Search for R-Parity Breaking Sneutrino Exchange at
LEP
M. Acciarri, O. Adriani, M. Aguilar-Benitez, S. Ahlen, J. Alcaraz, G.
Alemanni, J. Allaby, A. Aloisio, G. Alverson, M G. Alviggi, et al.
To cite this version:
M. Acciarri, O. Adriani, M. Aguilar-Benitez, S. Ahlen, J. Alcaraz, et al.. Search for R-Parity Breaking
Sneutrino Exchange at LEP. Physics Letters B, Elsevier, 1997, 414, pp.373-381. in2p3-00000070
HAL Id: in2p3-00000070
http://hal.in2p3.fr/in2p3-00000070
Submitted on 16 Nov 1998
HAL is a multi-disciplinary open access
archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
CERN-PPE/97-99
28 July 1997
Search for R{Parity Breaking Sneutrino Exchange
at LEP
The L3 Collaboration
Abstract
We report on a search for R{parity breaking e ects due to supersymmetric tau{
sneutrino exchange in the reactions e+e ! e+e and e+e ! + at centre{of{
mass energies from 91 GeV to 172 GeV, using the L3 detector at LEP. No evidence
for deviations from the Standard Model expectations of the measured cross sections
and forward{backward asymmetries for these reactions is found. Upper limits for the
couplings 131 and 232 for sneutrino masses up to m 190 GeV are determined
from an analysis of the expected e ects due to tau sneutrino exchange.
Submitted to Phys.
Lett. B
Introduction
Supersymmetric theories [1] are considered to be the most promising and natural extensions of
the Standard Model (SM). The Minimal Supersymmetric Standard Model [2] conserves baryon
number B and lepton number L, usually represented as the existence of a multiplicative discrete
symmetry called R{parity [3]. R{parity conservation is not ensured by gauge invariance. The
most general superpotential even for a minimal supersymmetric model contains interactions
violating B and L.
The high{x, high{Q2 events observed by the H1 [4] and ZEUS [5] collaborations at HERA
have revived the interest in theories with broken R{parity. In this case the superpotential
contains L{violating trilinear Yukawa couplings, WR6 lll, of two leptons to scalar sleptons [6,7]:
WR6 lll = ijk LiL LjLERk ;
(1)
where L stands for the left{handed doublets of leptons, E for the right{handed singlets of
charged leptons, and ijk are generation indices. At least two di erent generations are coupled
in the purely leptonic vertices, since ijk 6= 0 only for i < j . Depending on the value of the
couplings the e ects due to sneutrino exchange in leptonic e+e processes at LEP energies
can be large [8].
The e ects of sneutrino exchange manifest themselves as deviations from the Standard
Model expectations of the measured cross sections, , and forward{backward asymmetries,
Afb, for e+ e and + nal states:
e+ e
!
e+e ;
e+ e
!
+ :
(2)
Mass limits for sneutrinos within the Minimal Supersymmetric Standard Model have been
derived from the measurement of the invisible width of the Z: m > 41:8 GeV, if three sneutrino
generations are assumed, and m > 37:1 GeV, in case of one sneutrino generation [9]. The
search for sneutrinos from models with broken R{parity is extended over the entire centre{of{
mass energy range of LEP1 and LEP2.
Measurements of Lepton{Pair Production
Measurements of cross sections and forward{backward asymmetries
for reactions (2) have been
p
by the L3 experiment at centre{of{mass
energies, s, around the Z peak [10], at
p
pperformed
s = 130:3 and 136.3 GeV [11], and at s = 161:3, 170.3 and 172.3 GeV [12]. The selection
procedure and the measurements with their statistical and systematic errors are described
in these references [10{12]. The L3 detector and its performance are described in [13]. In
except for the e+e ! e+ e cross section measurement the low{statistics results at
palls cases
= 170:3 GeV are combined with the results at 172.3 GeV to a centre{of{mass energy of
172.1 GeV.
For e+ e nal states both leptons have to satisfy 44 < < 136, where is the angle
between the incoming electron and the outgoing fermion. For muon{pair production around
the Z peak the angular acceptance is given by jcos j < 0:8. At higher energies, the angular
range is extended to jcos j < 0:9.
At the Z resonance 72258, and at higher energies 1099 electron{ and muon{pair events
have been selected. These correspond to an integrated luminosity of 40.8 pb 1 and 26.2 pb 1 ,
respectively.
2
For comparison of the measured values with the predictions from the Standard Model or
from theories with broken R{parity the measurements are not extrapolated to the full solid
angle. The model expectations are computed with the same angular cuts as applied to the
data.
Exchange of Tau Sneutrinos
Lepton{pair production in e+ e collisions is a ected by the R{parity violating exchange of
sneutrinos in the s{ and/or t{channel. The corresponding diagrams for e+e nal state events
are shown in Figure 1. For muon{ and tau{pair production only the s{channel diagram is
present in the Standard Model. Diagrams with sneutrino, j , exchange are present if the
couplings ijk are not zero at both vertices.
Interactions which violate R{parity will introduce at energies well below the mass of the
exchanged sneutrino the usual four{fermion contact interactions. In this letter, the impact of
nearby resonances is investigated, which necessitate the inclusion of propagator and non{zero
width e ects [8].
Lepton number conservation places severe constraints on the couplings in the general
case. Only if the e ective four{fermion Lagrangian does not violate L conservation, the allowed
values reach
m
);
(3)
0:1 ( 200 GeV
where m is the mass of the exchanged sneutrino.
This is possible if only some of the operators with a particular generation structure are
present in Equation (1). Two main options lead to s{channel sneutrino exchange and potentially
large e ects [8]:
case (A): one single Yukawa coupling is much larger than all the others, so that the
latter are negligible; two options are present: the muon sneutrino coupling to electrons
121 is heavily constrained by the R{violating interpretation of the HERA data [8], but
the coupling of tau sneutrinos to electrons 131 can be sizeable and is considered further.
case (B): two Yukawa couplings violating the same lepton avour are much larger than
the others; for s{channel exchange mainly the case where the coupling of tau sneutrinos
to electrons, 131 , and to muons, 232 , are not equal to zero is of interest.
The cross section for e+ e nal states in case (A) contains both s{ and t{channel contributions from the exchange of /Z bosons and of tau sneutrinos and anti{sneutrinos. Muon{pair
production is not a ected. In tau{pair production only very small e ects due to t{channel
electron sneutrino exchange occur.
In case (B), the reaction e+e ! + receives large additional contribution from tau sneutrino exchange in the s{channel and e ects similar to those in e+ e ! e+ e are obtained.
Deviations from the Standard Model predictions are computed with a program provided by
the authors of [8]. Initial{state radiation (ISR) changes the e ective centre{of{mass energy in
a large fraction of the observed events. These e ects are taken into account by computing the
rst order exponentiated cross sections and asymmetries following [14]. Other QED corrections
give smaller e ects and are neglected.
Examples of calculations before and after the inclusion of initial{state radiation are shown
in Figure 2a for e+e ! e+e and in Figure 2b for e+e ! + . Large e ects are observed,
3
especially in case of a radiative return to a nearby resonance. The typical interference curve in
e+ e nal state events is smeared after the inclusion of ISR, due to the integration over areas
with constructive and destructive interference.
Analysis and Results
For each centre{of{mass energy the deviations from the Standard Model resulting from tau
sneutrino exchange are computed, as a function of the tau sneutrino mass and coupling strength
. This is done on a two{dimensional grid which contains 150 values for m between 60 and
210 GeV, and 100 values for between 0.01 and 0.20.
Above the Z peak, the events at high e ective centre{of{mass energy are used. They do not
include the radiative return to the Z and have the largest sensitivity to a nearby resonance. For
e+ e nal states the programs ALIBABA [15] and TOPAZ0 [16] are used at the Z peak and
at higher energies, respectively. For muon{pair production the program ZFITTER [17] is used
throughout. The error on a deviation consists of three parts, which are combined in quadrature:
the statistical, the systematic and the theoretical error. The systematic error for cross sections
includes the luminosity error of our measurements ranging from 0.25% to 0.6%. Thus the cross
section measurements depend on the normalisation. For Afb measurements there is no such
dependence, and the statistical errors above the Z peak are still dominant. The measurements
of and Afb are independent and are combined.
No statistically signi cant deviations from the Standard Model predictions are observed,
see [10{12]. The maximum likelihood method is used to derive a one sided upper limit on
the coupling strength at the 90% con dence level for a given value of m . The likelihood
function, L, is constructed by combining the cross section and Afb measurements at the di erent
centre{of{mass energies:
0
21
n ( (SM; ; m ) meas)2 (Afb (SM; ; m ) Ameas
)
X
fb
A
+
ln L = @
2
2
2
2
Afb
i=1
i
= error((SM; ; m ) meas) ;
Afb = error(Afb(SM; ; m ) Ameas
fb ) ;
(4)
(5)
where (SM; ; m ) and Afb(SM; ; m ) are the expectations for the cross section and the
forward{backward asymmetry from the Standard Model combined with the additional e ect of
sneutrino exchange as a function of the mass and the coupling strength, and meas and Ameas
fb
are the measured quantities. The index i runs over all centre{of{mass energy points. After
proper normalisation the likelihood function gives the probability for ijk < lim for any value
of lim in the physically allowed region.
Finally, the results for the di erent sneutrino masses are combined in a single exclusion plot
in the (m ; ) plane. The results for e+ e nal states are shown in Figure 3. The LEP high
energy data has larger sensitivity to new physics of this type compared to the high precision
measurements at the Z peak. This is due to the fact that the absolute, and not the relative, error
is crucial in this search. The results are compared with limits on R{parity breaking interactions
from processes at lower energies [7]. The strongest limit on the coupling 131 comes from precise
measurements of the ratio R = ( ! e )= ( ! ). Using the latest data [18], a 90%
con dence level upper limit is derived and also shown in Figure 3.
4
For muon{pair production the results are shown in Figure 4, together with the 90% con dence level constraints derived from the lower energy measurements. In this case the strongest
limit on 232 comes from precise measurements of the ratio R = ( ! e )= ( ! e ). In
order to simplify the presentation of the limit in two dimensions, it is assumed that 131 = 232 .
In both cases, large and previously unexplored areas in the (m ; 131 ) and (m ; 131 = 232 )
planes are excluded.
Acknowledgements
We wish to express our gratitude to the CERN accelerator divisions for the excellent performance of the LEP machine. We acknowledge the contributions of all the engineers and
technicians who have participated in the construction and maintenance of this experiment. We
are grateful to J. Kalinowski, R. Ruckl, H. Spiesberger and P. Zerwas for providing us with
their code and for clarifying discussions.
5
The L3 Collaboration:
M.Acciarri,29 O.Adriani,18 M.Aguilar-Benitez,28 S.Ahlen,12 J.Alcaraz,28 G.Alemanni,24 J.Allaby,19 A.Aloisio,31
G.Alverson,13 M.G.Alviggi,31 G.Ambrosi,21 H.Anderhub,51 V.P.Andreev,7 40 T.Angelescu,14 F.Anselmo,10 A.Are ev,30
T.Azemoon,3 T.Aziz,11 P.Bagnaia,39 L.Baksay,46 S.Banerjee,11 Sw.Banerjee,11 K.Banicz,48 A.Barczyk,51 49
R.Barillere,19 L.Barone,39 P.Bartalini,36 A.Baschirotto,29 M.Basile,10 R.Battiston,36 A.Bay,24 F.Becattini,18
U.Becker,17 F.Behner,51 J.Berdugo,28 P.Berges,17 B.Bertucci,36 B.L.Betev,51 S.Bhattacharya,11 M.Biasini,19
A.Biland,51 G.M.Bilei36 J.J.Blaising,4 S.C.Blyth,37 G.J.Bobbink,2 R.Bock,1 A.Bohm,1 L.Boldizsar,15 B.Borgia,39
D.Bourilkov,51 M.Bourquin,21 S.Braccini,21 J.G.Branson,42 V.Brigljevic,51 I.C.Brock,37 A.Buni,18 A.Buijs,47
J.D.Burger,17 W.J.Burger,21 J.Busenitz,46 A.Button,3 X.D.Cai,17 M.Campanelli,51 M.Capell,17 G.Cara Romeo,10
G.Carlino,31 A.M.Cartacci,18 J.Casaus,28 G.Castellini,18 F.Cavallari,39 N.Cavallo,31 C.Cecchi,21 M.Cerrada,28
F.Cesaroni,25 M.Chamizo,28 Y.H.Chang,53 U.K.Chaturvedi,20 S.V.Chekanov,33 M.Chemarin,27 A.Chen,53 G.Chen,8
G.M.Chen,8 H.F.Chen,22 H.S.Chen,8 X.Chereau,4 G.Chiefari,31 C.Y.Chien,5 L.Cifarelli,41 F.Cindolo,10 C.Civinini,18
I.Clare,17 R.Clare,17 H.O.Cohn,34 G.Coignet,4 A.P.Colijn,2 N.Colino,28 V.Commichau,1 S.Costantini,9 F.Cotorobai,14
B.de la Cruz,28 A.Csilling,15 T.S.Dai,17 R.D'Alessandro,18 R.de Asmundis,31 A.Degre,4 K.Deiters,49 D.della Volpe,31
P.Denes,38 F.DeNotaristefani,39 D.DiBitonto,46 M.Diemoz,39 D.van Dierendonck,2 F.Di Lodovico,51 C.Dionisi,39
M.Dittmar,51 A.Dominguez,42 A.Doria,31 M.T.Dova,20 D.Duchesneau,4 P.Duinker,2 I.Duran,43 S.Dutta,11 S.Easo,36
Yu.Efremenko,34 H.El Mamouni,27 A.Engler,37 F.J.Eppling,17 F.C.Erne2, J.P.Ernenwein,27 P.Extermann,21 M.Fabre,49
R.Faccini,39 S.Falciano,39 A.Favara,18 J.Fay,27 O.Fedin,40 M.Felcini,51 B.Fenyi,46 T.Ferguson,37 F.Ferroni,39
H.Fesefeldt,1 E.Fiandrini,36 J.H.Field,21 F.Filthaut,37 P.H.Fisher,17 I.Fisk,42 G.Forconi,17 L.Fredj,21 K.Freudenreich,51
C.Furetta,29 Yu.Galaktionov,30 17 S.N.Ganguli,11 P.Garcia-Abia,50 S.S.Gau,13 S.Gentile,39 N.Gheordanescu,14
S.Giagu,39 S.Goldfarb,24 J.Goldstein,12 Z.F.Gong,22 A.Gougas,5 G.Gratta,35 M.W.Gruenewald,9 V.K.Gupta,38
A.Gurtu,11 L.J.Gutay,48 B.Hartmann,1 A.Hasan,32 D.Hatzifotiadou,10 T.Hebbeker,9 A.Herve,19 W.C.van Hoek,33
H.Hofer,51 S.J.Hong,45 H.Hoorani,37 S.R.Hou,53 G.Hu,5 V.Innocente,19 K.Jenkes,1 B.N.Jin,8 L.W.Jones,3 P.de Jong,19
I.Josa-Mutuberria,28 A.Kasser,24 R.A.Khan,20 D.Kamrad,50 Yu.Kamyshkov,34 J.S.Kapustinsky,26 Y.Karyotakis,4
M.Kaur,20 } M.N.Kienzle-Focacci,21 D.Kim,39 D.H.Kim,45 J.K.Kim,45 S.C.Kim,45 Y.G.Kim,45 W.W.Kinnison,26
A.Kirkby,35 D.Kirkby,35 J.Kirkby,19 D.Kiss,15 W.Kittel,33 A.Klimentov,17 30 A.C.Konig,33 A.Kopp,50 I.Korolko,30
V.Koutsenko,17 30 R.W.Kraemer,37 W.Krenz,1 A.Kunin,17 30 P.Ladron de Guevara,28 I.Laktineh,27 G.Landi,18
C.Lapoint,17 K.Lassila-Perini,51 P.Laurikainen,23 M.Lebeau,19 A.Lebedev,17 P.Lebrun,27 P.Lecomte,51 P.Lecoq,19
P.Le Coultre,51 H.J.Lee,9 J.M.Le Go ,19 R.Leiste,50 E.Leonardi,39 P.Levtchenko,40 C.Li,22 C.H.Lin,53 W.T.Lin,53
F.L.Linde,2 19 L.Lista,31 Z.A.Liu,8 W.Lohmann,50 E.Longo,39 W.Lu,35 Y.S.Lu,8 K.Lubelsmeyer,1 C.Luci,39 D.Luckey,17
L.Luminari,39 W.Lustermann,49 W.G.Ma,22 M.Maity,11 G.Majumder,11 L.Malgeri,39 A.Malinin,30 C.Ma~na,28
D.Mangeol,33 S.Mangla,11 P.Marchesini,51 A.Marin,12 J.P.Martin,27 F.Marzano,39 G.G.G.Massaro,2 D.McNally,19
R.R.McNeil,7 S.Mele,31 L.Merola,31 M.Meschini,18 W.J.Metzger,33 M.von der Mey,1 Y.Mi,24 A.Mihul,14
A.J.W.van Mil,33 H.Milcent,19 G.Mirabelli,39 J.Mnich,19 P.Molnar,9 B.Monteleoni,18 R.Moore,3 S.Morganti,39
T.Moulik,11 R.Mount,35 S.Muller,1 F.Muheim,21 A.J.M.Muijs,2 S.Nahn,17 M.Napolitano,31 F.Nessi-Tedaldi,51
H.Newman,35 T.Niessen,1 A.Nippe,1 A.Nisati,39 H.Nowak,50 Y.D.Oh,45 H.Opitz,1 G.Organtini,39 R.Ostonen,23
C.Palomares,28 D.Pandoulas,1 S.Paoletti,39 P.Paolucci,31 H.K.Park,37 I.H.Park,45 G.Pascale,39 G.Passaleva,19
S.Patricelli,31 T.Paul,13 M.Pauluzzi,36 C.Paus,19 F.Pauss,51 D.Peach,19 Y.J.Pei,1 S.Pensotti,29 D.Perret-Gallix,4
B.Petersen,33 S.Petrak,9 A.Pevsner,5 D.Piccolo,31 M.Pieri,18 P.A.Piroue,38 E.Pistolesi,29 V.Plyaskin,30 M.Pohl,51
V.Pojidaev,30 18 H.Postema,17 N.Produit,21 D.Proko ev,40 G.Rahal-Callot,51 N.Raja,11 P.G.Rancoita,29 M.Rattaggi,29
G.Raven,42 P.Razis,32 K.Read,34 D.Ren,51 M.Rescigno,39 S.Reucroft,13 T.van Rhee,47 S.Riemann,50 K.Riles,3
A.Robohm,51 J.Rodin,17 B.P.Roe,3 L.Romero,28 S.Rosier-Lees,4 Ph.Rosselet,24 W.van Rossum,47 S.Roth,1
J.A.Rubio,19 D.Ruschmeier,9 H.Rykaczewski,51 J.Salicio,19 E.Sanchez,28 M.P.Sanders,33 M.E.Sarakinos,23 S.Sarkar,11
M.Sassowsky,1 C.Schafer,1 V.Schegelsky,40 S.Schmidt-Kaerst,1 D.Schmitz,1 P.Schmitz,1 N.Scholz,51 H.Schopper,52
D.J.Schotanus,33 J.Schwenke,1 G.Schwering,1 C.Sciacca,31 D.Sciarrino,21 L.Servoli,36 S.Shevchenko,35 N.Shivarov,44
V.Shoutko,30 J.Shukla,26 E.Shumilov,30 A.Shvorob,35 T.Siedenburg,1 D.Son,45 A.Sopczak,50 B.Smith,17
P.Spillantini,18 M.Steuer,17 D.P.Stickland,38 A.Stone,7 H.Stone,38 B.Stoyanov,44 A.Straessner,1 K.Strauch,16
K.Sudhakar,11 G.Sultanov,20 L.Z.Sun,22 G.F.Susinno,21 H.Suter,51 J.D.Swain,20 X.W.Tang,8 L.Tauscher,6 L.Taylor,13
Samuel C.C.Ting,17 S.M.Ting,17 M.Tonutti,1 S.C.Tonwar,11 J.Toth,15 C.Tully,38 H.Tuchscherer,46
K.L.Tung,8 Y.Uchida,17 J.Ulbricht,51 U.Uwer,19 E.Valente,39 R.T.Van de Walle,33 G.Vesztergombi,15 I.Vetlitsky,30
G.Viertel,51 M.Vivargent,4 R.Volkert,50 H.Vogel,37 H.Vogt,50 I.Vorobiev,19 30 A.A.Vorobyov,40 A.Vorvolakos,32
M.Wadhwa,6 W.Wallra 1, J.C.Wang,17 X.L.Wang,22 Z.M.Wang,22 A.Weber,1 F.Wittgenstein,19 S.X.Wu,20
S.Wynho ,1 J.Xu,12 Z.Z.Xu,22 B.Z.Yang,22 C.G.Yang,8 X.Y.Yao,8 J.B.Ye,22 S.C.Yeh,53 J.M.You,37 An.Zalite,40
Yu.Zalite,40 P.Zemp,51 Y.Zeng,1 Z.Zhang,8 Z.P.Zhang,22 B.Zhou,12 G.Y.Zhu,8 R.Y.Zhu,35 A.Zichichi,10 19 20
F.Ziegler.50
;
;
;]
;
;
;
;
;
;
;
;
;
6
;
1 I. Physikalisches Institut, RWTH, D-52056 Aachen, FRGx
III. Physikalisches Institut, RWTH, D-52056 Aachen, FRGx
2 National Institute for High Energy Physics, NIKHEF, and University of Amsterdam, NL-1009 DB Amsterdam,
The Netherlands
3 University of Michigan, Ann Arbor, MI 48109, USA
4 Laboratoire d'Annecy-le-Vieux de Physique des Particules, LAPP,IN2P3-CNRS, BP 110, F-74941
Annecy-le-Vieux CEDEX, France
5 Johns Hopkins University, Baltimore, MD 21218, USA
6 Institute of Physics, University of Basel, CH-4056 Basel, Switzerland
7 Louisiana State University, Baton Rouge, LA 70803, USA
8 Institute of High Energy Physics, IHEP, 100039 Beijing, China4
9 Humboldt University, D-10099 Berlin, FRGx
10 University of Bologna and INFN-Sezione di Bologna, I-40126 Bologna, Italy
11 Tata Institute of Fundamental Research, Bombay 400 005, India
12 Boston University, Boston, MA 02215, USA
13 Northeastern University, Boston, MA 02115, USA
14 Institute of Atomic Physics and University of Bucharest, R-76900 Bucharest, Romania
15 Central Research Institute for Physics of the Hungarian Academy of Sciences, H-1525 Budapest 114, Hungaryz
16 Harvard University, Cambridge, MA 02139, USA
17 Massachusetts Institute of Technology, Cambridge, MA 02139, USA
18 INFN Sezione di Firenze and University of Florence, I-50125 Florence, Italy
19 European Laboratory for Particle Physics, CERN, CH-1211 Geneva 23, Switzerland
20 World Laboratory, FBLJA Project, CH-1211 Geneva 23, Switzerland
21 University of Geneva, CH-1211 Geneva 4, Switzerland
22 Chinese University of Science and Technology, USTC, Hefei, Anhui 230 029, China4
23 SEFT, Research Institute for High Energy Physics, P.O. Box 9, SF-00014 Helsinki, Finland
24 University of Lausanne, CH-1015 Lausanne, Switzerland
25 INFN-Sezione di Lecce and Universita Degli Studi di Lecce, I-73100 Lecce, Italy
26 Los Alamos National Laboratory, Los Alamos, NM 87544, USA
27 Institut de Physique Nucleaire de Lyon, IN2P3-CNRS,Universite Claude Bernard, F-69622 Villeurbanne, France
28 Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, CIEMAT, E-28040 Madrid, Spain[
29 INFN-Sezione di Milano, I-20133 Milan, Italy
30 Institute of Theoretical and Experimental Physics, ITEP, Moscow, Russia
31 INFN-Sezione di Napoli and University of Naples, I-80125 Naples, Italy
32 Department of Natural Sciences, University of Cyprus, Nicosia, Cyprus
33 University of Nijmegen and NIKHEF, NL-6525 ED Nijmegen, The Netherlands
34 Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
35 California Institute of Technology, Pasadena, CA 91125, USA
36 INFN-Sezione di Perugia and Universita Degli Studi di Perugia, I-06100 Perugia, Italy
37 Carnegie Mellon University, Pittsburgh, PA 15213, USA
38 Princeton University, Princeton, NJ 08544, USA
39 INFN-Sezione di Roma and University of Rome, \La Sapienza", I-00185 Rome, Italy
40 Nuclear Physics Institute, St. Petersburg, Russia
41 University and INFN, Salerno, I-84100 Salerno, Italy
42 University of California, San Diego, CA 92093, USA
43 Dept. de Fisica de Particulas Elementales, Univ. de Santiago, E-15706 Santiago de Compostela, Spain
44 Bulgarian Academy of Sciences, Central Lab. of Mechatronics and Instrumentation, BU-1113 So a, Bulgaria
45 Center for High Energy Physics, Korea Adv. Inst. of Sciences and Technology, 305-701 Taejon, Republic of
Korea
46 University of Alabama, Tuscaloosa, AL 35486, USA
47 Utrecht University and NIKHEF, NL-3584 CB Utrecht, The Netherlands
48 Purdue University, West Lafayette, IN 47907, USA
49 Paul Scherrer Institut, PSI, CH-5232 Villigen, Switzerland
50 DESY-Institut fur Hochenergiephysik, D-15738 Zeuthen, FRG
51 Eidgenossische Technische Hochschule, ETH Zurich, CH-8093 Zurich, Switzerland
52 University of Hamburg, D-22761 Hamburg, FRG
53 High Energy Physics Group, Taiwan, China
x Supported by the German Bundesministerium fur Bildung, Wissenschaft, Forschung und Technologie
z Supported by the Hungarian OTKA fund under contract numbers T14459 and T24011.
[ Supported also by the Comisi
on Interministerial de Ciencia y Technologia
] Also supported by CONICET and Universidad Nacional de La Plata, CC 67, 1900 La Plata, Argentina
} Also supported by Panjab University, Chandigarh-160014, India
4 Supported by the National Natural Science Foundation of China.
7
References
[1] Y.A. Godfand and E.P. Likthman, JETP Lett. 13 (1971);
D.V. Volkhov and V.P. Akulov, Phys. Lett. B 46 (1973) 109;
J. Wess and B. Zumino, Nucl. Phys. B 70 (1974) 39;
P. Fayet and S. Ferrara, Phys. Rev. 32 (1977) 249;
A. Salam and J. Strathdee, Fortschr. Phys. 26 (1978) 57.
[2] H.P. Nilles, Physics Reports 110 (1984) 1;
H.E. Haber and G.L. Kane, Physics Reports 117 (1985) 75;
R. Barbieri, Riv. Nouvo Cim. 11 n 4 (1988) 1.
[3] G. Farrar and P. Fayet, Phys. Lett. B 76 (1978) 575.
[4] H1 Collab., C. Adlo et al., Preprint DESY 97-24, DESY, 1997, To be published in Zeit.
Phys. C.
[5] ZEUS Collab., J. Breitweg et al., Preprint DESY 97-25, DESY, 1997, To be published in
Zeit. Phys. C.
[6] S. Dimopoulos and L. Hall, Phys. Lett. B 207 (1987) 210.
[7] V. Barger, G. Giudice and T. Han, Phys. Rev. D 40 (1989) 2987.
[8] J. Kalinowski, R. Ruckl, H. Spiesberger and P. Zerwas, Preprint DESY 97-044, DESY,
1997, To be published in Phys. Lett. B.
[9] L3 Collab., O. Adriani et al., Physics Reports 236 (1993) 1.
[10] L3 Collab., M. Acciarri et al., Z. Phys. C 62 (1994) 551.
[11] L3 Collab., M. Acciarri et al., Phys. Lett. B 370 (1996) 195.
[12] L3 Collab., M. Acciarri et al., Preprint CERN-PPE/97-52, CERN, 1997, To be published
in Phys. Lett. B.
[13] L3 Collab., B. Adeva et al., Nucl. Inst. Meth. A 289 (1990) 35;
M. Acciarri et al., Nucl. Inst. Meth. A 351 (1994) 300;
M. Chemarin et al., Nucl. Inst. Meth. A 349 (1994) 345;
I.C. Brock et al., Nucl. Inst. Meth. A 381 (1996) 236;
A. Adam et al., Nucl. Inst. Meth. A 383 (1996) 342.
[14] R. Kleiss et al., in Physics at LEP 1, Vol. 3, ed. R. Kleiss G. Altarelli and C. Verzegnassi,
(Yellow Report: CERN 89-08, 1989), p. 1.
[15] W. Beenakker, F.B. Berends and S.C. van der Marck, Nucl. Phys. B 349 (1991) 323.
[16] G. Montagna, O. Nicrosini, G. Passarino, F. Piccinini and R. Pittau, Nucl. Phys. B 401
(1993) 3.
[17] D. Bardin et al., FORTRAN package ZFITTER, and preprint CERN{TH. 6443/92;
D. Bardin et al., Z. Phys. C 44 (1989) 493;
D. Bardin et al., Nucl. Phys. B 351 (1991) 1;
D. Bardin et al., Phys. Lett. B 255 (1991) 290..
8
[18] R. Barnett
et al.,
Phys. Rev.
D 54 (1996) 1.
9
e
=Z
e
e
e
=Z
e
e
e
e
e
e
e
e
e
~j
~j
e
e
Figure 1: Feynman diagrams for the reaction e+e
s{ and t{channel with 1j1 6= 0.
10
! e+ e
e
, including the exchange of j in the
+ −
+ −
e e →e e
150 e+e− → µ+µ−
ISR
no ISR
ISR
no ISR
∆ σ [pb]
∆ σ [pb]
100
50
100
50
0
0
140
0.2
+ −
160
180
√s [GeV]
200
140
+ −
+ −
e e →e e
160
180
200
180
200
√s [GeV]
+ −
e e →µ µ
0
0
∆ Afb
∆ Afb
-0.2
-0.2
-0.4
-0.6
-0.4
ISR
no ISR
140
160
180
√s [GeV]
200
-0.6
ISR
no ISR
140
160
√s [GeV]
Figure 2: Deviations of the cross section, , and the forward{backward asymmetry, Afb from
the SM expectations due to sneutrino exchange as a function of the centre{of{mass energy: on
the left for e+e ! e+e and on the right for e+e ! + . The solid line shows the results
with and the dashed line without inclusion of ISR. The parameter values for these calculations
are m = 165:3 GeV, = 1 GeV, 131 = 0:08 and 232 = 0:08.
11
Excluded by
low energy
measurements
coupling λ131
0.08
Excluded
by L3
0.06
0.04
0.02
L3
75
90% CL
100
125
mτ-sneutrino
150
175
[GeV]
Figure 3: Upper limits on the coupling strength 131 as a function of m derived from the
measurements of the reaction e+e ! e+e . The shaded area is excluded by lower energy
measurements at 90% con dence level. The jagged curve is the 90% con dence level upper
limit from this analysis.
12
Excluded by
low energy
measurements
coupling λ131=λ232
0.08
Excluded
by L3
0.06
0.04
0.02
L3
75
90% CL
100
125
mτ-sneutrino
150
175
[GeV]
Figure 4: Upper limits on the coupling strength 232 (assumed to be equal to 131 ) as a function
of m derived from the measurements of muon{pair production. The shaded area is excluded
by lower energy measurements at 90% con dence level. The jagged curve is the 90% con dence
level upper limit from this analysis.
13