Academia.eduAcademia.edu

On the number of prime implicants

1978, Discrete Mathematics

It is shown that any Boolean expreGon in clisjunctk*: normal form h;l\ing k ccjnlunctk. (*an hate at most Zk pnme implicants. However. there csist such expressions thnt ha1.t' ? ' r.rirnc implicants. It is also shown that any Boolean eqw:s~ion m II din,tinct prnpo4ticm;~l ~:~rinlA-~ call have at most 013"/\ 111 prime implicants. and that th<rcm s\i\t e\prcGon\ \iiith 111 ~"/II I prlIme implicdnts.

Discr~:te Mathematics @ North-Holland I 1. 24 (19781 7. Pul llishing Com,>an: Ashok K. CHANDRA Con..wrer Sciences Ym:town Heights. Received 4 July 1977 Re\ ised 17 March and George Deparrtnet~t. NY IR59X. lB/Lhl 7lmnas J’. \\‘aljotl Rtivtirc-h Cmt~r. P (!. BIII I IS U.S.A. I978 It is shown that any Boolean hate MARKOWSKY at most Zk pnme expreGon implicants. in clisjunctk*: However. normal form h;l\ing there csist such expressions k ccjnlunctk. (*an thnt ha1.t’ ? ’ r.rirnc It is also shown that any Boolean zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQ e q w:s~io n m II din,tinc t prnpo 4tic m ;~l ~:~rinlA- ~ implicants. call have at most 013”/\ 111prime implicants. and that th<rcm s\ i\ t e\prcGon\ I \iiith 111 ~“/II prlIme implicdnts. 1. Prime impticants related Dehition 1.1.A literal to the mmber zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPO of zyxwvutsrqponmlkjihgfedcbaZYXWVUT conjuncts is a propositional symbol (frariable) tional s;dmbo!. A conjwzct is a conjunction /‘&, or a negated proix,<i- Li. k HI. of literals L, whew the empty conjunction stands for PZM. A boolear expression is in tfi.~jrrr~r~i~~~ mwd ~OITII (d n.f.) if it is a dIsjunction V!‘_ , Ai, r H, of conjuncts I+. whcrc thl: empt!’ 1joolean expression stands for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGF false. A conjunct A iq an inqdicanr d a lw01e~11 e::pression E if A +E (where -2 stands for logical implication). l-huh ~111 conjuncts of a d.n.f. exq.!ression are its impiicants. A conjunct .4 is ;1 prirm. impIicarzt of a boolean expression E (see, for cxampie [2.2 1, if r\ 3 E but for ever! conjunct ‘c also a literal 1, A ’ each of whose liter& of 4. .-I’-;3 E. in 0tht3 wordI.;, prime implicants are the miniinai impiican’.s of a boolean c3prcSwm. Let 1’; I E) be the nrrmber of distinct Isrimt: implil:anls of a boolean exprct\sion I! (two prime The impiican:s 3ooiean equivalent are *.distinct” minimization to some given problem d.n.f. large savings since arbitrarily below the Function simplified f which if the conjuncts also a measure minimi;:atiors is that of finding expression. I;rge Minimlzat expressions is a measure of how much implicants short d.n.f. ma! such as the Quine-McCi;J4e~* qmswrvl ion can achieve can simplify of the given expression of how many prime method if they do not h.r\ve the same set of litcr.%l XI dcfin~~ to lrrle. Wr: cxpre\\ion are all prime btt gcncrated Qorithm orbit r-i{ril>. cLtn FIu implictint\. when I’ i\ uww #I [-I. h]. III AK . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJ Chndra, G. M arkorusky 8 Cl,mmnt: 31w3’= 0(2°.53k ). Also the lower bound can be achieved c,ith k + [log2 kl propositional symbols. Proof. Lowet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA bclunci. The cases k = 1,2 are trivial. For k>3, let r= 13 k], and s = [log, rl . The propositional symbols are cJI. a,, . . . , zyxwvutsrqponmlkjihgfedcba a,. b,, . . , , br, c,. . . . , c,, n I* - . , 4. l Let A, be conjuncts A,,..., A,nA,=false using only a,, . . . , Q, such that for i# j and (3) i/ i= 1 4 =-true. This may be done as fr:)llows. For r = 1, let Al be simply the expression which is always true (the empty conjunction). Otherwise, for ra2, let c = ‘,,I~+ 4, where Xii is ~i if the jth bit in 2”-r(O~lst-2). For isr-t, let Ai= tile s-bii binary repret.entation of the integer i - i is 1 (high-order bit first), and xii is fi, otherwise. For t- t C. i s r, let Ai = AjZ: x , !vhere xii is ai if the jth bit in the s-bit binary representation of r- t-1+2(i--(r.-())=2i-r+t-1 is I, and xii is aj otherwise (comment: r- t is an even integer). Thus for 16 t G r - t, Ai is true for exactly one assignment of truth-values to Gl, _ . . , a,. For r - I + 1 6 i s r, Ai is true for exactly two assignments of truth-values to a L,. . . , a,. Sihce the assignments are all distinct (they march up with Jkinct integers) we FW that ki A Ai = false fur i Z i. The total number of truth-va%le assignments thus covered is r-- f t 2( I-(It + 1) + 1) = r+ t = 2’, SO the disjunction OF the Ai is 5~true. tet the expression E be (A,r.b,)v(A,~c,)v(A,.~,d,) Then each of the 3’ conjunctc v(A+b,k. l v(A,/\b,:lv(A,~c,)\/(A,r.~L,,. oF the form r; w her< yi is A . c,.or di (4) Y, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA i=l is a prime imp!icant of E. To wify this, 1~t D = 1/\1_, yi be a c Jnjunct of the form (4) iibove. Then D*E, lxx;~;s(* in any truth as@ment for which D i5 true. at IWS? :>rle of the 4’s musr b&-true by (3); say A, is true. in which cast .A, ,y yp is tr IS, I.L, E is true. On the cltner hand, if t3iP3S.4) is a conjullc: such that fJ+ B (i.e., 15 contain:: a proper sub.;et (If the literk in A), then SAKE. because we can c%m:e a truth assignment in whit? B is true and E is false a:. follows. Say tht: h?C=KPX”_, i, LJ E\ not 151 tk ~3assign tr&l ak 4KS to i%W[I,‘r;cuch t%1at44o k OH true, but A, is false IN t hr nr unher o/ pr ime ir i~ plir nt ~ ~ .c all 4” ,7 (this can be done bjf 13)). i\lio false, 3nd bq, cs, 64 be ttue for 41 4# p. Then let I+,. cm,,. d,. Iv but E is false. zyxwvutsrqponml B is true. Upperbound. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Let E = \I:_, A, bvhere each Ai IS a conjunct. Let k? be the act of prime implicants of E_ W e define the function % C$ g+2{A,: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA I s.iGk } as follows. For PE 9. .T( P) is any subset #,,. A,, \ cuch that .. but P+ Clearly (i.e. the disjunct 9(P) false). can be defined We will since P$ show that %( PI 1f !%P2). We will actually if E, but P3 P,, PI tt,s disjunct distinct arc P = /\:, _ , ot ‘hc crnp’t! bet ekmsnts show that 5( PI determines We will first show that for any 1% 9, those literals 1%) of any proper subs&:1of 54 Pk of ,P i hlbn P uniquely. x,,,. INhere the A-,,,‘\ NC cuctl~ that occur in some elc ment of !9( P). btit whose dual (the du;~) of u i\ 6, of ii is a) does not occur in :rnv element of 9(P). For esampk if 31 PI = (a’b, %, Cd), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA we are asserting that P must hc ad. First, note that P cannot contain a literal whose ddal is in some element sinc*;t then ? would Second, P cannot contain of s(P), for if, say ;:, did not appear in any of the ,A,,. then it is easy to clec’ thin AL=1 x,:3 Vi_, Thus we have s!v.vn described, Assum contradicting I 3~. tl\,e filet that I’ is a prrme implicant that the only Gtcrals lvhich czn possit+* in som e element Df %( I=). It remains of am, tippe;rr in P :Irc’ but whf zyxwvutsrqponmlkjihgfedcbaZYX )se dual does not appt:ar m to shcjw if .Y is any literal ot’ the tyx $1 then x nppears in P. s does not appear A,,). and H = ‘/‘{A,,EHP):x neither of 57 P -M,,}. a literal wh;c:l fails to occur in art>’ one of the c’lt’mcnt~ Aj, 3 E, contradicting those which appear any element impi:/ the disjunct 01’ A,, of s(P) in P. Ltrt G = V+4,, appears c. 9( PI : .k dw\ in .A,}). The11 a~ P-$G nor ;rplkm iI1 ..‘I-/ h> ~F;rj. ,~ntl x not its zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA dual appears in P or in G. ;Ind t .gyerlr~ in tsar) crbniunc’l (lt I!. on substituting false t’or .Y we h:t\*c P$ ClearI;,/. since %(I’I I! itmplicanls d+ermine. G. ccbnrr ~d~ciin:, (5~. tit i1:1JnP\ II\ i’ l9 there c-111bt* r o ~#>Tc th:\n 2” zyxwvutsrqponmlkjihg rekated zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA to Uhe nurr&es of vaaiukdes d zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA lrc H:ilC tii e Bowe: bound is (Z+“/H)~ the upper bound is O(Y/&r). [ I j i3. DL~~I:LUTIand R. Fridshal. [2] (1959) 17-19. M.A. Harrison. Introduction [3] D.J. Kleitman. M. Edeiberg Math. ( 197 1) 47-53. [4] E.J. McCluskey Jr.. The pri.:siem of knpiilving IogicJ’ expre\\ilxl4. to S\hitc’ilin,g and ;autornata Theor\! and ID. Lubt-Il. Minimization .D ‘#I I-I-IDiill L Irp~~. L 4 I kkGr;,;v-Hill. \I~I!* 1’0 I,. hlaxim~_~l Gzed anti~%;~ink in p,lrti;il 01’ Bookm function<. &II System Tt.:h I W5 I rrdcbr<. I;r~Lei~.~c, 3 ; -.[~II I I’)+~I zyxwvu 14-15-1-w. [5] R.E. Miller. [6l W.V. Quine. [7] A.P. Viiruiin. (1974) Switching Thrxy. A way to shrpiify IS i-166 Estimate Vol. 1 (John Wiley. truth of the number (in Russian). functions. New York. Am. of cclnjunctions hlath. i!lhit. Monthlv in reduced fi’)rS~ I 1111 q_’I < 1I d.n.l’.. Pr >bl~rnv Kibc~~81~:11.4