigid diaphragm action
b) No diaphragm action (Load distribution
in proportion to tributary mass)
Figure C 15 -- (a) In plane floor deformation,
(b) Out-of-plane floor deformation. (From Jain,
1995)
Plan View of Floor
In-plan flexibility of diaphragm to be
considered when Δ2 = 1.5 {0.5(Δ1 + Δ2)}
IITK-GSDMA-EQ05-V4.0
Page 85
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
CODE
COMMENTARY
Figure C 16 – Definition of Flexible Floor
Diaphragm (From Jain, 1995)
7.8 – Dynamic Analysis
Method
C7.8 – Dynamic Analysis Method
7.8.1 –
C7.8.1 –
Linear Dynamic dynamic analysis shall be
performed to obtain the design seismic force,
and its distribution to different levels along
the height of the building and to the various
lateral load resisting elements, for the
following buildings:
Expressions for design load calculation and load
distribution with height given in 7.5 are based on
the following assumptions:
a) Regular buildings - Those greater than
40 m in height in Zones IV and V, and
those greater than 90 m in height in
Zones II and III. Modeling as per 7.8.4.5
can be used.
b) Irregular buildings with plan irregularities
of Type (i)a, (ii), (iii), (iv) or (v) of Table 4
or vertical irregularities of Type (iv) or (v)
of Table 5 (as defined in 7.1) - All framed
buildings higher than 12 m in Zones IV
and V, and those greater than 40 m in
height in Zones II and III. It may be noted
that vertical irregularity of Type (v) is not
permitted in zones IV and V for more
than two storey buildings.
c) Irregular buildings with plan irregularity of
Type (i)b of Table 4 or vertical
irregularities of Type (i), (ii) or (iii) of
Table 5 – All buildings higher than 12 m
in all zones. It may be noted that
buildings with plan irregularity of Type
(i)b are not permitted in zones IV and V.
The analytical model for dynamic analysis of
buildings with unusual configuration should
be such that it adequately models the types
of irregularities present in the building
configuration.
Buildings
with
plan
irregularities, as defined in Table 4 (as per
7.1), cannot be modeled for dynamic analysis
by the method given in 7.8.4.5.
IITK-GSDMA-EQ05-V4.0
1.
Fundamental mode dominates the response.
2.
Mass and stiffness are evenly distributed with
building height, thus giving a regular mode
shape.
Mode shapes depend on the distribution of mass
and stiffness in the building. In tall buildings,
higher modes can be quite significant and in
irregular buildings mode shapes may be
somewhat irregular. Hence, for tall and irregular
buildings, dynamic analysis is generally
preferred. Industrial buildings may also require
dynamic analysis because they may have large
spans,
large
heights,
and
considerable
irregularities. However, dynamic analysis may
not necessarily be a solution to many irregular
buildings, and it requires a good judgement on the
part of engineer to decide if dynamic analysis is
warranted.
Buildings having high level of torsion irregularity
are prone to severe damage when subjected to
seismic forces. Therefore, in this revision of the
code such buildings are prohibited in zones of
high seismicity (zones IV and V) (see note at the
end of Table 4).
Dynamic analysis requires considerable skills.
The mere fact that the computer program can
perform dynamic analysis is not sufficient. The
engineers need to have an in-depth understanding
of the subject to be able to correctly model the
structure and correctly interpret the results. There
are approximate methods such as Rayleigh’s
method and Dunkerley’s method, that one may
use to check if the results obtained from computer
Page 86
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
CODE
COMMENTARY
NOTE - For irregular buildings, lesser than 40 m in
height in Zones II and III. Dynamic analysis, even
though not mandatory, is recommended Dynamic
analysis is recommended for irregular buildings of
lower height even though it may not be mandatory
for lower heights as per clause 7.8.1.
analyses are correct.
One must be careful about use of correct units
while performing dynamic analysis since it is
common that huge errors occur just because units
of mass and weight are mixed up. For details, the
following text books are recommended:
1. Chopra,A.K., Dynamics of Structures : A
Primer, Earthquake Engineering Research
Institute, Oakland, California, USA, 1980.
2. Chopra,A.K., Dynamics of Structures :
Theory and Applications to Earthquake
Engineering, Pearson Education, New Delhi,
2001.
3. Paz,M., Structural Dynamics : Theory and
Computations, 3rd Edition, Van Nostrand
Reinhold, 1991.
4. Clough,R.W., and Penzien,J., Dynamics of
Structures, 2nd Edition, McGraw Hill, 1973.
5. Wilson,E.L., Three Dimensional Static and
Dynamic Analysis of Structures – A physical
approach with emphasis on earthquake
engineering, Computer and Structures Inc.,
Berkeley, CA, USA, 2000.
7.8.2 –
C7.8.2 –
Dynamic analysis may be performed either
by the Time History Method or by the
Response Spectrum Method. However, in
either method, the design base shear ( V B )
This clause requires that when dynamic analysis
gives lower design forces, these should be scaled
up to the level of forces obtained based on
empirical T. This implies that empirical T may be
more reliable than T computed by dynamic
analysis, which indeed is the intention. Dynamic
analysis based on questionable assumptions may
give an unduly large natural period, and hence, a
much lower design seismic force. This clause
intends to be a safeguard and is in line with the
international practices on this issue.
shall be compared with a base shear ( V B )
calculated using a fundamental period Ta,
where Ta is as per 7.6. Where VB is less than
VB , all the response quantities (for example
member forces, displacements, storey
forces, storey shears and base reactions)
shall be multiplied by V B VB .
There are considerable uncertainties in modeling
a building for dynamic analysis, such as:
•
•
•
•
Stiffness contribution of non-structural
elements;
Stiffness contribution of masonry infills;
Modulus of elasticity of concrete, masonry,
and soil; and
Moment of inertia of RC members.
Thus, there can be large variation in natural
period, depending on how one models a building.
For instance, ignoring the stiffness contribution of
infill walls itself can result in a natural period
IITK-GSDMA-EQ05-V4.0
Page 87
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
CODE
COMMENTARY
several times higher.
As per NEHRP Commentary [FEMA 369, 2001]:
“If one ignores the contribution of nonstructural
elements to the stiffness of the structure, the
calculated period is lengthened, leading to a
decrease in the design force. Nonstructural
elements do not know that they are nonstructural.
They participate in the behaviour of the structure
even though the designer may not rely on them for
contributing any strength or stiffness to the
structure. To ignore them in calculating the
period is to err on the unconservative side.”
Even when the results of dynamic analysis are
scaled up to design force based on empirical T,
the load distribution with building height and to
different elements is still based on the results of
the dynamic analysis, and therein, lies the
advantage of dynamic analysis.
7.8.2.1–
The value of damping for buildings may be
taken as 2 and 5 percent of the critical, for
the purposes of dynamic analysis of steel
and
reinforced
concrete
buildings,
respectively.
7.8.3– Time History Method
C7.8.3 – Time History Method
Time history method of analysis, when used,
shall be based on an appropriate ground
motion and shall be performed using
accepted principles of dynamics.
Ground acceleration time histories are required to
conduct the time history method of analysis. For
this, ground motions recorded under similar site
conditions in the past earthquakes may be used.
Specialist literature may be referred to for help in
identifying the appropriate ground motions.
Alternately, synthetically generated ground
motions may be used. Such ground motions
should be compatible with the spectrum given in
this standard or with the site-specific spectrum,
whichever is applicable.
7.8.4 – Response Spectrum
Method
Response spectrum method of analysis shall
be performed using the design acceleration
spectrum specified in 6.4.2, or by a sitespecific design acceleration spectrum
mentioned in 6.4.7.
IITK-GSDMA-EQ05-V4.0
Page 88
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
CODE
COMMENTARY
7.8.4.1 – Free Vibration Analysis
Undamped free vibration analysis of the
entire building shall be performed as per
established methods of mechanics using the
appropriate masses and elastic stiffness of
the structural system, to obtain natural
periods (T) and mode shapes {φ} of those of
its modes of vibration that need to be
considered as per 7.8.4.2.
7.8.4.2 – Modes to be considered
C7.8.4.2 – Modes to be considered
The number of modes to be used in the
analysis for a considered direction of
earthquake shaking should be such that the
sum total of modal masses of all modes
considered is at least 90 percent of the total
seismic mass and missing mass correction
beyond 33 percent. If modes with natural
frequency frequencies beyond 33 Hz are to
be considered, the modal combination shall
be carried out only for modes up to 33 Hz
and . tThe effect of higher modes with natural
frequencyies beyond 33 Hz shall be included
by considering the missing mass correction
procedure
following
well
established
proceduresprinciples.
In a multi-degree of freedom system, when the
ground shakes in a particular direction, only a part
of the total mass of the whole structure vibrates in
each mode of vibration. Thus, the net mass
accounted for in the modes of vibration
considered may be less than the total mass of the
structure. The difference between the total of the
structure and the net masses accounted for in the
modes considered is called the missing mass.
Often, this missing mass corresponds to the
modes of vibration whose natural periods are very
small (or whose natural frequencies are very
large). Thus, in the missing mass correction
procedure, it is assumed that the missing mass
corresponds to modes of vibration that have
natural periods close to zero. The corresponding
Response Acceleration Coefficient (Sa/g) from
Figure 3 of this standard is 1.0. Thus, the Design
Horizontal Seismic Coefficient Ah corresponding
to the missing mass becomes ZI/2R.
In the multi-degree of freedom system under
consideration, the missing mass will be
distributed throughout the structure. The Design
Horizontal Seismic Coefficient Ah corresponding
to the missing mass is multiplied with these
missing masses at different locations, and the
equivalent static forces for the missing masses are
obtained. These forces are applied on the structure
and another static analysis is conducted. The
results of this static analysis are combined with
those of the modes considered, as per 7.8.4.4.
7.8.4.3 – Analysis of Buildings subjected
to Design Forces
The building may be analyzed by accepted
principles of mechanics for the design forces
considered as static forces.
7.8.4.4 – Modal Combination
IITK-GSDMA-EQ05-V4.0
C7.8.4.4 – Modal Combination
Page 89
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
CODE
COMMENTARY
The peak response quantities (for example,
member of forces, displacements, storey
forces, storey shears, and base reactions)
shall be combined as per Complete
Quadratic Combination (CQC) method.
This clause gives the complete quadratic
combination (CQC) method first and then simpler
method as an alternative. CQC method is
applicable both when the modes are well
separated and when the modes are closely spaced.
Many computer programs have CQC method
built-in for modal combination. For details, the
following textbook may be referred to:
λ=
∑∑ λ
r
r
i =1 j =1
i
ρi j λ
j
Chopra,A.K., Dynamics of Structures : Theory
and Applications to Earthquake Engineering,
Pearson Education, New Delhi, 2001.
where
r = Number of modes being considered,
ρ i j =Cross-modal coefficient,
λ i =Response
quantity
in
mode
i
(including sign),
λ
j
= Response quantity in mode j
(including sign),
ρij =
ρij =
8ζ 2(1 + β )β 1.5
(1 + β 2 ) 2 + 4ζ 2 β(1 + β ) 2
8ζ 2(1 + β )β 1.5
(1 − β 2 ) 2 + 4ζ 2 β(1 + β )2
ζ =Modal damping ratio (in fraction) as
specified in 7.8.2.1 7.5.3,
β =Frequency ratio= ω j ω i ,
ω i =Circular frequency in ith mode, and
ω j =Circular frequency in jth mode.
AlternativelyAlternately, the peak response
quantities may be combined as follows:
a) If the building does not have closelyspaced modes, then the peak response
quantity ( λ ) due to all modes considered
shall be obtained as
λ=
∑ (λ )
r
k =l
2
k
where
λk =Absolute value of quantity in mode
k, and
r
=Number
of
IITK-GSDMA-EQ05-V4.0
modes
being
Page 90
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
CODE
COMMENTARY
considered.
b) If the building has a few closely-spaced
modes (see 3.2), then the peak response
*
quantity ( λ )due to these modes shall
be obtained as
λ* = ∑ λ c
where the summation is for the closelyspaced modes only. This peak response
quantity ( λ ) due to the closely spaced
*
modes ( λ ) is then combined with those
of the remaining well-separated modes
by the method described in 7.8.4.4 (a).
*
7.8.4.5 –
C7.8.4.5 –
Buildings with regular, or nominally irregular
plan configurations may be modelled as a
system of masses lumped at the floor levels
with each mass having one degree of
freedom, that of lateral displacement in the
direction under consideration. In such a case,
the following expressions shall hold in the
computation of the various quantities:
The analysis procedure is valid when a building
can be modeled as a lumped mass model with one
degree of freedom per floor (Figure C 17).
X3 (t)
X2 (t)
a) Modal Mass - The modal mass (Mk) of
mode k is given by
⎡n
⎤
⎢ ∑ Wi φ i k ⎥
⎦
Mk = ⎣ i =1
∑W (φ
X1 (t)
2
Figure C 17 – Lumped mass model
n
g
i
i =1
)2
ik
where
g = Acceleration due to gravity,
φ i k = Mode shape coefficient at floor i in
This method of analysis does not imply that (a)
the structure deforms only in the shear mode with
no rotations or vertical translations at the floor
levels, and (b) the beams in the structure are
flexurally rigid and hence undergo no rotations.
mode k, and
Wi = Seismic weight of floor i.
b) Modal Participation Factors - The modal
participation factor (Pk) of mode k is
given by:
∑W φ
n
Pk =
i
i =1
∑W (φ
ik
n
i =1
i
ik
)2
c) Design Lateral Force at Each Floor in
Each Mode -The peak lateral force(Qik)
IITK-GSDMA-EQ05-V4.0
Page 91
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
CODE
COMMENTARY
at floor i in mode k is given by
Qik = Ak φ Ik Pk Wi
where
Ak= Design horizontal acceleration
spectrum value as per 6.4.2 using the
natural period of vibration (Tk) of mode
k.
d) Storey Shear Forces in Each Mode - The
peak shear force (Vik) acting in storey i in
mode k is given by
∑Q
n
Vik =
j = i +1
ik
e) Storey Shear Force due to All Modes
Considered - The peak storey shear
force (Vi) in storey i due to all modes
considered is obtained by combining
those due to each mode in accordance
with 7.8.4.4.
f)
Lateral Forces at Each Storey Due to All
Modes Considered -The design lateral
forces, Froof and Fi, At roof and at floor i:
Froof = Vroot, and
Fi = Vi - Vi+1
7.9 – Torsion
7.9.1 –
Provision shall be made in all buildings for
increase in shear forces on the lateral force
resisting elements resulting from the
horizontal Torsional moment arising due to
eccentricity between the centre of mass and
centre of rigidity. The design forces
calculated as in 7.8.4.5 are to be applied at
the centre of mass appropriately displaced so
as to cause design eccentricity (7.9.2)
between the displaced centre of mass and
centre of rigidity. However, negative
Torsional shear shall be neglected.
7.9.2 – Design Eccentricity
C7.9.2 – Design Eccentricity
The design eccentricity, edi to be used at floor
i shall be taken as:
Under dynamic conditions, the effect of
eccentricity is higher than that under static load.
Hence, a dynamic amplification is often applied
to static eccentricity for computing design
eccentricity. For instance, 1984 version of the
edi =
1.5 esi + 0.05 bi
IITK-GSDMA-EQ05-V4.0
Page 92
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
CODE
COMMENTARY
Or esi – 0.05 bi
code provided an amplification of 1.5 to the
computed eccentricity (clause 4.2.4 of IS 1893 1984).
whichever of these gives the more severe
effect in the shear of any frame where
esi = Static eccentricity at floor i defined
as the distance between centre of mass
and centre of rigidity, and
bi = Floor plan dimension of floor i,
perpendicular to the direction of force.
NOTE - The factor 1.5 represents dynamic
amplification factor, while tThe factor 0.05
0.10 represents the extent of accidental
eccentricity.
Additionally, an accidental eccentricity is also
considered because (a) the computation of
eccentricity is approximate, (b) during the service
life of the building, there could be changes in its
use that may relocate the center of mass, and (c)
ground motion itself may have some torsional
components.
The factor 1.5 is intended for use with equivalent
static analyses only. However, when 3D dynamic
analysis is conducted, the dynamic amplification
is inherent in the analysis. Thus, Note 2 seeks to
eliminate the factor 1.5.
NOTES –
1.
The factor 1.5 represents dynamic
amplification, while the factor 0.5
represents accidental eccentricity.
2.
In case 3D dynamic analysis is carried
out, the dynamic amplification factor of
1.5 be replaced with 1.0.
bi
esi
CR
CM
1.5esi+ 0.05 bi
0.05 bi
CR
CM
EQ
(esi – 0.05 bi)
CR
EQ
CM
0.05 bi
Figure C 18 – Two possible cases of maximum
eccentricity
7.9.3–
In case of highly irregular buildings analyzed
IITK-GSDMA-EQ05-V4.0
Page 93
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
CODE
COMMENTARY
according to 7.8.4.5, additive shears will be
superimposed for a statically applied
eccentricity of ±0.05bi with respect to the
centre of rigidity.
7.10 – RC Frame Buildings
with Masonry Infills
C7.10 – RC Frame Buildings
with Masonry Infills
Provisions in 7.10 intend to incorporate the
stiffness and strength due to in-plane
behaviour of infills in the design of buildings.
Masonry infills possess significant in-plane
stiffness and strength, and hence contribute to
the overall stiffness and strength of the
building. The effect of the infills is lesser if
openings are present. However, these infills
pose the hazard of out-of-plane collapse.
Hence, it is best to avoid situations that lead to
infill panels of large width or height. Also,
infills can cause irregularities in the building,
e.g., short column effect. This should be
recognized at the design stage itself.
The advantages of strength contributed by
the infill shall not to be considered when the
height of the building is more than 12m.
7.10.1 –
C7.10.1 –
The modulus of elasticity (in MPa) of
masonry, Em, may be taken as:
A number of empirical relationships are available
established in the literature for the modulus of
elasticity of brick masonry. However, it is very
difficult to define the modulus of elasticity of
masonry precisely.
Em = 550fm
Where fm is the compressive strength of
masonry prism in MPa.
Large variation has been reported in the
relationship between elastic modulus and
compressive strength of masonry, fm. For the
purpose of this code, therefore, Drysdale’s (1993)
expression E m = k f m was used with k taken as
550. A limited number of tests conducted recently
at IIT Kanpur showed that this value agrees with
experimental data reasonably well.
7.10.2 –
C7.10.2 –
Infill wall may be modeled by using an
equivalent diagonal strut as followsper
7.10.2.1, 7.10.2.2 and 7.10.2.3.
While a number of finite element models have
been developed and used to predict the response
of masonry infilled frames, they are generally too
cumbersome and time-consuming to be used in
analyzing real-life infilled frame structures in
design offices. Therefore, a much simplified yet
reasonably accurate macro-model is needed that
considers various factors that govern the
behaviour of infilled frames. This is usually done
by modeling the infill panel as a single diagonal
strut connected to the two compressive diagonal
corners, as shown in Figure19.
7.10.2.1 –
The ends of diagonal struts shall be pinjointed to the RC frame such that moment
transfer does not take place from RC frame
to struts.
IITK-GSDMA-EQ05-V4.0
Page 94
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
CODE
COMMENTARY
EQ
Figure C 19 – Equivalent diagonal strut model
7.10.2.2 –
C7.10.2.2 –
For the solid walls (without any openings),
width of equivalent diagonal strut (wds) shall
be taken as one third of the diagonal length
of the infill wall (d) as shown in Figure 6.
The key to the equivalent diagonal strut approach
lies in determination of effective width of the
equivalent diagonal strut. In the last few decades,
several attempts have been made to estimate the
effective width of such equivalent diagonal struts.
The value of effective width adopted in this code
is as per the following: Holmes, M., 1961, “Steel
Frames with Brickwork and Concrete Infilling,”
Proceedings of the Institution of Civil Engineers,
Vol. 19, August, pp. 473-478.
wds = d
3
Figure 6 – Details of equivalent strut
7.10.2.3 –
C7.10.2.3 –
Infilled frames with openings shall be
modeled with reduced width of strut, which is
given as:
The effect of opening in the infill wall is to reduce
the lateral stiffness and strength of the frame. This
can be represented by a diagonal strut of reduced
width. The reduction factor ρ w is defined as
IITK-GSDMA-EQ05-V4.0
Page 95
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
CODE
COMMENTARY
w do = ρw w ds
where wds is the width of diagonal strut
for infill walls with without openings and
ρw is a reduction factor, which accounts
ratio of reduced strut width to strut-width
corresponding to fully infilled frame. The
equation for ρ w is based on the following:
Mondal, G., 2003, Lateral Stiffness of
Unreinforced Brick Infilled RC Frame with
Central Opening, Master of Technology
Thesis, Department of Civil Engineering,
Indian Institute of Technology Kanpur,
India, July.
for openings in infill, which is given by
ρw = 1− 2.5 Ar
Ar is the opening area ratio, which is the
ratio of face area of opening to the face area
of infill. If the opening area ratio is less than
0.05, i.e., the area of opening is less than 5%
of the area of the infill panel, no reduction in
the width of diagonal strut need to be made
and the infill panel can be modeled as a solid
panel. Whereas, if the opening area ratio is
more than 0.4, i.e., the area of opening
exceeds 40% of the area of the infill panel,
the strut reduction factor shall be set to zero
and the effect of infill shall be ignored in that
panel.
7.10.2.4 –
Thickness of the strut shall be taken as the
actual thickness of the wall.
7.10.3 –
C7.10.3 –
All the RC frames shall be designed to
support the vertical gravity loads, including
the weight of masonry infill walls, without any
assistance from the masonry infill walls. Also,
the frame acting alone shall be capable of
resisting at least 50 percent of the design
seismic forces.
Other than self weight, masonry infill is not
expected to carry any gravity loads.
7.107.11 – Special Provisions
for Irregular Buildings
C7.11 – Special Provisions for
Irregular Buildings
7.10.1 7.11.1 – Buildings with Soft
or Weak Storey
C7.11.1 – Buildings with Soft or
Weak Storeys
In case of buildings with a flexible storey
vertical irregularity of Type (i) or Type (v) in
Table 5,such as the ground storey consisting
of open spaces for parking that is silt
buildings on stilts, special arrangement
Generally, soft storey building is also a weak
storey building. Soft/weak storey buildings are
well known for their poor performance during
earthquakes. During the Bhuj earthquake of 2001,
most of the multi-storey buildings that collapsed
IITK-GSDMA-EQ05-V4.0
The contribution of the infill in resisting the
lateral loads can be substantial. However, to
safeguard against RC frame being designed for a
very low seismic force, this clause requires that
the frame alone (without infill walls) should be
designed to resist at least 50% of the total seismic
force.
Page 96
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
CODE
COMMENTARY
needs to be made to increase the lateral
strength and stiffness of the soft/open weak
storey.
had soft ground storey. Figure C 20 indicates the
severe deformation demands in case of a building
with a soft storey.
(a) Open ground storey
Figure C 20 - Soft-storey is subject to severe
deformation demands during seismic shaking
(From Murty et al, 2002)
7.10.27.11.1.1 –
C7.11.1.1 -
Dynamic Non-linear push over analysis of
building is should shall be carried out
including the strength and stiffness effects of
infills, and the inelastic deformations in the
members, particularly, those in the soft /weak
storey., and tThe members shouldshall be
designed accordingly considering these
deformation and ductility demands. Specialist
literature may be referred to for this purpose.
Pushover analysis is a static, nonlinear procedure
in which the magnitude of the structural loading
is increased incrementally in accordance with a
certain predefined pattern. By increasing the
magnitude of loading, weak links and failure
modes of the structure are found.
Non-linear pushover analysis can be used to
estimate the ultimate lateral load carrying
capacity of the structure and the ultimate
displacement up to which the structure can be
displaced laterally without collapse. Ductility and
overstrength of the structure can be found out
from the pushover curve, (i.e., the plot of base
shear versus roof displacement).
While performing pushover analysis, inelastic
properties of all the elements in the buildings
(including infill walls) are to be modeled
carefully. Also, the mass, stiffness and strength of
all the elements in the building should be
modeled properly.
The elements should be designed for the seismic
demands given by pushover analysis for a given
level of ductility.
While performing the non-linear pushover
analysis, the following publication may be
referred to:
ATC 40, Seismic Evaluation and Retrofit of
Concrete Buildings, Applied Technology
Council, Redwood City, CA, USA, 1996.
IITK-GSDMA-EQ05-V4.0
Page 97
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
CODE
COMMENTARY
7.10.37.11.1.2 –
C7.11.1.2 -
Alternatively, the following design criteria are
to be adopted after carrying out the
earthquake analysis:, neglecting the effect of
infill walls in other storeys:
Pushover analysis is fairly sophisticated and
requires considerable expertise. It is therefore not
always feasible to perform a non-linear pushover
analysis. Hence, an alternative design procedure
is given in the code.
the columns and beams of the soft/weak
storey (excluding the beams between the stilt
storey and the infilled storey) are to be
designed for 2.5 times the storey shears and
moments calculated under seismic loads
specified in the other relevant clauses; or,
besides the columns designed and detailed
for the calculated storey shears and
moments, shear walls placed symmetrically
in both directions of the building as far away
from the centre of the building as feasible; to
be designed exclusively for 1.5 times the
lateral storey shear force calculated as
before.
All the columns of the soft/weak storey should be
designed for 2.5 times the seismic demand.
Beams between the stilt storey and the infilled
storey are not to be designed for the increased
demands because stronger beams would further
increase the seismic demands on the columns.
Other elements in the building on the other stories
are to be designed for the respective seismic force
resultants given by the static analysis.
If it is not feasible to increase the capacity of the
columns in soft/weak storey, shear walls should
be provided, preferably on the periphery of the
building. Care should be taken to ensure
symmetric arrangement of the shear walls to
avoid the torsional effects. The shear walls should
be designed for 1.5 times the seismic demand for
the storey as per calculations while the columns
are designed for 100% of seismic demand.
7.11.2 –
C7.11.2 -
In case of plan irregularity of Type (iv) in
Table 4 or vertical irregularity Type (iv) in
Table 5, columns, beams or trusses
supporting discontinuous walls or frames
shall be designed for 2.5 times the forces
obtained under seismic loads specified in
other relevant clauses for all Zones. All the
other members of buildings in Zones IV and
V shall be designed for the seismic forces,
calculated as per relevant clauses, increased
by 20%; this increase is not required for
buildings in Zones II and III.
An out-of-plane offset of the lateral load carrying
vertical element imposes excessive demands on
vertical elements. Similarly, an in-plane offset of
the lateral force resisting element, greater than the
length of those elements, impose vertical and
lateral load demands on the supporting elements.
This increase in the seismic load demands is due
to the discontinuity in the load transfer path
because of (in-plane and put-of-plane) offsets of
the vertical elements in the building. Hence, the
supporting elements are required to be designed
for 2.5 times the force resultants obtained by the
static analysis as specified in other relevant
clauses of the code.
In the zones of high seismicity (Zone IV and V),
irregular buildings are prone to severe damage
when subjected to seismic forces. It is, therefore,
recommended to design all the other elements of
such buildings for 1.2 times the force resultants
obtained by the static analysis as specified in
other relevant clauses of this code.
7.11.3 –
C7.11.3 -
In case of plan irregularity of Type (ii) and
The plan irregularities such as, re-entrant corners
IITK-GSDMA-EQ05-V4.0
Page 98
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
CODE
COMMENTARY
Type (iii) in Table 4, buildings in Zones IV
and V shall be designed for the seismic
forces, calculated as per relevant clauses,
increased by 20%. Such increase is not
required for buildings in Zones II and III.
and diaphragms discontinuity, change lateral load
distribution to different vertical elements. To take
care of increase in the seismic demands on the
structure because of such plan irregularities, it is
recommended to design all the elements of such
buildings for 1.2 times the force resultants
obtained by the static analysis as specified in
other relevant clauses of this code in zones IV and
V.
7.11.4 –
C7.11.4 -
For buildings that have plan irregularity of
Type (v) in Table 4, ground motion in two
horizontal directions will be considered as
per 6.3.2.2 or 6.3.4.2.
See commentary of clause 6.3.2.
7.11.5 – Buildings with Torsional
Irregularity
C7.11.5 - Buildings with Torsional
Irregularity
Torsional irregularities arise due to non-uniform
distribution of mass and stiffness. Because of
torsion, the seismic force resultants in some
elements of the building are increased.
7.11.5.1–
C7.11.5.1 –
In case of buildings located in Zones IV and
V with torsional irregularity Type (i)a in Table
1, the design seismic forces, calculated as
per relevant clauses, shall be increased by
20%.
In zones of high seismicity, the torsionally
irregular buildings are prone to very severe
damage. Hence, buildings with extreme torsional
irregularities (Type (i)b in Table 4) are not
permitted in zones IV and V. However, for
building in zones IV and V with torsional
irregularity of Type (i)a in Table 4, it is
recommended to design all the elements for 1.2
times the force resultants obtained by the seismic
analysis.
7.11.5.2–
In case of- buildings located in Zones II and
III with extreme torsional irregularity (Type
(i)b in Table 1), the design seismic forces,
calculated as per relevant clauses, shall be
increased by 20%.
7.11.5.3–
If torsional irregularity of Type (i)a or Type
(i)b in Table 1 is about both the orthogonal
axes, the building shall be designed for
ground motion in two horizontal directions as
per 6.3.2.2 or 6.3.4.2.
7.117.12– Deformation
IITK-GSDMA-EQ05-V4.0
7.11.5.3 –
See commentary of clause 6.3.2
C7.12 – Deformation
Page 99
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
CODE
COMMENTARY
For good seismic performance, a building needs
to have adequate lateral stiffness. Low lateral
stiffness leads to:
•
•
•
•
•
Large deformations and strains, and hence
more damage in the event of strong ground
shaking.
Significant P-∆ effect.
Damage to non-structural elements due to
large deformations.
Discomfort
vibrations.
to
the
occupants
during
Large deformations may lead to pounding
with adjacent structures.
Stiff structures, though they attract more seismic
loads, have generally performed better during past
earthquakes.
The actual displacement in a strong shaking may
be much larger than the displacement calculated
for design loads because design seismic force is a
reduced force. As a rule of thumb, the maximum
displacement during the MCE shaking (for
example, PGA of 0.36g in zone V) should be
about 2R times the computed displacement due to
unfactored design seismic forces.
The higher the stiffness, lower the drift but higher
the lateral loads. Hence, for computation of T for
seismic design load assessment, all sources of
stiffness even if unreliable should be included.
And for computation of drift, all sources of
flexibility even if unreliable should be
incorporated.
Thus, in computation of drift the stiffness
contribution of non-structural elements and nonseismic elements (i.e., elements not designed to
share the seismic loads) should not be included.
This is because such elements cannot be relied
upon to provide lateral stiffness at large
displacements. All possible sources of flexibility
should be incorporated, for example, effect of
joint rotation, bending and axial deformations of
columns and shear walls, etc.
7.11.17.12.1– Storey Drift
Limitation
C7.12.1 – Storey Drift Limitation
The storey drift in any storey due to the
minimum specified design lateral force, with
partial load factor of 1.0, shall not exceed
0.004 times the storey height.
IITK-GSDMA-EQ05-V4.0
Clause 7.8.2 requires scaling up of seismic design
forces from dynamic analysis, in case these are
lower than those from empirical T. The second
paragraph allows drift check to be performed as
per the dynamic analysis, which may have given
Page 100
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
CODE
COMMENTARY
For
the
purposes
of
displacement
requirements only (see 7.11.1 7.12.1, 7.11.2
7.12.2 and 7.11.3 7.12.3 only), it is
permissible to use seismic force obtained
from the computed fundamental period (T) of
the building without the lower bound limit on
design seismic force specified in 7.8.2.
lower seismic forces, i.e., there is no need for
scaling up of forces for the purpose of drift check.
This is because in the displacement calculation
even though lower forces are used, the stiffness of
the structure modeled is also lower.
There shall be no drift limit for single storey
building which has been designed to
accommodate storey drift.
7.11.27.12.2– Deformation
Capability of Non-Seismic
Members
C7.12.2 – Deformation Capability of
Non-Seismic Members
For building located in seismic Zones IV and
V, it shall be ensured that the structural
components, that are not a part of the
seismic force resisting system in the direction
under consideration, do not lose their vertical
load-carrying capacity under the induced
moments resulting from storey deformations
equal to R times the storey displacements
calculated as per 7.11.1 7.12.1, where R is
specified in Table 7.
NOTE- For instance, consider a flat-slab
building in which lateral load resistance is
provided by shear walls. Since the lateral
load resistance of the slab-column system is
small, these are often designed only for the
gravity loads, while all the seismic force is
resisted by the shear walls. Even though the
slabs and columns are not required to share
the lateral forces, these deform with rest of
the structure under seismic force. The
concern is that under such deformations, the
slab- column system should not lose its
vertical load capacity.
IITK-GSDMA-EQ05-V4.0
The third paragraph allows larger than the
specified drift for single-storey building provided
it is duly accounted for in the analysis and design.
This clause is particularly important when not all
structural elements are expected to participate in
lateral load resistance. For example, flat-plate
buildings or buildings with pre-fabricated
elements where seismic load is resisted by shear
walls, and columns carry only gravity loads.
During the 1994 Northridge Earthquake
(California) many buildings collapsed due to
failure of gravity columns.
During shaking, gravity columns do not carry
much lateral loads, but deform laterally with the
shear walls due to compatibility imposed by floor
diaphragm (Figure C 21). Moments and shears
induced in gravity columns due to the lateral
deformations may cause collapse if adequate
provisions are not made. ACI 318 has a separate
section on detailing of gravity frames to safeguard
against this kind of collapse.
Since deflections are calculated using design
seismic force (which is a reduced force), the
values of deflection are to be multiplied by R.
The use of multiplier R could be debated since it
will only ensure safety against design basis
earthquake. For safety against maximum
considered earthquake, multiplier 2R should be
used.
Page 101
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
CODE
COMMENTARY
Figure C 21 - Lateral deformation of gravity columns (From Agarwal, 1996)
7.11.37.12.3– Separation between
Adjacent Units
C7.12.3 – Separation between
Adjacent Units
Two adjacent buildings, or two adjacent units
of the same building with separation joint in
between shall be separated by a distance
equal to the amount R times the sum of the
calculated storey displacements as per
7.11.1 of each of them, to avoid damaging
contact when the two units deflect towards
each other. When floor levels of two similar
adjacent units or buildings are at the same
elevation / levels, factor R in this requirement
may be replaced by R/2.
During seismic shaking, two adjacent units of the
same building or two adjacent buildings may hit
each other due to lateral displacements. This is
known as pounding or hammering. This clause is
meant to safeguard against pounding. As
explained earlier multiplier R is used since the
deflection is calculated using design seismic
forces, which are, reduced forces. Pounding effect
may be much more serious if floors of one
building hit at the mid-height of columns in the
other building (Figure C 22 b). Hence, when two
units have same floor elevations, the multiplier is
reduced from R to R/2.
IITK-GSDMA-EQ05-V4.0
Page 102
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
CODE
COMMENTARY
Potential pounding
location
Building 1
Building 2
(a)
Potential pounding
location
Building 1
Building 2
(b)
Figure C 22 - Pounding in situation (b) is far
more damaging.
7.13– Nonstructural Elements
7.13.1–General
7.13.1.1-
C 7.13.1.1-
This section establishes minimum design
criteria for the nonstructural components of
architectural, mechanical, and electrical
systems permanently installed in buildings,
including
supporting
structures
and
attachments.
In several past earthquakes, it is seen that
failure of nonstructural elements posed safety
risk to building occupants, and critically
impaired the performance of the buildings as
well, for example, of fire and police stations,
power stations, communication facilities and
water supply. Moreover, in most of the
buildings, non-structural elements represent a
high percentage of the total cost of the
buildings. Therefore, nowadays it is widely
recognized that good performance of
nonstructural elements during earthquakes is
extremely important.
Some important
performance and
elements are:
IITK-GSDMA-EQ05-V4.0
Page 103
references
design of
on seismic
non-structural
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
CODE
COMMENTARY
1.
Gillengerten, J.D., Design of Nonstructural
Systems and Components, The Seismic
Design Handbook (Naeim, F., editor),
Kluwer Academic Publishers, Second
Edition, 682-721, 2003
2.
Villaverde, R., Seismic Analysis and Design
of
Nonstructural
Elements,
Earth
Engineering: from Engineering Seismology
to
Performance-Based
Engineering
(Bozorgnia, Y., and Bereto, V.V., editor),
CRS Press, 2004.
3.
Stratta, J.L., Manual of Seismic Design,
Pearson Education, First Indian Reprint,
184-216, 2003.
4.
FEMA
368,
NEHRP
Recommended
Provisions for Seismic Regulations for New
Buildings and Other Structures: Part 1Provisions, Building Seismic Safety Council,
National Institute of Building Sciences,
Washington, D.C., March 2001.
5.
FEMA
369,
NEHRP
Recommended
Provisions for Seismic Regulations for New
Buildings and Other Structures: Part 2Commentary, Building Seismic Safety
Council, National Institute of Building
Sciences, Washington, D.C, March 2001.
6.
IBC 2003, International Building Code,
International Code Council, USA.
7.
Eurocode 8, Design Provisions for
Earthquake Resistance of Structures, Part 1General Rules, Seismic Action and Rules for
Buildings,
prEN
1998-1,
European
Committee for Standardization, Brussels,
2003.
7.13.1.2–
C 7.13.1.2-
This section is not applicable where a
nonstructural component directly modifies the
strength or stiffness of the building structural
elements, or its mass affects the building
loads. In such a case, its characteristics
should be considered in the structural
analysis of the building.
When the nonstructural element significantly
affects structural response of the building, the
nonstructural component should be treated as
structural, and the relevant structural provisions
should apply. For example, in general, a masonry
infill wall should be considered as structural for
in-plane response, and therefore, it is within the
scope of clause 7.10.
7.13.1.3–
For nonstructural elements of great
importance or of a particular dangerous
nature, the seismic analysis should be based
IITK-GSDMA-EQ05-V4.0
Page 104
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
CODE
COMMENTARY
on the use of floor response spectra derived
from the response of the main structural
system. Specialist literature may be referred
to for the methods of determining floor
response
spectrum
for
various
floors/elevations.
7.13.1.4–
C 7.13.1.4–
Particular care should be taken to identify
masonry infill that could reduce the effective
length of adjacentadjoining columns.
Partial infill of masonry walls between columns
may create short-column effect, i.e, reduce the
effective length of the column, and seriously
affect the building response.
7.13.1.5–
In general, if the component weight exceeds
20% of the total dead weight of the floor, or
exceeds 10% of the total weight of the
structure provisions in this section should not
be used.
7.13.2–
Depending
on
response
sensitivity,
nonstructural elements can be classified as
deformation sensitive, acceleration sensitive,
or both deformation and acceleration
sensitive. Table 9 classifies nonstructural
elements according to their response
sensitivity.
7.13.2.1–
C 7.13.2.1–
Acceleration sensitive nonstructural elements
should be designed according to the force
provisions contained in clause 7.13.3.
Nonstructural components are regarded as
acceleration sensitive when they are mainly
affected by acceleration of the supporting
structure. In such a case, structural-nonstructural
interaction due to deformation of the supporting
structure is not significant. Acceleration sensitive
nonstructural components are vulnerable to
sliding, overturning, or tilting. Mechanical and
electrical components are generally acceleration
sensitive.
7.13.2.2–
C 7.13.2.2–
Deformation sensitive nonstructural elements
should be designed according to the
provisions contained in clause 7.13.4.
Nonstructural components are regarded as
deformation sensitive when they are affected by
supporting structure’s deformation, especially the
inter-storey drift. Good performance of
deformation sensitive nonstructural elements can
be ensured in two ways: (i) by limiting inter-
IITK-GSDMA-EQ05-V4.0
Page 105
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
CODE
COMMENTARY
storey drift of the supporting structure in case of
important nonstructural elements), and (ii) by
designing the element to accommodate the
expected lateral displacement without damage.
7.13.2.3–
Some components may be both acceleration
and deformation sensitive, but generally one
or the other of these characteristics is
dominant (Table 9). They must be analyzed
for both forms of response, that is, as per
provisions 1.3 and 1.4.
7.13.3– Design Seismic Force
7.13.3.1–
C7.13.3.1–
Design seismic force Fp on a nonstructural
element shall be calculated as
The component amplification factor (ap)
represents the dynamic amplification of the
component relative to the fundamental period of
structure. In most situations, the non-structural
element may need to be designed without
fundamental period of the structure being
available. Further, one may need to carry out
experimental studies (e.g., shake table study) to
evaluate fundamental period of the nonstructural
element which may not be feasible.
Fp =
Z⎛
x ⎞ ap
I pW p
⎜1 + ⎟
2 ⎝ h ⎠ Rp
≥ 0.10W p
Where
Z = Zone factor given in Table 2,
x = Height of point of attachment of the
nonstructural element above top of
the foundation of the building,
h = Height of the building,
ap=Component amplification factor given
in Table 10,
Rp = Component response modification
factor given in Table 11,
Ip
=
Wp
= Weight
element.
Importance factor of the
nonstructural element given in
Table 12, and
of
the
nonstructural
The component response modification factor (Rp)
represents ductility, redundancy, and energy
dissipation capacity of the element and its
attachment to the structures. Not much research
is available on evaluation of these factors.
Hence, values of ap and Rp (Tables 9, 10, 11) are
taken same as in NEHRP provisions (FEMA 369,
2001); these empirically specified values are
based on “collective wisdom and experience of
the responsible committee”.
In choosing these values, it is expected that the
component will behave as either flexible (ap =2.5)
or rigid (ap =1.0) body. In general, values of Rp
are taken as 1.5, 2.5 and 3.5 for low, limited and
high deformable structures, respectively.
Input acceleration at the point of attachment
depends on peak ground acceleration, dynamic
response of the building, and the location of the
element along the height of the building. In this
equation, the input acceleration at the point of
attachment has been approximated as linearly
varying from the acceleration at the ground (0.5Z)
to the acceleration at the roof (Z).
IITK-GSDMA-EQ05-V4.0
Page 106
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
CODE
COMMENTARY
A lower limit of Fp is set to assure a minimal
seismic design force.
IITK-GSDMA-EQ05-V4.0
Page 107
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
Table 9: Response Sensitivity of Nonstructural Components (clause 7.13.2)
Sensitivity
Component
Acc
2.
3.
4.
Component
Def
A. Architectural
1.
Sensitivity
Acc
Def
B. Mechanical Component
Exterior Skin
1. Mechanical Equipment
Adhered Veneer
S
P
Boilers and Furnaces
P
Anchored Veneer
S
P
General Manufacturing
and Process Machinery
P
Glass Blocks
S
P
HVAC Equipment,
Vibration Isolated
P
Prefabricated Panels
S
P
P
Glazing Systems
S
P
HVAC Equipment. Nonvibration Isolated
HVAC Equipment,
Mounted In-line with
Ductwork
P
Partitions
Heavy
S
P
Light
S
P
Interior Veneers
Stone, Including Marble S
P
Ceramic Tile
P
S
2. Storage Vessels
Water Heaters
and
Structurally Supported
Vessels
P
Flat Bottom Vessels
P
Ceilings
3. Pressure Piping
P
S
a. Directly Applied to P
Structure
4. Fire Suppression Piping
P
S
b. Dropped, Furred, P
Gypsum Board
5. Fluid Piping, not Fire
Suppression
c. Suspended Lath and S
Plaster
P
Hazardous Materials
P
S
d. Suspended
Integrated Ceiling
S
P
Non-hazardous Materials
P
S
5.
Parapets and
Appendages
P
P
S
6.
Canopies and
Marquees
P
7.
Chimneys and Stacks P
8.
Stairs
P
6. Ductwork
S
Acc=Acceleration-Sensitive
P=Primary Response
Def=Deformation Sensitive
S=Secondary Response
IITK-GSDMA-EQ05-V4.0
Page 108
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
Table 10: Coefficients for Architectural Components (clause 7.13.3)
Architectural Component or Element
Interior Nonstructural Walls and Partitions
Plain (unreinforced) masonry walls
All other walls and partitions
Cantilever Elements (Unbraced or braced to structural frame below its
center of mass)
Parapets and cantilever interior nonstructural walls
Chimneys and stacks where laterally supported by structures.
Cantilever elements (Braced to structural frame above its center of mass)
Parapets
Chimneys and stacks
Exterior Nonstructural Walls
Exterior Nonstructural Wall Elements and Connections
Wall Element
Body of wall panel connection
Fasteners of the connecting system
Veneer
High deformability elements and attachments
Low deformability and attachments
Penthouses (except when framed by and extension of the building frame)
Rp
1.0
1.0
1.5
2.5
2.5
2.5
2.5
2.5
1.0
1.0
1.0
2.5
2.5
2.5
1.0
1.0
1.25
2.5
2.5
1.0
1.0
1.0
2.5
2.5
1.5
3.5
1.0
2.5
Ceilings
All
Cabinets
Storage cabinets and laboratory equipment
Access floors
Special access floors
All other
Appendages and Ornamentations
1.0
2.5
1.0
1.0
2.5
2.5
1.5
2.5
Signs and Billboards
2.5
2.5
1.0
1.0
1.0
3.5
2.5
1.5
2.5
2.5
2.5
3.5
2.5
1.5
Other Rigid Components
High deformability elements and attachments
Limited deformability elements and attachments
Low deformability elements and attachments
Other flexible Components
High deformability elements and attachments
Limited deformability elements and attachments
Low deformability elements and attachments
a
apa
A lower value for
a p is permitted provided a detailed dynamic analysis is performed which
justifies a lower value. The value for
a p shall not be less than 1.0. The value of a p =1.0 is for
equipment generally regarded as rigid and rigidly attached. The value of
a p =2.5 is for flexible
components and flexibly attached components.
IITK-GSDMA-EQ05-V4.0
Page 109
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
Table 11: Coefficients for Mechanical and Electrical Components (clause 7.13.3)
Mechanical and Electrical Component or Element
b
General Mechanical
Boilers and Furnaces
Pressure vessels on skirts and free-standing
Stacks
Cantilevered chimneys
Others
Manufacturing and Process Machinery
General
Conveyors (non-personnel)
Piping Systems
High deformability elements and attachments
Limited deformability elements and attachments
Low deformability elements and attachments
HVAC System Equipment
Vibration isolated
Non-vibration isolated
Mounted in-line with ductwork
Other
Elevator Components
Escalator Components
Trussed Towers (free-standing or guyed)
General Electrical
Distributed systems (bus ducts, conduit, cable tray)
Equipment
Lighting Fixtures
a
A lower value for
ap
apa
Rp
1.0
2.5
2.5
2.5
1.0
2.5
2.5
2.5
2.5
2.5
1.0
2.5
2.5
2.5
1.0
1.0
1.0
2.5
2.5
1.5
2.5
1.0
1.0
1.0
1.0
1.0
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
1.0
1.0
5.0
1.5
1.5
is permitted provided a detailed dynamic analysis is performed which
justifies a lower value. The value for
ap
shall not be less than 1.0. The value of
equipment generally regarded as rigid and rigidly attached. The value of
components or flexibly attached components.
ap
ap
=1.0 is for
=2.5 is for flexible
Table 12: Importance Factor (Ip) of Nonstructural Elements (Clause 7.13.3)
Description of nonstructural element
Ip
Component containing hazardous contents
1.5
Life safety component required to function after an earthquake (e.g.,
protection sprinklers system)
fire
1.5
Storage racks in structures open to the public
1.5
All other components
1.0
IITK-GSDMA-EQ05-V4.0
Page 110
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
CODE
COMMENTARY
7.13.3.2–
C7.13.3.2–
For vertical nonstructural elements Fp will be the
horizontal force, and for horizontal nonstructural
elements Fp will be the vertical force.
No distinction is being made between the
horizontal and the vertical vibrations of the
ground and of the structure, considering many
other approximations involved.
7.13.3.3–
C7.13.3.3–
For a component mounted on a vibration
isolation systems, the design force shall be
taken as 2Fp.
A vibration isolated component can experience
higher seismic accelerations than in the case the
same component is rigidly mounted. This is due
to the amplification effects of the vibration
mounts. The fundamental period of the isolated
components can be such that resonance condition
with one or more modes of the primary structure
is possible. This can result in amplification in
lateral force.
7.13.3.4– Connections
C7.13.3.4–
Connections and attachments or anchorage
of the nonstructural element should be
designed for twice the design seismic force
required for that nonstructural element.
Connection and attachment shall be bolted,
welded, or otherwise positively fastened
without consideration of frictional resistance
produced by the effect of gravity.
Connections
to
ornaments,
veneers,
appendages, and exterior panels including
anchor bolts shall be corrosion resisting,
ductile, and have adequate anchorages.
Friction forces induced by gravity should be
ignored, because vertical ground motions may
reduce the effect of gravity.
7.13.4– Seismic Relative
Displacement
C7.13.4–
Seismic relative displacement (Dp), that a
nonstructural element must be designed to
accommodate shall be determined as per
clause 7.13.4.1, 7.13.4.2 and 7.13.4.3.
Seismic relative displacement equations are
provided to support the selection and design of
cladding, stairwells, piping systems, sprinkler
systems, and other components that are connected
to the building at multiple levels (clause 7.13.4.1)
or to adjacent buildings (clause 7.13.4.2). These
equations provide the architect a rational basis for
assessing the flexibility or clearances required by
components and claddings and their connections
to accommodate the expected building
movements during earthquake.
7.13.4.1–
C7.13.4.1–
For two connection points on the same
structure A, one at a height hx, and other at a
height hy, seismic relative displacement Dp
shall be determined as
The first equation yields an estimate of actual
structural displacements, as determined by elastic
analysis, with no structural-response modification
factor (R). Second equation is provided in
recognition that elastic displacements are not
IITK-GSDMA-EQ05-V4.0
Page 111
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
CODE
COMMENTARY
Dp is not required to be taken as greater than
always defined or available at the time the
component is designed or procured. This equation
allows the use of storey drift limitations.
D p = δ xA − δ yA
R (hx − h y )
Δ aA
hsx
where,
δ xA = Deflection
at
building
level
x
of
structure A due to design seismic load
determined by elastic analysis, and multiplied
by response reduction factor (R) of the
building as per Table 7,
δ yA = Deflection
at
building
level
y
of
structure A due to design seismic load
determined by elastic analysis, and multiplied
by response reduction factor (R) of the
building as per Table 7,
hx = Height of level x to which upper
connection point is attached,
hy = Height of level y to which lower
connection point is attached,
Δ aA = Allowable storey drift for structure A
calculated as per 7.12.1, and
hsx = Storey height below level x.
7.13.4.2–
For two connection points on separate
structures A and B, or separate structural
systems, one at height hx and the other at a
height hy, Dp shall be determined as
D p = δ xA + δ yB
Dp is not required to be taken as greater than
⎛ Δ
Δ
R⎜⎜ hx aA + h y aB
hsx
⎝ hsx
⎞
⎟⎟
⎠
where,
δ yB = Deflection
at
building
level
y
of
structure B due to design seismic load
determined by elastic analysis, and multiplied
by response reduction factor (R) of the
building as per Table 7,
IITK-GSDMA-EQ05-V4.0
Page 112
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
CODE
COMMENTARY
Δ aB = Allowable storey drift for structure B
calculated as per 7.12.1.
7.13.4.3-
C7.13.4.3–
The effect of seismic relative displacements
shall be considered in combination with
displacements caused by other loads as
appropriate.
Seismic relative displacements must be combined
with the displacements due to other loads such as
thermal and static loads.
7.127.14 – Miscellaneous
C7.14 -- Miscellaneous
7.12.17.14.1– Foundations
C7.14.1 – Foundations
Isolated R.C.C. footings without tie beams, or
unreinforced strip foundation shall not be
permitted in soft soils with N<10 for any
seismic zone. The use of foundations
vulnerable
to
significant
differential
settlement due to ground shaking shall be
avoided for structures in seismic Zones III, IV
and V. In seismic Zones IV and V, individual
spread footings or pile caps shall be
interconnected with ties, (See 5.3.4.1 of IS
4326) except when individual spread footings
are directly supported on rock. All ties shall
be capable of carrying, in tension and in
compression, an axial force equal to Ah/4
times 5% of the larger of the column or pile
cap load, in addition to the otherwise
computed forces. Here, Ah is as per 6.4.2.
Clause 7.12.1 has been introduced to prevent the
use of foundation types vulnerable to differential
settlement. One may note that the note 7 in table 1
of the 2002 edition of the code has been omitted
there and introduced here.
7.12.27.14.2– Cantilever
Projections
C7.14.2 – Cantilever Projections
7.12.2.17.14.2.1 – Vertical Projections
Tower, tanks, parapets, smoke stacks
(chimneys) and other vertical cantilever
projections attached to buildings and
projecting above the roof, shall be designed
and checked for stability for five times the
design horizontal seismic coefficient Ah
specified in 6.4.2. In the analysis of the
building, the weight of these projecting
elements will be lumped with the roof weight
In 2002 edition of the code, ties were supposed to
be designed for an axial load (in tension and
compression) equal to Ah/4 times the larger of the
column or pile cap load. This was fairly
empirical, and the specification appeared to be on
the lower side. Many structural engineers design
the ties for 5% of the larger of the column or pile
cap load. This specification, therefore, has been
changed.
Tie beams may be provided either at the footing
level or at the plinth level in case the difference
between footing and plinth levels is not
substantial.
All projections (vertical and horizontal) are highly
vulnerable to damage during earthquakes. Being
cantilevers, there is no redundancy and hardly any
ductility. Hence, the projections are designed for
five times the seismic coefficient.
7.12.2.27.14.2.2 – Horizontal Projections
All horizontal projections like brackets,
cornices and balconies shall be designed
IITK-GSDMA-EQ05-V4.0
Page 113
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
CODE
COMMENTARY
and checked for stability for five times the
design vertical coefficient specified in 6.4.5
(that is for 10/3 Ah).
7.12.2.37.14.2.3 –
The increased design forces specified in
7.12.2.1 7.14.2.1 and 7.12.2.2 7.14.2.2are
only for designing the projecting parts and
their connections with the main structures.
For the design of the main structure, such
increase need not be considered.
7.12.37.14.3– Compound Walls
Compound walls shall be designed for the
design horizontal coefficient of Z/2. Ah with
importance factor I =1.0 specified in 6.4.2.
7.12.4 7.14.4– Connections
between Parts
All parts of the building, except between the
separation sections, shall be tied together to
act as integrated single unit. All connections
between different parts, such as beams to
columns and columns to their footings,
should be made capable of transmitting a
force, in all possible directions, of magnitude
(Qi /W i) times but not less than 0.05 times the
weight of the smaller part of the total of dead
and imposed load reaction. Frictional
resistance shall not be relied upon for
fulfilling these requirements.
IITK-GSDMA-EQ05-V4.0
Page 114
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
Annex A
IITK-GSDMA-EQ05-V4.0
Page 115
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
Annex B
IITK-GSDMA-EQ05-V4.0
Page 116
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
Annex C
IITK-GSDMA-EQ05-V4.0
Page 117
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
Annex D
(Foreword and Clause 3.15)
Comprehensive Intensity Scale (MSK 64 Intensity Scale)
The scale was discussed generally at the inter-governmental meeting convened by UNESCO
in April 1964. Though not finally approved the scale is more comprehensive and describes the
intensity of earthquake more precisely. The main definitions used are followings;
a) Type of Structures (Buildings)
Type A - Building in field-stone, rural structures, unburnt-brick houses, clay houses.
Type B - Ordinary brick buildings, buildings of large block and prefabricated type, half
timbered structures, buildings in natural hewn stone.
Type C - Reinforced buildings, well built wooden structures.
b) Definition of Quantity
Single, few
About 5 percent
Many
About 50 percent
Most
About 75 percent
c) Classification of Damage to buildings
Grade 1
Slight damage
Fine cracks in plaster; fall of small pieces of plaster
Grade 2
Moderate damage
Small cracks in plasterwalls; fall of fairly larger pieces of plaster;
pantiles slip off; cracks in chimneys parts of chimney fall down.
Grade 3
Heavy damage
Large and deep cracks in plasterwalls; fall of chimneys.
Grade 4
Destruction
Gaps in walls; parts of buildings may collapse; separate parts of
the buildings lose their cohesion; and inner walls collapse.
Grade 5
Total damage
Total collapse of the buildings
d). Arrangement of the scale
Introductory letters are used in paragraphs throughout the scale as follows:
i)
Persons and surroundings.
ii)
Structures of all kinds.
iii) Nature.
de) Intensity Scale
I.
1Not Noticeable – The intensity of the vibration is below the limits of sensibility; the
tremor is detected and recorded by seismograph only.
I.II.
2Scarcely noticeable (very slight) – Vibration is felt only by individual people at rest in
houses, especially on upper floors of buildings.
III.
3Weak, partially observed only – The earthquake is felt indoors by a few people,
outdoors only in favourable circumstances. The vibration is like that due to the passing of
a light truck. Attentive observers notice a slight swinging of hanging objects.
IV.
4. Largely Observed – The earthquake is felt indoors by many people, outdoors by few.
IITK-GSDMA-EQ05-V4.0
Page 118
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
Here and there people awake, but no one is frightened. The vibration is like that due to the
passing of a heavily loaded truck. Windows, doors, and dishes rattle. Floors and walls
crack. Furniture begins to shake. Hanging objects swing slightly. Liquid in open vessels
are slightly disturbed. In standing motor cars the shock is noticeable.
V.
5. Awakening
i) The earthquake is felt indoors by all, outdoors by many. Many people awake. A few
run outdoors. Animals become uneasy. Buildings tremble throughout. Hanging objects
swing considerably. Pictures knock against walls or swing out of place. Occasionally
pendulum clocks stop. Unstable objects overturn or shift. Open doorsDoors and
windows are thrust open and slam back again. Liquids spill in small amounts from wellfilled open containers. The sensation of vibration is like that due to heavy objects
falling inside the buildings.
ii) Slight damages in buildings of Type A are possible.
iii) Slight waves on standing water. Sometimes changes in flow of springs.
VI.
6. Frightening
i) Felt by most indoors and outdoors. Many people in buildings are frightened and run
outdoors. A few persons loose their balance. Domestic animals rum out of their stalls.
In few many instances, dishes and glassware may break, and books fall down, pictures
move, and unstable objects overturn. Heavy furniture may possibly move and small
steeple bells may ring.
ii) Damage of Grade 1 is sustained in single buildings of Type B and in many of Type A.
Damage in few some buildings of Type A is of Grade 2.
iii) In few cases, cracks Cracks up to widths of 1cm possible in wet ground; in mountains
occasional landslips: change in flow of springs and in level of well water are observed.
VII.
7. Damage of buildings
i) Most people are frightened and run outdoors. Many find it difficult to stand. The
vibration is noticed by persons driving motor cars. Large bells ring.
ii) In many buildings of Type C damage of Grade 1 is caused; in many buildings of Type
B damage is of Grade 2. Most buildings of Type A suffer damage of Grade 3, few of
Grade 4. In single instances, landslides of roadway on steep slopes: crack in roads;
seams of pipelines damaged; cracks in stone walls.
iii) Waves are formed on water, and is made turbid by mud stirred up. Water levels in
wells change, and the flow of springs changes. Some times dry springs have their flow
resorted and existing springs stop flowing. In isolated instances parts of sand and
gravelly banks slip off.
VIII. 8. Destruction of buildings
i) Fright and panic; also persons driving motor cars are disturbed, Here and there
branches of trees break off. Even heavy furniture moves and partly overturns. Hanging
lamps are damaged in part.
ii) Most buildings of Type C suffer damage of Grade 2, and few of Grade 3, Most
buildings of Type B suffer damage of Grade 3. Most buildings of Type A suffer damage
of Grade 4. Occasional breaking of pipe seams. Memorials and monuments move and
twist. Tombstones overturn. Stone walls collapse.
iii) Small landslips in hollows and on banked roads on steep slopes; cracks in ground up
to widths of several centimetres. Water in lakes become turbid. New reservoirs come
into existence. Dry wells refill and existing wells become dry. In many cases, change in
flow and level of water is observed.
IX.
9. General damage of buildings
i) General panic; considerable damage to furniture. Animals run to and fro in confusion,
IITK-GSDMA-EQ05-V4.0
Page 119
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
and cry.
ii) Many buildings of Type C suffer damage of Grade 3, and a few of Grade 4. Many
buildings of Type B show a damage of Grade 4 and a few of Grade 5. Many buildings
of Type A suffer damage of Grade 5. Monuments and columns fall. Considerable
damage to reservoirs; underground pipes partly broken. In individual cases, railway
lines are bent and roadway damaged.
iii) On flat land overflow of water, sand and mud is often observed. Ground cracks to
widths of up to 10 cm, on slopes and river banks more than 10 cm. Further more, a
large number of slight cracks in ground; falls of rock, many land slides and earth flows;
large waves in water. Dry wells renew their flow and existing wells dry up.
X.
10. General destruction of buildings
i) Many buildings of Type C suffer damage of Grade 4, and a few of Grade 5. Many
buildings of Type B show damage of Grade 5. Most of Type A have destruction of
Grade 5. Critical damage to dykes and dams. Severe damage to bridges. Railway lines
are bent slightly. Underground pipes are bent or broken. Road paving and asphalt
show waves.
ii) In ground, cracks up to widths of several centimetres, sometimes up to 1m, Parallel to
water courses occur broad fissures. Loose ground slides from steep slopes. From river
banks and steep coasts, considerable landslides are possible. In coastal areas,
displacement of sand and mud; change of water level in wells; water from canals,
lakes, rivers, etc, thrown on land. New lakes occur.
XI.
11. Destruction
i) Severe damage even to well built buildings, bridges, water dams and railway lines.
Highways become useless. Underground pipes destroyed.
ii) Ground considerably distorted by broad cracks and fissures, as well as movement in
horizontal and vertical directions. Numerous landslips and falls of rocks. The intensity
of the earthquake requires to be investigated specifically,
XII.
12. Landscape changes
i) Practically all structures above and below ground are greatly damaged or destroyed.
ii) The surface of the ground is radically changed. Considerable ground cracks with
extensive vertical and horizontal movements are observed. Falling of rock and
slumping of river banks over wide areas, lakes are dammed; waterfalls appear and
rivers are deflected. The intensity of the earthquake requires to be investigated
specially.
IITK-GSDMA-EQ05-V4.0
Page 120
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
Annex E
Town
Zone
Zone
Factor, Z
Town
Zone
Zone
Factor, Z
Agra
III
0.16
Kanchipuram
III
0.16
Ahmedabad
III
0.16
Kanpur
III
0.16
Ajmer
II
0.10
Karwar
III
0.16
Allahabad
II
0.10
Kochi
III
0.16
Almora
IV
0.24
Kohima
V
0.36
Ambala
IV
0.24
Kolkata
III
0.16
Amritsar
IV
0.24
Kota
II
0.10
Asansol
III
0.24
Kurnool
II
0.10
Aurangabad
II
0.10
Lucknow
III
0.16
Bahraich
IV
0.24
Ludhiyana
IV
0.24
Bangalore
II
0.10
Madurai
II
0.10
Barauni
IV
0.24
Mandi
V
0.36
Bareilly
III
0.16
Mangalore
III
0.16
Belgaum
III
0.16
Monghyr
IV
0.24
Bhatinda
III
0.16
Moradabad
IV
0.24
Bhilai
II
0.10
Mumbai
III
0.16
Bhopal
II
0.10
Mysore
II
0.10
Bhubaneswar
III
0.16
Nagpur
II
0.10
Bhuj
V
0.36
Nagarjunasagar
II
0.10
Bijapur
III
0.16
Nainital
IV
0.24
Bikaner
III
0.16
Nasik
III
0.16
Bokaro
III
0.16
Nellore
III
0.16
Bulandshahr
IV
0.24
Osmanabad
III
0.16
Burdwan
III
0.16
Panjim
III
0.16
Calicut
III
0.16
Patiala
III
0.16
Chandigarh
IV
0.24
Patna
IV
0.24
Chennai
III
0.16
Pilibhit
IV
0.24
Chitradurga
II
0.10
Pondicherry
II
0.10
Coimatore
III
0.16
Pune
III
0.16
Cuddalore
II
0.10
Raipur
II
0.10
Cuttack
III
0.16
Rajkot
III
0.16
Darbhanga
V
0.36
Ranchi
II
0.10
Darjeeling
IV
0.24
Roorkee
IV
0.24
Dharwad
III
0.16
Rourkela
II
0.10
Dehra Dun
IV
0.24
Sadiya
V
0.36
Dharampuri
III
0.16
Salem
III
0.16
IITK-GSDMA-EQ05-V4.0
Page 121
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
Shillong
V
0.36
Delhi
IV
0.24
Simla
IV
0.24
Durgapur
III
0.16
Sironj
II
0.10
Gangtok
IV
0.24
Solapur
III
0.16
Guwahati
V
0.36
Srinagar
V
0.36
Goa
III
0.16
Surat
III
0.16
Gulbarga
II
0.10
Tarapur
III
0.16
Gaya
III
0.16
Tezpur
V
0.36
Gorakhpur
IV
0.24
Thane
III
0.16
Hyderabad
II
0.10
Thanjavur
II
0.10
Imphal
V
0.36
Thiruvananthapuram
III
0.16
Jabalpur
III
0.16
Tiruchirappali
II
0.10
Jaipur
II
0.10
Thiruvennamalai
III
0.16
Jamshedpur
II
0.10
Udaipur
II
0.10
Jhansi
II
0.10
Vadodara
III
0.16
Jodhpur
II
0.10
Varanasi
III
0.16
Jorhat
V
0.36
Vellore
III
0.16
Kakrapara
III
0.16
Vijayawada
III
0.16
Kalapakkam
III
0.16
VIshakhapatnam
II
0.10
IITK-GSDMA-EQ05-V4.0
Page 122
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
Annex F
Simplified Procedure for Evaluation of Liquefaction Potential
Due to the difficulties in obtaining and testing undisturbed representative samples from most
potentially liquefiable sites, in-situ testing is the approach preferred by most engineers for
evaluating the liquefaction potential of a soil deposit. Liquefaction potential assessment
procedures involving both the SPT and CPT are widely used in practice. The most common
procedure used in engineering practice for the assessment of liquefaction potential of sands
and silts is the Simplified Procedure1. The procedure may be used with either SPT blow count,
CPT tip resistance or shear wave velocity measured within the deposit as discussed below:
Step 1: The subsurface data used to assess liquefaction susceptibility should include the
location of the water table, either SPT blow count (N) (or tip resistance of a standard CPT cone
(qc ) or the shear wave velocity), mean grain size (D50 ) , unit weight, and fines content of the
soil (percent by weight passing the IS Standard Sieve No. 75μ).
Step 2: Evaluate the total vertical stress
(σ v )
and effective vertical stress
(σ v′ )
for all
potentially liquefiable layers within the deposit.
Step 3: The following equation can be used to evaluate the stress reduction factor rd :
rd = 1 − 0.000765 z for z ≤ 9.15 m and
rd = 1 − 0.0267 z for 9.15 < z ≤ 23 m
where z is the depth below the ground surface in meters.
CSReq = 0.65(a max / g )rd (σ v / σ v′ )
Step 4: Calculate the critical stress ratio induced by the design earthquake,
where
σv
and
σ v′
CSReq , as;
are the total and effective vertical stresses, respectively, at depth z, amax is
the peak ground acceleration, and g is the acceleration due to gravity.
Step 5: Correct CSReg for earthquake magnitude (Mw), stress level and for initial static shear
using correction factors km, kσ and kα, respectively, according to:
CSRL = CSR7.5 .k M kσ .kα
The correction factors are estimated using Figures F-1, F-2 and F-3 (in combination with figure
F-4), respectively.
For assessing liquefaction susceptibility using the SPT go to Step 6a, for the CPT go to Step 6b,
and the shear wave velocity go to Step 6c.
Step 6a: Evaluate the standardized SPT blow count ( N 60 ) which is the standard penetration
test blow count for a hammer with an efficiency of 60 percent. Specifications of the
“standardized” equipment corresponding to an efficiency of 60 percent are given in Table F-1. If
1
Youd, T.L., Idriss, I.M., Andrus, R.D., Arango, I., Castro, G., Chtristian, J.T., Dobry, R., Finn,
W.D.L., Harder, L.F., Hynes, M.E., Ishihara, K., Koester, J.P., Liao, S.S.C., Marcuson III, W.F.,
Martin, G.R., Mitchell, J.K., Moriwaki, Y., Power, M.S., Robertson, P.K., Seed, R.B., Stokoe II, K.H.
2001. Liquefaction resistance of soils: Summary report from the 1996 NCEER and 1998
NCEER/NSF workshops on evaluation of liquefaction resistance of soils. J. of Geotech. and
Geoenv. Engrg., ASCE. 127(10): 817-833.
IITK-GSDMA-EQ05-V4.0
Page 123
IITK-GSDMA-EQ15-V3.0
DRAFT
Code & Commentary IS:1893 (Part 1)
nonstandard equipment is used,
N 60 = N .C60
where
N 60 , is obtained from the equation:
C60 is the product of various correction factors. Correction factors recommended by
various investigators for some common non-standard SPT configurations are provided in Table
F-2. For SPT conducted as per IS: 2131-1981, the energy delivered to the drill rod is 60 percent
and hence C60 = 1 is assumed.
Calculate the normalized standardized SPT blow count,
(N1 )60 . (N1 )60
is the standardized
blow count normalized to an effective overburden pressure of 96 kPa in order to eliminate the
influence of confining pressure. This is obtained by the following equation:
(N1 )60 = C N N 60
C N = (Pa / σ v′ )
Str