Combinatorial Chemistry: molecular diversity
"Synthesis and Applications of Small Molecule Libraries."
Thompson, L. A.; Ellman, J. A. Chem. Rev. 1996, 96, 555-600.
"Design, Synthesis, and Evaluation of Small-Molecule Libraries.”
Ellman, J. A. Acc. Chem. Res. 1996, 29, 132 -143.
Combinatorial Chemistry, Nicholas K. Terrett, Oxford University Press, London, 1998
pharmaceutical industry- drug discovery
Lead
Cmpd
optimization
(synthesis)
Drug
10 years
$ 400 - 800
million
$$$
Lead identification:
literature (open & patent)
nature (natural products)
Careful optimization of a lead structure via chemical synthesis
“methyl-ethyl-butyl-futile game”
Number of marketable drugs
per compounds that undergo
preliminary biological testing
1
10,000
Rational drug design
Combinatorial chemistry
105
Peptides: poor bioavailability, poor transport, easily metabolized:
poor drug candidates.
However, they are the natural substrates for many enzymes
and receptors (drug targets) and have well-defined
conformations: excellent lead compounds
Enzymes: converts a substrate to a distinct product
Receptor: binds a ligand (no reaction), causing a chain of physiochemical events leading to a pharmacological response.
Agonist: substance that interacts (binds) with a receptor and elicits
an observable response
Antagonist: substances inhibits the affect of an agonist, but has no
biological activity of its own
106
53
Example of molecular diversity:
tetra-peptide: H2N-A-B-C-D-CO2H
consider only the 20 natural amino acids (L-series)
204 = 160,000 different tetra-peptides !
now include the 19 D-amino acids (20 L + 19 D = 39)
394 = 2.3 million different tetra-peptides !!
now include 20 unnatural amino acids
594 = 12 million different tetra-peptides !!!!
Combinatorial chemistry: method by which a family (library) of related
compounds (structurally & synthetically) can be prepared and
evaluated (screened)
For multi-step synthesis, one must use solid-phase synthetic approach
in order to expedite purification of intermediates
107
Split synthesis (mixture libraries)
A D
A
D
B
B D
C
C D
A
A
A
B
B
combine,
mix,split
E
A E
combine,
mix,split
B
B E
C
C E
C
C
A F
A
F
B
B
F
C
C F
108
54
Split synthesis (con’t)
A D
A F
A E
A D G
A E G
A F G
F
B D G
B E G
B
F
G
C D G
C E G
C F
G
A D H
A E H
A F
H
G
B D
B
B
C D
C E
C F
A D
A E
A F
E
H
B D
B E
B
F
B D H
B E H
B
F
H
C D
C E
C F
C D H
C E H
C F
H
A D
A E
A F
B E
B
C E
C F
A D
I
A E
I
A F
I
B D
I
B
E
I
B
F
I
C D
I
C E
I
C F
I
I
B D
C D
F
109
Why not?
A
A D
A E
A F
B
B D
B
B
C
C D
C E
G,H, I
D,E,F
A,B,C
E
F
etc
C F
Reactivity of the coupling reaction may be different and this could
bias the library
Split synthesis approach, all compounds are equally represented
(each coupling is individually controlled)
110
55
Deconvolution of the library
via biological activity and sub-library re-synthesis
A D G
A E G
A F G
B D G
B E G
B
C D G
C E G
C F
G
A D H
A E H
A F
H
B D H
B
B
F
H
C D H
C E H
C F
H
G
F G
Biological activity of the library
H
E H
G
H
I
select library H
A D
I
A E
I
A F
I
B D
I
B E
I
B
F
I
C D
I
C E
I
C F
I
I
A D
A D H
111
Biological activity of the library
A
B D
H
C D
D
H
D
H
A D H
B D H
C D H
B D H
B
D
D-H
H
B E H
C E
C E H
A F
A F
H
B
F
H
C F
H
F
C F
H
E-H
C D H
F-H
Lead Cmpd
B E
B
H
C
A E H
A E
select library D-H
Biological activity of the library
A-D-H
B-D-H
C-D-H
select library C-D-H
112
56
Problems:
• deconvolution of the library can be labor intensive
• can be fooled by low concentrations of highly active
compounds
• activity is dependent upon the compound and its
concentration
• activity observed is the the combined activity of the entire
library
Advantage:
• can synthesize a very large number of compounds very
quickly and relatively easily depending on the
chemistry.
113
Encoded Libraries
1
4
1
4
2
4
3
A
2
1) D
2) 4
A D
B
B D
3
C
1
C D
A
1
5
1
B
5
2
C
5
3
A
2
B
combine,
mix,split
2
1) E
2) 5
A E
3
B
3
combine,
mix,split
E
C E
C
1
A
2
1) F
2) 6
6
1
6
2
6
3
A F
B
3
C
B
F
C F
114
57
Encoded libaries (con’t)
4
5
1
6
1
4
2
4
3
5
2
5
3
B
B D
5
1
2
4
3
5
2
5
3
1
5
2
6
3
5
5
6
3
C D
4= D
5= E
6= F
2
7
4
3
4
5
2
7
5
3
4
2
8
4
3
1) I
2) 9
4
A D
9
4
2
9
4
3
F
B D
C F
C D
7
6
2
7
6
3
5
1
8
5
2
8
5
3
B
8
6
1
8
6
2
8
6
3
E H
C E H
5
1
A E
I
9
5
2
9
5
3
B E
I
C E
I
A F
G
B
G
F
C F G
A E H
9
1
1
C E G
C D H
9
6
B E G
B D H
3
7= G
8= H
9= I
7
A D H
8
7
A E G
8
1
F
2
C E
1= A
2= B
3= C
1) H
2) 8
A F
B
1
C D G
1
B E
3
4
C F
6
2
B D
7
8
B
5
A D G
B D G
A F
6
7
1
F
1
6
1
1) G
2) 7
4
C F
A E
2
CODE:
B
C E
A D
4
3
B E
C D
4
6
A E
B D
4
2
6
A D
4
6
E
1
7
A F
C E
C D
4
1
A E
A D
9
6
1
9
6
2
9
6
3
I
I
I
A F
H
B
F
H
C F
H
A F
I
B
F
I
C F
I
Cleave the marker and analyze the code. Each unique
115
marker codes for a unique peptide sequence
Synthesis of an encoded library
Code (1-10%)
library
1) linker- AA1-NH-FMOC
HO
BOC NH code 1
OH
linker
O
O
linker
2) linker-code1-NH-BOC
H
AA1 N
FMOC
library region and coding region
must be orthogonally protected
1) piperidine
2) add AA 2
BOC
BOC NH code 1
H
N Code 2 NH code 1
linker
linker
O
O
O
O
linker
linker
H
AA1 N
H
AA1 N
H
AA2 N
H
AA2 N
1) H+
2)add code 2
FMOC
FMOC
116
58
sub-library tag
Cy
pool tag
Cx
N
O
C7H15
CH3
N
O
C7H15
C2H5
N
O
C7H15
C3H7
N
O
CO2H
N
BOC
C8H17
N
CO2H
BOC
C8H17
N
CO2H
BOC
C8H17
CH3
N
O
C2H5
N
O
C3H7
N
O
N
CO2H
BOC
N
CO2H
BOC
C9H19
CO2H
N
BOC
C9H19
CO2H
N
BOC
C9H19
CH3
N
O
C2H5
N
O
C3H7
N
O
CO2H
N
BOC
N
CO2H
BOC
N
CO2H
BOC
Reading the code
C9H19
selectively remove the
code from the resin
N
CH3
C7H15
O
O
HN
N
O
N
O
N
hydrolyze
and analyze
O
N
C8H17
C3H7
C9H19
N
H
CH3
+ C7H15 N C3H7 + C8H17 N C2H5
H
H
CO2H
C2H5
117
“On-Bead” Assay for Receptor Binding
using a Fluorescently Labeled Receptor
1) Add labeled receptor labelled
with fluorescent tag
2) allow to bind to ligands
on the beads
3) wash to remove unbound
receptor
Beads
118
59
Spatially Addressable, Parallel Synthesis
E
D
F
A
A
D
A
E
B
B
D
B
E
C
C
D
C
E
A
F
B
F
C
F
119
Spatially Addressable, Parallel Synthesis (con’t)
H
G
I
A
A
D
G
A
E
H
B
B
D
G
B
E
H
C
C
D
G
C
E
H
A
F
I
B
F
I
C
F
I
120
60
Spatially addressable, parallel libraries
Advantage:
• synthesizing pure compounds, no need to deconvolute
the library
Disadvantage
• libraries tend to be much smaller
121
Diversomer apparatus
Acc. Chem. Res. 1996, 29, 114-122
61
ACE Inhibitors
Asp–Arg–Val–Tyr–Ile–His–Pro–Phe–His–Leu–Val–Ile–His–Asn
angiotensinogen
aspartyl
protease
ACE inhibitors
renin
N N
O
N NH
Asp–Arg–Val–Tyr–Ile–His–Pro–Phe–His–Leu
angiotensin I
(little biological activity)
CO2H
N
Diovan
HS
angiotensin converting
enzyme (ACE)
Zn2+
protease
O
N
HO2C
Captopril
Asp–Arg–Val–Tyr–Ile–His–Pro–Phe
angiotensin II
(vasoconstriction → high blood pressure)
123
Proteases: catalyzes the hydrolysis of peptide bonds
O
H3N
1.
2.
3.
4.
R
N
H
O
H
N
O
R
R
N
H
O
H
N
O
R
protease
N
H
CO2
H2O
O
H3N
R
N
H
O
H
N
O
R
O
R
O
H
N
+ H N
3
O
R
N
H
CO2
Serine protease
Cysteine protease
Aspartyl protease
Zinc (metallo) protease
ACE: zinc protease ( no x-ray or NMR structure),
compared to carboxypeptidase or thermolysin
important catalytic groups: Glu-270, His-196, His-69
(catalytic triad)
124
62
Carboxypepidase:
General base mechanism
Nucleophilic mechansim (acyl enzyme complex)
125
ACE inhibitor Library
O
O
ArCHO
NH2
O
N
O
R1
O
O
N
O
R1
Ar
O
H
N
O
O
R2COCl
Ar
O
R2
N
O
Z
Z
Z
1,3-dipole
R1 = -H, -CH3, -CH2CH(CH3)2, -CH2Ph
O
CF3CO2H
Ar
R1
R1
R1
Ar
R1
1,3-diploar
cycloaddition
Ag
N
Ag
O
AgNO3, Et3N
Ar
O
R2
N
HO
CHO
CHO
ArCHO =
Ar
R1
Z
Z
=
CO2CH3
CN
CHO
CHO
OCH3
OH
O
CO2tBu
CO2CH2CH3
HS
O
O
HO2C
R2COCl =
AcS
O
O
Cl
AcS
Cl
AcS
Cl
N
Captopril
(ACE Inhibitor)
240 cmpds, each are multiple stereoisomers
AcS
O
HO2C
N
Ph
CO2CH3
Ki ~ 160 pM (3x better than Captopril
126
63
Parallel Synthesis of a Benzodiazepine Library
R2
O
NH2
R1
N
H
NH
O
FMOC
O
H
N
R1
HN
O
1)
F
R2
R1'
O
FMOC
R1'
2)
O
N
H
R1'
H+
O
O
O
R3
N
1) base
2) R3X
R2
R3
N
cleave from
solid support
N
R1
R2
N
R1
O
R2
R1
N
R1'
R1'
O
Benzodiazepine
HO
H3C
N
NHCH3
O
N
N
Cl
N
Cl
O
Valium (diazapam)
127
Librium (chlordiazepoxide)
Parallel Synthesis of a Benzodiazepine Library
2-am inobenzophenones
NH 2 O
alkylating agents
!-amino acids
CO2 H
CO 2H
NH 2
CO 2H
NH 2
CO 2H
NH 2
CO 2H
NH 2
I
I- CH 3
NH 2
OH
Cl
CO 2H
NH 2 O
H 2N
C O2H
N H2
NH 2
CO 2H
HO 2C
NH 2
CO 2H
I-CH 2- CH 3
I-CH 2 -CH 2- CH 3
NH 2
O
H+
CO 2H
HO
NH 2
N
H
N H2
I
H 2N
CO 2H
CO 2H
N
H
NH 2
Br
Br
2 (2-aminobenzophenone) x 12 (amino acids) x 8 (alkyl halides) = 192 compounds
Cholecystikinin (CCK)
CCK-8: Asp-Tyr(SO3H)-Met-Gly-Trp-Met-Asp-Phe-NH2
128
64
Peptide Mimetics or Peptidomimetics
Tyr-Gly-Gly-Phe-Met (met-enkephalin)
HO
SCH3
O
O
HO
N
HO2C
N
H
CH3
HO
NH2
Morphine
O
HN
O
O
H
N
N
H
Desirable pharmacological properties
1. metabolic stability
2. good bioavailability
3. high affinity (Ki~ 10-9) and specificity for a given
receptor or enzyme
4. minimal side effects
Natural ligands for receptors or enzymes are often peptides:
peptides are good lead structures but poor drug candidates
129
Peptidomimetics Strategies
1. Amino acid modification
2. Dipeptide analogues (isosteres and TS analogues)
3. Peptide backbone modifications
4. Secondary structure mimics
Amino Acid Modifications: changes (restricts) conformational
degrees of freedom of the peptide
CO2H
CO2H
!-C alkylation
H3C NH2
!-N alkylation
HN
CO2H
NH2
NH2
CO2H
CO2H
NH
CH3
L-Phenylalanine
CO2H
unnatural AA's
NH2
CO2H
NH2
CO2H
NH2
H2N
CO2H
n
130
65
Dipeptide analogues
O
H
N
O
H
N
R
N
H
R
O
H
N
O
N
N
H
R
Bridge two
neighboring
AA residues
O
n
O
R
O
R
O
H
N
n
NH
N
H
R
O
ACE Inhibitor
H
Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu
HO2C
ACE
angiotensin I
angiotensin II
N
Ph
O
CO2H
131
Transition state analogues
for a protease:
O
H
N
R
R
N
H
O
H
N
O
protease
O
H
N
R
R
N
H
R
O
O
H
N
O
H
N
Nu OH R
R
H2N
Nu
N
H
R
R
O
Nu= H2O, -OH, -SH, -CO2H
H2O
O
H
N
R
OH
+ Nu:
N
H
R
O
R
OH
H2N
B:
O
HN
R
N
H
OH
OH
O
R
R
H
N
N
H
O
HN
active site
water
Transition State
H
N
O
H
H
Statine
OH
H
H
N
N
H
H O HO
O
O
OH
N
H
H
N
N
H
H
N
OH
O
N
H
+
P
O O
H
N
_
O
Statine
132
66
TS analoges via combinatorial synthesis
O
Br
NHBoc
R
O AA1 AA2 AAn NH2
H
O AA1 AA2 AAn N
(iPr)2NH
O
NHBOC
R
NaBH4
O
H
O AA1 AA2 AAn N
NH AAn-1 AAz
R
OH
H
HO AA1 AA2 AAn N
NH AAn-1 AAz NH2
R
1:1 mixture of stereoisomers
133
Peptide Backbone Modifications: Increase biological half-life
Retro-Inverso Isomers: Change from L- to D-amino acids
and inverse N to C sequence
CONH2
Natural
O
H2N
O
O
H
N
O
H
N
N
H
H
N
N
H
O
O
H2NOC
O
H
N
N
H
N
H
N
O
OH
O
NH
SCH3
N
H
CONH2
Retro-Inverso isomer
O
H2N
H
N
O
H
N
O
O
O
H
N
N
H
O
H2NOC
O
H
N
N
H
N
H
O
N
H
NH2
O
N
HN
SCH3
N
H
Interesting idea, but the retro-inverso isomers usually showed
much weaker binding. However, they were significantly
more resistant to enzymatic digestion.
134
67
Amide Bond Isosteres:
_
O
+
N
H
N
H
O
OH
O
O
N
H
F
F
F
O
H2O
R
H
N
R
O
O
N
H
O
HO OH
N
H
H
F
F F
F
H
N
N
H
OH
O
H
N
R
R
Secondary Structure Mimics:
main 2° structures: α-helix, β-sheet, β-turns, γ-turns
α-helix mimic
groups responsible
for biological activity
Replace with a
non-peptide scaffold
135
Vasoactive Intestinal Peptide (VIP): 28 AA helical peptide. Bronchodilatorasthma treatment “α-helical Peptidomimetic for Vasoactive Intestinal Peptide (VIP)”
G. L. Olson et al. J. Med. Chem. 1993, 36 (21), 3039-3049.
CONH2
Leu
Tyr
Scaffold
Replace
with
scaffold
12.32 Å
N
H
N
Asp
His
O
S
O
Tyr
Phe
12.99 Å
NH2
“Ala-scan” determine which
residues are needed for binding
136
68
Ter-phenyl as an α-helix mimic
g (i+6)
c
(i+2)
f
(i+5)
g
c
d (i+3)
d
a’ (i+7)
f
a
a (i)
b
(i+1)
e (i+4)
b
e
137
“stapled” α-helices
H3C NHFMOC
n
CO2H
138
69
β-amino acids
O
H2N
O
OH
N
N
R
N
H
!-amino acid
H
H
O
O
O
O
H2N
OH
NH
R
H2N
H
H
O
"-amino acid
oligomeric "-amino acid
will fold into a helical structure
with 3 AA's per turn
N
N
O
O
N
H
OH
N
H
β-Sheet mimics
Ph
O
H
N
N
N
N
O
O
H
O
HN
O
H
H
N
N
O
Scaffold
O
N
N
H
O
H
H
O
NH
O
O
N
N
N
N
H
O
Ph
139
β-Turn Mimics:
R
O
R
Scaffold
N
H
O
(i+3)
(i+1)
N
H
NH
O
N
H
N
R
R
H
NH
Linchpin
N
R
(i)
N
NH
O
O
O
R
R
R
O
R
(i+2)
H
O
O
H
R
O
R
O
N
O
NH3
CO2
CO2
!-Turn
+
+
CO2
NH3
+
NH3
O
O
S
R
HN
O
R
(CH2)n
n(H2C)
HN
O
O
O
H
H
O
N
R
R
N
O
HN
O
H
N
O
HN
R
R
O
H
O
O
NH
O
H
N
R
HN
O
N
R
N H
O
O
NH
140
70
Combinatorial synthesis of linchpin β-turn mimic
O
O
O
Br
R1
H
N
OH
NH2
N
H
N
H
DCC, HOBT
R1
S S-tBu
H2N
n
Br
O
O
R2
O
N
H
H
N
R1
O
S S-tBu
N
H
1)
n
OH
O
N
H
DCC, HOBT
2) piperidine
O
H
N
NHFMOC
R1
NH2
N
O
R2
n
S
S-tBu
O
R2
O
Br
O
OH
R3
DCC, HOBT
N
H
O
H
N
R1
O
R2
n
S
Br
H
N
N
R3
1) Ph3P
2) cyclization
3) CF3CO2H
R3
N
H
O
S
N
n
O
O
HN
R1
S-tBu
O
NH2
Evaluated for Somatostatin receptor binding
n= 1,2 x R2= 34 AA x R 3 = 10 = 1292 β-turn mimics
141
71