Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2012
…
37 pages
1 file
Summary Primary cilia are involved in important developmental and disease pathways, such as regulation of neurogenesis and tumorigenesis. They function as sensory antennae and are essential in the regulation of key extracellular signalling systems. Here we investigate the effects of cell stress on primary cilia. Exposure of mammalian cells in vitro, and zebrafish cells in vivo, to elevated temperature resulted in the rapid loss of cilia by resorption. In mammalian cells cilia loss correlated with a reduction in hedgehog signalling.
Journal of Biological Chemistry, 2007
A cilium stands out in blue fluorescence against the yellow fluorescence of the rest of the cell. Credit: Inoue lab Experiments at Johns Hopkins have unearthed clues about which protein signaling molecules are allowed into hollow, hair-like "antennae," called cilia, that alert cells to critical changes in their environments.
2022
Dysfunction of the primary cilium, a microtubule-based signaling organelle, leads to genetic conditions called ciliopathies. Hedgehog (Hh) signaling is mediated by the primary cilium in vertebrates and is therefore implicated in ciliopathies; however, it is not clear which immortal cell lines are the most appropriate for modeling pathway response in human disease; therefore we systematically evaluated Hh in five commercially available, immortal mammalian cell lines: ARPE-19, HEK293T, hTERT RPE-1, NIH/3T3, and SH-SY5Y. All of the cell lines ciliated adequately for our subsequent experiments, except for SH-SY5Y which were excluded from further analysis. hTERT RPE-1 and NIH/3T3 cells relocalized Hh pathway components Smoothened (SMO) and GPR161 and upregulated Hh target genes in response to pathway stimulation. In contrast, pathway stimulation did not induce target gene expression in ARPE-19 and HEK293T cells, despite SMO and GPR161 relocalization. These data indicate that human hTERT ...
Nature Cell Biology, 2011
Using RNAi screening, proteomics, cell biological and mouse genetics approaches, we have identified a complex of nine proteins, seven of which are disrupted in human ciliopathies. A transmembrane component, TMEM231, localizes to the basal body before and independently of intraflagellar transport in a Septin 2 (Sept2)-regulated fashion. The localizations of TMEM231, B9D1 (B9 domain-containing protein 1) and CC2D2A (coiled-coil and C2 domain-containing protein 2A) at the transition zone are dependent on one another and on Sept2. Disruption of the complex in vitro causes a reduction in cilia formation and a loss of signalling receptors from the remaining cilia. Mouse knockouts of B9D1 and TMEM231 have identical defects in Sonic hedgehog (Shh) signalling and ciliogenesis. Strikingly, disruption of the complex increases the rate of diffusion into the ciliary membrane and the amount of plasma-membrane protein in the cilia. The complex that we have described is essential for normal cilia function and acts as a diffusion barrier to maintain the cilia membrane as a compartmentalized signalling organelle.
Molecular and cellular biology, 2010
Hedgehog (Hh) signaling in vertebrates depends on intraflagellar transport (IFT) within primary cilia. The Hh receptor Patched is found in cilia in the absence of Hh and is replaced by the signal transducer Smoothened within an hour of Hh stimulation. By generating antibodies capable of detecting endogenous pathway transcription factors Gli2 and Gli3, we monitored their kinetics of accumulation in cilia upon Hh stimulation. Localization occurs within minutes of Hh addition, making it the fastest reported readout of pathway activity, which permits more precise temporal and spatial localization of Hh signaling events. We show that the species of Gli3 that accumulates at cilium tips is full-length and likely not protein kinase A phosphorylated. We also confirmed that phosphorylation and betaTrCP/Cul1 are required for endogenous Gli3 processing and that this is inhibited by Hh. Surprisingly, however, Hh-dependent inhibition of processing does not lead to accumulation of full-length Gli3...
Current topics in developmental biology, 2008
Cilia function as critical sensors of extracellular information, and ciliary dysfunction underlies diverse human disorders including situs inversus, polycystic kidney disease, retinal degeneration, and Bardet-Biedl syndrome. Importantly, mammalian primary cilia ...
Nature Genetics, 2008
Characterization of previously described intraflagellar transport (IFT) mouse mutants has led to the proposition that normal primary cilia are required for mammalian cells to respond to the sonic hedgehog (SHH) signal. Here we describe an N-ethyl-Nnitrosourea-induced mutant mouse, alien (aln), which has abnormal primary cilia and shows overactivation of the SHH pathway. The aln locus encodes a novel protein, THM1 (tetratricopeptide repeat-containing hedgehog modulator-1), which localizes to cilia. aln-mutant cilia have bulb-like structures at their tips in which IFT proteins (such as IFT88) are sequestered, characteristic of Chlamydomonas reinhardtii and Caenorhabditis elegans retrograde IFT mutants. RNA-interference knockdown of Ttc21b (which we call Thm1 and which encodes THM1) in mouse inner medullary collecting duct cells expressing an IFT88-enhanced yellow fluorescent protein fusion recapitulated the aln-mutant cilial phenotype, and live imaging of these cells revealed impaired retrograde IFT. In contrast to previously described IFT mutants, Smoothened and full-length glioblastoma (GLI) proteins localize to aln-mutant cilia. We hypothesize that the aln retrograde IFT defect causes sequestration of IFT proteins in aln-mutant cilia and leads to the overactivated SHH signaling phenotype. Specifically, the aln mutation uncouples the roles of anterograde and retrograde transport in SHH signaling, suggesting that anterograde IFT is required for GLI activation and that retrograde IFT modulates this event.
The American journal of pathology, 2017
The primary cilium, a sensory appendage that is present in most mammalian cells, plays critical roles in signaling pathways and cell cycle progression. Mutations that affect the structure or function of primary cilia result in ciliopathies, a group of developmental and degenerative diseases that affect almost all organs and tissues. Our understanding of the constituents, development, and function of primary cilia has advanced considerably in recent years, revealing pathogenic mechanisms that potentially underlie ciliopathies. In the brain, the primary cilia are crucial for early patterning, neurogenesis, neuronal maturation and survival, and tumorigenesis, mostly through regulating cell cycle progression, Hedgehog signaling, and WNT signaling. We review these advances in our knowledge of primary cilia, focusing on brain development, and discuss the mechanisms that may underlie brain abnormalities in ciliopathies.
Sensors, 2009
Primary cilia, thin hair-like structures protruding from the apical surface of most mammalian cells, have gained the attention of many researchers over the past decade. Primary cilia are microtubule-filled sensory organelles that are enclosed within the ciliary membrane. They originate at the cell surface from the mother centriole that becomes the mature basal body. In this review, we will discuss recent literatures on the roles of cilia as sophisticated sensory organelles. With particular emphasis on vascular endothelia and renal epithelia, the mechanosensory role of cilia in sensing fluid shear stress will be discussed. Also highlighted is the ciliary involvement in cell cycle regulation, development, cell signaling and cancer. Finally, primary cilia-related disorders will be briefly described.
Nature Medicine, 2009
Primary cilia are present on most mammalian cells and are implicated in transducing Hedgehog (Hh) signals during development; however, the prevalence of cilia on human tumors remains unclear, and the role of cilia in cancer has not been examined. Here we show that human basal cell carcinomas (BCCs) are frequently ciliated, and we test the role of cilia in BCC by conditionally deleting Kif3a (encoding kinesin family member 3A) or Ift88 (encoding intraflagellar transport protein 88), genes required for ciliogenesis, in two Hh pathway-dependent mouse tumor models.
The Journal of Arab & Muslim Media Research (JAMMR). , 2024
REVISTA GENERAL DE DERECHO CANÓNICO Y ECLESIÁSTICO DEL ESTADO, 2024
Conhecimento & Diversidade
Publicación: III Informe sobre los Servicios Sociales en España (ISSE III), 2019
Visual Review, 2024
Toplumsal Tarih Dergisi, 2024
Nigerian Journal of Agriculture, Food and Environment 20(2), 2024
IBC Conference , 2024
Jurnal Abdi Insani
Encyclopaedia of Islam-Three , 2023
New Trends and Issues Proceedings on Humanities and Social Sciences, 2017
IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, 2019
Papeles Del Psicologo, 2010
Austin Journal of Analytical & Pharmaceutical Chemistry, 2024
Asian Pacific journal of cancer prevention : APJCP, 2013
Clinical Biochemistry, 2011
Archives of Physical Medicine and Rehabilitation, 2005