Connexive Logic
12 Followers
Most cited papers in Connexive Logic
ABSTRACT: This paper contends that Stoic logic (i.e. Stoic analysis) deserves more attention from contemporary logicians. It sets out how, compared with contemporary propositional calculi, Stoic analysis is closest to methods of backward... more
ABSTRACT: This paper contends that Stoic logic (i.e. Stoic analysis) deserves more attention from contemporary logicians. It sets out how, compared with contemporary propositional calculi, Stoic analysis is closest to methods of backward proof search for Gentzen-inspired substructural sequent logics, as they have been developed in logic programming and structural proof theory, and produces its proof search calculus in tree form. It shows how multiple similarities to Gentzen sequent systems combine with intriguing dissimilarities that may enrich contemporary discussion. Much of Stoic logic appears surprisingly modern: a recursively formulated syntax with some truth-functional propositional operators; analogues to cut rules, axiom schemata and Gentzen's negation-introduction rules; an implicit variable-sharing principle and deliberate rejection of Thinning and avoidance of paradoxes of implication. These latter features mark the system out as a relevance logic, where the absence of duals for its left and right introduction rules puts it in the vicinity of McCall's connexive logic. Methodologically, the choice of meticulously formulated meta-logical rules in lieu of axiom and inference schemata absorbs some structural rules and results in an economical, precise and elegant system that values decidability over completeness.
However broad or vague the notion of connexivity may be, it seems to be similar to the notion of relevance even when relevance and connexive logics have been shown to be incompatible to one another. Relevance logics can be examined by... more
However broad or vague the notion of connexivity may be, it seems to be similar to the notion of relevance even when relevance and connexive logics have been shown to be incompatible to one another. Relevance logics can be examined by suggesting syntactic relevance principles and inspecting if the theorems of a logic abide to them. In this paper we want to suggest that a similar strategy can be employed with connexive logics. To do so, we will suggest some properties that seem to be hinted at in Nelson's work. Following this strategy will ideally shed some light over the notion of content and will also help make a clear comparison between relevance and connexive logics.
The most widespread criterion for the admission of a logic into the connexive family is the satisfaction of the pairs of formulas known as Aristotle's and Boethius' theses, along with the non-symmetry of implication. In this paper, we... more
The most widespread criterion for the admission of a logic into the connexive family is the satisfaction of the pairs of formulas known as Aristotle's and Boethius' theses, along with the non-symmetry of implication. In this paper, we discuss whether this is enough to characterize a connexive logic or if more can be said about the issue. Our strategy is the following: first, we introduce a logic that has origins and motivations that have little to do with connexive logic. We then present a list of additional criteria found scattered throughout the literature on connexivity and propose to use this list to compare this logic and some of the well-known non-bivalent truth-functional connexive logics. This comparison gives us several interesting results: when every condition is given the same weight, the introduced logic can score as high as some of the well-known systems. Furthermore, a connection between the satisfaction of the most conditions and the loss of intuitiveness or an increase in the complexity of certain structural properties of the system seems to arise. We take these results to motivate the more general open problem of finding the most adequate way of judging systems of connexive logic.
The paper introduces a variant of connexive logic in which connexivity is extended from an interaction of negation with implication to an interaction of negation also with conjunction and disjunction. The logic is presented by two... more
The paper introduces a variant of connexive logic in which connexivity is
extended from an interaction of negation with implication to an interaction
of negation also with conjunction and disjunction.
The logic is presented by two deductively equivalent methods:
an axiomatic one and a natural-deduction one. Both are shown to be complete
for a four-valued model-theory.
extended from an interaction of negation with implication to an interaction
of negation also with conjunction and disjunction.
The logic is presented by two deductively equivalent methods:
an axiomatic one and a natural-deduction one. Both are shown to be complete
for a four-valued model-theory.
The analogy between inference and mereological containment goes at least back to Aristotle, whose discussion in the Prior Analytics motivates the validity of the syllogism by way of talk of parts and wholes. On this picture, the... more
The analogy between inference and mereological containment goes at least back to Aristotle, whose discussion in the Prior Analytics motivates the validity of the syllogism by way of talk of parts and wholes. On this picture, the application of syllogistic is merely the analysis of concepts, a term that presupposes—through the root ἀνά + λύω —a mereological background.
In the 1930s, such considerations led William T. Parry to attempt to codify this notion of logical containment in his system of analytic implication AI. Parry’s original system AI was later expanded to the system PAI. The hallmark of Parry’s systems—and of what may be thought of as containment logics or Parry systems in general—is a strong relevance property called the ‘Proscriptive Principle’ (PP) described by Parry as the thesis that:
No formula with analytic implication as main relation holds universally if it has a free variable occurring in the consequent but not the antecedent.
This type of proscription is on its face justified, as the presence of a novel parameter in the consequent corresponds to the introduction of new subject matter. The plausibility of the thesis that the content of a statement is related to its subject matter thus appears also to support the validity of the formal principle.
Primarily due to the perception that Parry’s formal systems were intended to accurately model Kant’s notion of an analytic judgment, Parry’s deductive systems—and the suitability of the Proscriptive Principle in general—were met with severe criticism. While Anderson and Belnap argued that Parry’s criterion failed to account for a number of prima facie analytic judgments, others—such as Sylvan and Brady—argued that the utility of the criterion was impeded by its reliance on a ‘syntactical’ device.
But these arguments are restricted to Parry’s work qua exegesis of Kant and fail to take into account the breadth of applications in which the Proscriptive Principle emerges. It is the goal of the present work to explore themes related to deductive systems satisfying one form of the Proscriptive Principle or other, with a special emphasis placed on the rehabilitation of their study to some degree. The structure of the dissertation is as follows:
In Chapter 2, we identify and develop the relationship between Parry-type deductive systems and the field of ‘logics of nonsense.’ Of particular importance is Dmitri Bochvar’s ‘internal’ nonsense logic Σ0, and we observe that two ⊢-Parry subsystems of Σ0 (Harry Deutsch’s Sfde and Frederick Johnson’s RC) can be considered to be the products of particular ‘strategies’ of eliminating problematic inferences from Bochvar’s system.
The material of Chapter 3 considers Kit Fine’s program of state space semantics in the context of Parry logics. Recently, Fine—who had already provided the first intuitive semantics for Parry’s PAI—has offered a formal model of truthmaking (and falsemaking) that provides one of the first natural semantics for Richard B. Angell’s logic of analytic containment AC, itself a ⊢-Parry system. After discussing the relationship between state space semantics and nonsense, we observe that Fabrice Correia’s weaker framework—introduced as a semantics for a containment logic weaker than AC—tacitly endorses an implausible feature of allowing hypernonsensical statements. By modelling Correia’s containment logic within the stronger setting of Fine’s semantics, we are able to retain Correia’s intuitions about factual equivalence without such a commitment. As a further application, we observe that Fine’s setting can resolve some ambiguities in Greg Restall’s own truthmaker semantics.
In Chapter 4, we consider interpretations of disjunction that accord with the characteristic failure of Addition in which the evaluation of a disjunction A ∨ B requires not only the truth of one disjunct, but also that both disjuncts satisfy some further property. In the setting of computation, such an analysis requires the existence of some procedure tasked with ensuring the satisfaction of this property by both disjuncts. This observation leads to a computational analysis of the relationship between Parry logics and logics of nonsense in which the semantic category of ‘nonsense’ is associated with catastrophic faults in computer programs. In this spirit, we examine semantics for several ⊢-Parry logics in terms of the successful execution of certain types of programs and the consequences of extending this analysis to dynamic logic and constructive logic.
Chapter 5 considers these faults in the particular case in which Nuel Belnap’s ‘artificial reasoner’ is unable to retrieve the value assigned to a variable. This leads not only to a natural interpretation of Graham Priest’s semantics for the ⊢-Parry system S⋆fde but also a novel, many-valued semantics for Angell’s AC, completeness of which is proven by establishing a correspondence with Correia’s semantics for AC. These many-valued semantics have the additional benefit of allowing us to apply the material in Chapter 2 to the case of AC to define intensional extensions of AC in the spirit of Parry’s PAI.
One particular instance of the type of disjunction central to Chapter 4 is Melvin Fitting’s cut-down disjunction. Chapter 6 examines cut-down operations in more detail and provides bilattice and trilattice semantics for the ⊢-Parry systems Sfde and AC in the style of Ofer Arieli and Arnon Avron’s logical bilattices. The elegant connection between these systems and logical multilattices supports the fundamentality and naturalness of these logics and, additionally, allows us to extend epistemic interpretation of bilattices in the tradition of artificial intelligence to these systems.
Finally, the correspondence between the present many-valued semantics for AC and those of Correia is revisited in Chapter 7. The technique that plays an essential role in Chapter 4 is used to characterize a wide class of first-degree calculi intermediate between AC and classical logic in Correia’s setting. This correspondence allows the correction of an incorrect characterization of classical logic given by Correia and leads to the question of how to characterize hybrid systems extending Angell’s AC∗. Finally, we consider whether this correspondence aids in providing an interpretation to Correia’s first semantics for AC.
In the 1930s, such considerations led William T. Parry to attempt to codify this notion of logical containment in his system of analytic implication AI. Parry’s original system AI was later expanded to the system PAI. The hallmark of Parry’s systems—and of what may be thought of as containment logics or Parry systems in general—is a strong relevance property called the ‘Proscriptive Principle’ (PP) described by Parry as the thesis that:
No formula with analytic implication as main relation holds universally if it has a free variable occurring in the consequent but not the antecedent.
This type of proscription is on its face justified, as the presence of a novel parameter in the consequent corresponds to the introduction of new subject matter. The plausibility of the thesis that the content of a statement is related to its subject matter thus appears also to support the validity of the formal principle.
Primarily due to the perception that Parry’s formal systems were intended to accurately model Kant’s notion of an analytic judgment, Parry’s deductive systems—and the suitability of the Proscriptive Principle in general—were met with severe criticism. While Anderson and Belnap argued that Parry’s criterion failed to account for a number of prima facie analytic judgments, others—such as Sylvan and Brady—argued that the utility of the criterion was impeded by its reliance on a ‘syntactical’ device.
But these arguments are restricted to Parry’s work qua exegesis of Kant and fail to take into account the breadth of applications in which the Proscriptive Principle emerges. It is the goal of the present work to explore themes related to deductive systems satisfying one form of the Proscriptive Principle or other, with a special emphasis placed on the rehabilitation of their study to some degree. The structure of the dissertation is as follows:
In Chapter 2, we identify and develop the relationship between Parry-type deductive systems and the field of ‘logics of nonsense.’ Of particular importance is Dmitri Bochvar’s ‘internal’ nonsense logic Σ0, and we observe that two ⊢-Parry subsystems of Σ0 (Harry Deutsch’s Sfde and Frederick Johnson’s RC) can be considered to be the products of particular ‘strategies’ of eliminating problematic inferences from Bochvar’s system.
The material of Chapter 3 considers Kit Fine’s program of state space semantics in the context of Parry logics. Recently, Fine—who had already provided the first intuitive semantics for Parry’s PAI—has offered a formal model of truthmaking (and falsemaking) that provides one of the first natural semantics for Richard B. Angell’s logic of analytic containment AC, itself a ⊢-Parry system. After discussing the relationship between state space semantics and nonsense, we observe that Fabrice Correia’s weaker framework—introduced as a semantics for a containment logic weaker than AC—tacitly endorses an implausible feature of allowing hypernonsensical statements. By modelling Correia’s containment logic within the stronger setting of Fine’s semantics, we are able to retain Correia’s intuitions about factual equivalence without such a commitment. As a further application, we observe that Fine’s setting can resolve some ambiguities in Greg Restall’s own truthmaker semantics.
In Chapter 4, we consider interpretations of disjunction that accord with the characteristic failure of Addition in which the evaluation of a disjunction A ∨ B requires not only the truth of one disjunct, but also that both disjuncts satisfy some further property. In the setting of computation, such an analysis requires the existence of some procedure tasked with ensuring the satisfaction of this property by both disjuncts. This observation leads to a computational analysis of the relationship between Parry logics and logics of nonsense in which the semantic category of ‘nonsense’ is associated with catastrophic faults in computer programs. In this spirit, we examine semantics for several ⊢-Parry logics in terms of the successful execution of certain types of programs and the consequences of extending this analysis to dynamic logic and constructive logic.
Chapter 5 considers these faults in the particular case in which Nuel Belnap’s ‘artificial reasoner’ is unable to retrieve the value assigned to a variable. This leads not only to a natural interpretation of Graham Priest’s semantics for the ⊢-Parry system S⋆fde but also a novel, many-valued semantics for Angell’s AC, completeness of which is proven by establishing a correspondence with Correia’s semantics for AC. These many-valued semantics have the additional benefit of allowing us to apply the material in Chapter 2 to the case of AC to define intensional extensions of AC in the spirit of Parry’s PAI.
One particular instance of the type of disjunction central to Chapter 4 is Melvin Fitting’s cut-down disjunction. Chapter 6 examines cut-down operations in more detail and provides bilattice and trilattice semantics for the ⊢-Parry systems Sfde and AC in the style of Ofer Arieli and Arnon Avron’s logical bilattices. The elegant connection between these systems and logical multilattices supports the fundamentality and naturalness of these logics and, additionally, allows us to extend epistemic interpretation of bilattices in the tradition of artificial intelligence to these systems.
Finally, the correspondence between the present many-valued semantics for AC and those of Correia is revisited in Chapter 7. The technique that plays an essential role in Chapter 4 is used to characterize a wide class of first-degree calculi intermediate between AC and classical logic in Correia’s setting. This correspondence allows the correction of an incorrect characterization of classical logic given by Correia and leads to the question of how to characterize hybrid systems extending Angell’s AC∗. Finally, we consider whether this correspondence aids in providing an interpretation to Correia’s first semantics for AC.
The first section of the paper establishes the minimal properties of so-called consequential implication and shows that they are satisfied by at least two different operators of decreasing strength (symbolized by → and ⇒). Only the former... more
The first section of the paper establishes the minimal properties of so-called consequential implication and shows that they are satisfied by at least two different operators of decreasing strength (symbolized by → and ⇒). Only the former has been analyzed in recent literature, so the paper focuses essentially on the latter. Both operators may be axiomatized in systems which are shown to be translatable into standard systems of normal modal logic. The central result of the paper is that the minimal consequential system for ⇒, CI⇒, is definitionally equivalent to the deontic system KD and is intertranslatable with the minimal consequential system for → CI. The main drawback ot the weaker operator ⇒ is that it lacks unrestricted contraposition, but the final section of the paper argues that ⇒ has some properties which make it a valuable alternative to →, turning out especially plausible as a basis for the definition of operators representing synthetic (i.e. context-dependent) conditionals.
Related Topics