Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
1990, Computers in Physics
…
3 pages
1 file
Four sorting algorithms-bubble, insertion, heap, and quick-are studied on an IBM 3090/ 600, a VAX 11/780, and the NYU Ultracomputer. It is verified that for N items the bubble and insertion sorts are of order N 2 whereas the heap and quick sorts are of order N In N. It is shown that the choice of algorithm is more important than the choice of machine. Moreover, the influence of paging on algorithm performance is examined.
Sorting is nothing but alphabetizing, categorizing, arranging or putting items in an ordered sequence. It is a key fundamental operation in the field of computer science. It is of extreme importance because it adds usefulness to data. In this papers, we have compared five important sorting algorithms (Bubble, Quick, Selection, Insertion and Merge). We have developed a program in C# and experimented with the input values 1-150, 1-300 and 1-950. The performance and efficiency of these algorithms in terms of CPU time consumption has been recorded and presented in tabular and graphical form.
International Journal of Modern Education and Computer Science, 2013
Sorting allows information or data to be put into a meaningful order. As efficiency is a major concern of computing, data are sorted in order to gain the efficiency in retrieving or searching tasks. The factors affecting the efficiency of shell, Heap, Bubble, Quick and Merge sorting techniques in terms of running time, memory usage and the number of exchanges were investigated. Experiment was conducted for the decision variables generated from algorithms implemented in Java programming and factor analysis by principal components of the obtained experimental data was carried out in order to estimate the contribution of each factor to the success of the sorting algorithms. Further statistical analysis was carried out to generate eigenvalue of the extracted factor and hence, a system of linear equations which was used to estimate the assessment of each factor of the sorting techniques was proposed. The study revealed that the main factor affecting these sorting techniques was time taken to sort. It contributed 97.842%, 97.693%, 89.351%, 98.336% and 90.480% for Bubble sort, Heap sort, Merge sort, Quick sort and Shell sort respectively. The number of swap came second contributing 1.587% for Bubble sort, 2.305% for Heap sort, 10.63% for Merge sort, 1.643% for Quick sort and 9.514% for Shell sort. The memory used was the least of the factors contributing negligible percentage for the five sorting techniques. It contributed 0.571% for Bubble sort, 0.002% for Heap sort, 0.011% for Merge sort, 0.021% for Quick sort and 0.006% for Shell sort.
International Journal of Computer Science and Mobile Computing, 2022
Data is the new fuel. With the expansion of the global technology, the increasing standards of living and with modernization, data values have caught a great height. Now a days, nearly all top MNCs feed on data. Now, to store all this data is a prime concern for all of them, which is relieved by the Data Structures, the systematic way of storing data. Now, once these data are stored and charged in secure vaults, it's time to utilize them in the most efficient way. Now, there are a lot of operations that needs to be performed on these massive chunks of data, like searching, sorting, inserting, deleting, merging and so more. In this paper, we would be comparing all the major sorting algorithms that have prevailed till date. Further, work have been done and an inequality in dimension of time between the four Sorting algorithms, Bubble, Selection, Insertion, Merge, that have been discussed in the paper have been proposed.
— An algorithm is precise specification of a sequence of instruction to be carried out in order to solve a given problem. Sorting is considered as a fundamental operation in computer science as it is used as an intermediate step in many operations. Sorting refers to the process of arranging list of elements in a particular order. The elements are arranged in increasing or decreasing order of their key values. This research paper presents the different types of sorting algorithms of data structure like Bubble Sort, Selection Sort, Insertion Sort, Merge Sort and Quick Sort and also gives their performance analysis with respect to time complexity. These five algorithms are important and have been an area of focus for a long time but still the question remains the same of " which to use when? " which is the main reason to perform this research. Each algorithm solves the sorting problem in a different way. This research provides a detailed study of how all the five algorithms work and then compares them on the basis of various parameters apart from time complexity to reach our conclusion. I. INTRODUCTION Algorithm is an unambiguous, step-by-step procedure for solving a problem, which is guaranteed to terminate after a finite number of steps. In other words algorithm is logical representation of the instructions which should be executed to perform meaningful task. For a given problem, there are generally many different algorithms for solving it. Some algorithms are more efficient than others, in that less time or memory is required to execute them. The analysis of algorithms studies time and memory requirements of algorithms and the way those requirements depend on the number of items being processed. Sorting is generally understood to be the process of rearranging a given set of objects in a specific order and therefore, the analysis and design of useful sorting algorithms has remained one of the most important research areas in the field. Despite the fact that, several new sorting algorithms being introduced, the large number of programmers in the field depends on one of the comparison-based sorting algorithms: Bubble, Insertion, Selection sort etc. Hence sorting is an almost universally performed and hence, considered as a fundamental activity. The usefulness and significance of sorting is depicted from the day to day application of sorting in real-life objects. For instance, objects are sorted in: Telephone directories, income tax files, tables of contents, libraries, dictionaries. The methods of sorting can be divided into two categories: INTERNAL SORTING: If all the data that is to be sorted can be adjusted at a time in main memory, then internal sorting methods are used. EXTERNAL SORTING: When the data to be sorted can " t be accommodated in the memory at the time and some has to be kept in auxiliary memory (hard disk, floppy, tape etc) , then external sorting method are used. The complexity of a sorting algorithm measures the running time of function in which " n " numbers of items are sorted. The choice of which sorting method is suitable for a problem depends on various efficiency considerations for different problem. Three most important of these considerations are: The length of time spent by programmer in coding a particular sorting program. Amount of machine time necessary for running the program. The amount of memory necessary for running program. Stability-does the sort preserve the order of keys with equal values.
2015
Sorting is considered as a very basic operation in computer science. Sorting is used as an intermediate step in many operations. Sorting refers to the process of arranging list of elements in a particular order either ascending or descending using a key value. There are a lot of sorting algorithms have been developed so far. This research paper presents the different types of sorting algorithms of data structure like Bubble Sort, Selection Sort, Insertion Sort, Merge Sort, Heap Sort and Quick Sort and also gives their performance analysis with respect to time complexity. These six algorithms are important and have been an area of focus for a long time but still the question remains the same of "which to use when?" which is the main reason to perform this research. Each algorithm solves the sorting problem in a different way. This research provides a detailed study of how all the six algorithms work and then compares them on the basis of various parameters apart from time c...
Sorting is the basic operation in most of the applications of computer science. Sorting means to arrange data in particular order inside computer. In this paper we have discussed performance of different sorting algorithms with their advantages and disadvantages. This paper also represents the application areas for different sorting algorithms. Main goal of this paper is to compare the performance of different sorting algorithms based on different parameters.
One of the fundamental issues in computer science is ordering a list of items. Although there is a huge number of sorting algorithms, sorting problem has attracted a great deal of research; because efficient sorting is important to optimize the use of other algorithms. This paper presents two new sorting algorithms, enhanced selection sort and enhanced bubble Sort algorithms. Enhanced selection sort is an enhancement on selection sort by making it slightly faster and stable sorting algorithm. Enhanced bubble sort is an enhancement on both bubble sort and selection sort algorithms with O(nlgn) complexity instead of O(n 2) for bubble sort and selection sort algorithms. The two new algorithms are analyzed, implemented, tested, and compared and the results were promising.
Proceedings of National Conference on Convergent Innovative Technologies & Management (CITAM-2011) on 2 nd & 3 rd December 2011 at Cambridge Institute of Technology,Bangalore India, 2011
Any number of practical applications in computing requires things to be in order. The performance of any computation depends upon the performance of sorting algorithms. Like all complicated problems, there are many solutions that can achieve the same results. One sort algorithm can do sorting of data faster than another. A lot of sorting algorithms has been developed to enhance the performance in terms of computational complexity, memory and other factors. This paper chooses three of the sorting algorithms: the heap sort, merge sort, quick sort and measures their performance for the realization of time complexity with respect to the theories which are represented normally using asymptotic notation.
International Journal of Computer Applications, 2020
Sorting is one of the most important task in many computer applications. Efficiency becomes a big problem when the sorting involves a large amounts of data. There are a lot of sorting algorithms with different implementations. Some of them sort data by comparison while others don't. The main aim of this thesis is to evaluate the comparison and noncomparison based algorithms in terms of execution time and memory consumption. Five main algorithms were selected for evaluation. Out of these five, three were comparison based algorithms (quick, bubble and merge) while the remaining two were non-comparison based (radix and counting). After conducting an experiment using array of different data sizes (ranging from 1000 to 35000), it was realized that the comparison based algorithms were less efficient than the noncomparison ones. Among the comparison algorithms, bubble sort had the highest time complexity due to the swapping nature of the algorithm. It never stops execution until the largest element is bubbled to the right of the array in every iteration. Despite this disadvantage, it was realized that it is memory efficient since it does not create new memory in every iteration. It relies on a single memory for the swapping array operation. The quick sort algorithm uses a reasonable amount of time to execute, but has a poor memory utilization due to the creation of numerous sub arrays to complete the sorting process. Among the comparison based algorithms, merge sort was far better than both quick and bubble. On the average, merge sort utilized 32.261 seconds to sort all the arrays used in the experiment while quick and bubble utilized 41.05 and 165.11 seconds respectively. The merge algorithm recorded an average memory consumption of 5.5MB for all the experiment while quick and bubble recorded 650.792MB and 4.54MB respectively. Even though the merge sort is better than both quick and bubble, it cannot be compared to the non-comparison based algorithms since they perform far better than the comparison based ones. When the two groups were evaluated against execution time, the comparison based algorithms recorded an average score of 476.757 seconds while the non-comparison obtained 17.849 seconds. With respect to the memory utilization, the non-comparison based algorithms obtained 27.12MB while the comparison ones obtained 1321.681MB. This clearly reveals the efficiency of the non-comparison based algorithms over the comparison ones in terms of execution time and memory utilization.
VOL. 7, N. 1 , 2024
Polityka Energetyczna – Energy Policy Journal, 2018
2018
En P. Andrés, P. Grandez, B. Marciani, S. Pozzolo (eds.), El compromiso constitucional del iusfilósofo. Homenaje a Luis Prieto Sanchís, Palestra, pp. 511-528, 2020
Malaysian Journal of Fundamental and Applied Sciences
Industrial & Engineering Chemistry Research, 2019
The International Journal of Oral & Maxillofacial Implants, 2021
BMC medical informatics and decision making, 2003