FLOW BY MEAN CURVATURE INSIDE A MOVING AMBIENT SPACE
ANNIBALE MAGNI, CARLO MANTEGAZZA, AND EFSTRATIOS TSATIS
arXiv:0911.5130v1 [math.DG] 27 Nov 2009
A BSTRACT. We show some computations related in particular to the motion by mean curvature flow
of a submanifold inside an ambient Riemannian manifold evolving by Ricci or backward Ricci flow.
Special emphasis is given to the analogous of Huisken’s monotonicity formula and its connection
with the validity of some Li–Yau–Hamilton Harnack–type inequalities in a moving manifold.
C ONTENTS
1. Static Ambient Space
2. Moving Ambient Space
3. Ricci and Back–Ricci Flow
3.1. Ricci Flow Case
3.2. Back–Ricci Flow Case
4. Li–Yau–Hamilton Harnack Inequalities and Ricci Flow
4.1. Computation I: Ricci Flow
4.2. Computation II: Back–Ricci Flow
4.3. Dimension 2
4.4. A Very Special Case
References
1
2
3
3
4
4
5
7
8
9
9
1. S TATIC A MBIENT S PACE
First we show the extension of Huisken’s monotonicity formula by Hamilton [3]. Let u be a
positive solution of the backward heat equation on a Riemannian manifold (M, g),
ut = −∆M u .
Let us assume we have a smooth, compact, immersed submanifold N with dim N = n evolving
by the mean curvature flow in the ambient space M with dim M = m, the metric on N is the
induced metric and we let µ to be the associated measure.
We denote the normal indices with α, β, γ, . . . and the tangent ones with i, j, k, . . . , then,
∆M u = ∆N u + g αβ ∇α ∇β u − Hα ∇α u .
Now we compute
Z
Z
Z
d
u dµ =
ut + Hα ∇α u − H2 u dµ =
−∆M u + Hα ∇α u − H2 u dµ .
dt N
N
N
Using (1.1) and integrating by parts we obtain
Z
Z
d
−g αβ ∇α ∇β u + 2Hα ∇α u − H2 u dµ .
u dµ =
dt N
N
α
u
we get
Adding and subtracting the quantity ∇α u∇
u
Z
Z
Z
d
∇α u∇α u
∇α u∇α u
2
α
−
∇α ∇α u −
dµ .
u dµ =
− H u − 2H ∇α u +
dt N
u
u
N
N
Date: November 27, 2009.
1
(1.1)
FLOW BY MEAN CURVATURE INSIDE A MOVING AMBIENT SPACE
2
This becomes
d
dt
Z
N
u dµ = −
Z
N
H−
∇⊥ u
u
2
u dµ −
Z
N
∇α ∇α u −
∇α u∇α u
dµ .
u
Finally, setting τ = T − t for some constant T ∈ R one obtains, for every t < T ,
Z
Z
2
m−n
m−n
∇⊥ u
d
u dµ = − τ 2
H−
τ 2
u dµ
dt
u
N
N
Z
m−n
∇α u∇α u
u
∇α ∇α u −
+
(m − n) dµ
−τ 2
u
2τ
N
Z
2
m−n
∇⊥ u
2
H−
u dµ
= −τ
u
N
!
Z
∇2αβ u ∇α u∇β u gαβ
m−n
−τ 2
g αβ u dµ
+
−
2
u
u
2τ
N
Z
m−n
2
H + ∇⊥ f e−f dµ
= −τ 2
ZN
m−n
gαβ αβ −f
∇2αβ f −
g e dµ ,
+τ 2
2τ
N
(1.2)
where in the last passage we substituted u = e−f , as u > 0. Notice that ft = −∆M f + |∇f |2 .
This is Hamilton’s result in [3].
2. M OVING A MBIENT S PACE
Let us assume now that the metric of the ambient space evolves by the rule gt = −2Q (if
Q = Ric we have the Ricci flow) and the backward heat equation is modified to
ut = −∆M u + Ku
for some function K.
If now we repeat the previous computation we have two extra terms, the first is coming from
the modification to the equation for u, the second from the time derivative of the measure on N .
Indeed, the associated metric on N is affected not only by the motion of the submanifold but also
by the evolution of the ambient metric on M . After some computation we have
d
µ = (−H2 − g ij Qij )µ = (−H2 − tr Q + g αβ Qαβ )µ .
dt
Therefore we get
Z
Z
2
m−n
m−n
d
∇⊥ u
τ 2
u dµ
u dµ = − τ 2
H−
dt
u
N
N
!
Z
∇2αβ u ∇α u∇β u gαβ
m−n
−τ 2
g αβ u dµ
+
−
u
u2
2τ
N
Z
m−n
2
(K − tr Q + g αβ Qαβ )u dµ
+τ
N
Z
m−n
2
= −τ 2
H + ∇⊥ f e−f dµ
ZN
m−n
gαβ αβ −f
∇2αβ f + Qαβ −
g e dµ
+τ 2
2τ
ZN
m−n
+τ 2
(K − tr Q)e−f dµ ,
N
(2.1)
FLOW BY MEAN CURVATURE INSIDE A MOVING AMBIENT SPACE
3
where we substituted u = e−f , hence, ft = −∆M f + |∇f |2 − K.
This computation suggests that a good choice is K = tr Q as the last term vanishes and we get
Z
Z
m−n
m−n
d
2
τ 2
u dµ = − τ 2
H + ∇⊥ f e−f dµ
dt
N
ZN
m−n
gαβ αβ −f
∇2αβ f + Qαβ −
+τ 2
g e dµ .
(2.2)
2τ
N
Moreover, notice that with the choice K = tr Q, we have
Z
Z
Z
d
−∆M u = 0 ,
ut − tr Qu =
u=
dt M
M
M
R
R
at least when the ambient manifold M is compact, hence the integral M u = M e−f is constant
during the flow.
3. R ICCI
AND
B ACK –R ICCI F LOW
3.1. Ricci Flow Case. We choose now Q = Ric, that is, the metric g on M evolves by the Ricci
flow in some time interval (a, b) ⊂ R, and we set K = R to be the scalar curvature.
By the previous computation we get
Z
Z
m−n
m−n
d
2
2
2
τ
u dµ = − τ
H + ∇⊥ f e−f dµ
dt
N
ZN
m−n
gαβ αβ −f
∇2αβ f + Rαβ −
g e dµ ,
(3.1)
+τ 2
2τ
N
for a positive solution of the conjugate backward heat equation
and f = − log u. Hence,
m−n
2
ut = −∆u + Ru
(3.2)
ft = −∆f + |∇f |2 − R .
(3.3)
R
Monotonicity
u dµ
is so related to the nonpositivity of the Li–Yau–Hamilton type
N
of τ
gαβ
2
expression ∇αβ f + Rαβ − 2τ g αβ . Notice that the same conclusion holds also if ut ≤ −∆u +
Ru.
If (M, g(t)) is a gradient soliton of Ricci flow and f its “potential” function, it is well known
that u = e−f satisfies the conjugate heat equation (3.2) and we have
• Expanding Solitons: flow defined on (Tmin , +∞) and ∇2 f + Ric = g/2(Tmin − t)
• Steady Solitons: eternal flow and ∇2 f + Ric = 0
• Shrinking Solitons: flow defined on (−∞, Tmax ) and ∇2 f + Ric = g/2(Tmax − t)
Substituting, in the three cases, the above expression becomes
1
1
• Expanding Soliton: m−n
2
Tmin −t − T −t which is always negative as t ∈ (Tmin , T ).
− T 1−t which is always negative as t ∈ (−∞, T ).
• Steady Soliton: m−n
2
1
1
−
• Shrinking Soliton: m−n
2
Tmax −t
T −t which is nonpositive if T ≤ Tmax as t ∈ (−∞, min{T, Tmax }).
Proposition 3.1. If (M, g(t)) is a steady or expanding gradient soliton and f is its potential function,
then monotonicity holds for every T ≥ Tmin.
If (M, g(t)) is a shrinking gradient soliton on (−∞, Tmax ) and f is its potential function, then monotonicity holds for every T ≤ Tmax .
FLOW BY MEAN CURVATURE INSIDE A MOVING AMBIENT SPACE
4
3.2. Back–Ricci Flow Case. If we choose Q = −Ric, that is, the metric g evolves by back–Ricci
flow in some time interval (a, b) ⊂ R, and we set K = R to be the scalar curvature.
By the previous computation we get
Z
Z
m−n
m−n
d
2
2
2
u dµ = − τ
H + ∇⊥ f e−f dµ
τ
dt
N
ZN
m−n
gαβ αβ −f
∇2αβ f − Rαβ −
+τ 2
g e dµ ,
(3.4)
2τ
N
for a positive solution of the conjugate backward heat equation
ut = −∆u − Ru
and f = − log u. Hence,
(3.5)
ft = −∆f + |∇f |2 + R
m−n R
2
Monotonicity
is so related to the nonpositivity of the Li–Yau–Hamilton type
N u dµ
of τ
gαβ
2
expression ∇αβ f − Rαβ − 2τ g αβ . Notice that the same conclusion holds also if ut ≤ −∆u −
Ru.
4. L I –YAU –H AMILTON H ARNACK I NEQUALITIES
AND
R ICCI F LOW
• We denote with fij = ∇2ij f the second covariant derivative of f , then
∇2ij f =
∂2f
∂f
− Γkij
.
∂xi ∂xj
∂xk
• Let ωi a 1–form, then we have the following formula for interchanging of covariant
derivatives
∇pq ωi − ∇qp ωi = Rpqis ωs .
Let ωij a 2–form, then
∇pq ωij − ∇qp ωij = Rpqis ωsj + Rpqj s ωis .
• II Bianchi Identity:
contracted,
that is,
∇s Rijkl + ∇l Rijsk + ∇k Rijls = 0
g js ∇s Rijkl − ∇l Ricik + ∇k Ricil = 0
div Riemikl = ∇k Ricil − ∇l Ricik
contracted again (Schur Lemma),
div Rick = ∇k R − div Rick
that is,
div Ric = ∇R/2 .
• Evolution equations for Ricci tensor and scalar curvature under Ricci flow:
∂t Ricij = ∆Ricij + 2Ricpq Ripjq − 2g pq Ricip Ricqj
∂t R = ∆R + 2|Ric|2 .
• Evolution equations for Christoffel symbols under Ricci flow:
∂t Γkij = −g kl (∇i Ricjl + ∇j Ricil − ∇l Ricij ) .
FLOW BY MEAN CURVATURE INSIDE A MOVING AMBIENT SPACE
5
• Interchange of Laplacian and second derivatives:
∇2ij ∆f = ∇i ∇j ∇k ∇k f
= ∇i (Rjkkp ∇p f ) + ∇i ∇k ∇j ∇k f
= − ∇i (Ricjp ∇p f ) + ∇i ∇k ∇k ∇j f
= − ∇i Ricjp ∇p f − Ricjp fip + ∇i ∇k ∇k ∇j f
= − ∇i Ricjp ∇p f − Ricjp fip + Rikkp fpj + Rikjp fkp + ∇k ∇i ∇k ∇j f
= − ∇i Ricjp ∇p f − Ricjp fip − Ricip fpj − Rikpj fkp + ∇k (Rikjp ∇p f ) + ∇k ∇k ∇i ∇j f
= − ∇i Ricjp ∇p f − ∇k Rikpj ∇p f − Ricjp fip − Ricip fpj − Rikpj fkp − Rikpj fkp + ∆∇i ∇j f
= − (∇i Ricjk + ∇j Ricik − ∇k Ricij )∇k f − Ricjp fip − Ricip fpj − 2Rikpj fkp + ∆∇i ∇j f
where in the last passage we used the II Bianchi identity. Hence,
∇2ij ∆f − ∆∇i ∇j f = −(∇i Ricjk + ∇j Ricik − ∇k Ricij )∇k f − Ricjp fip − Ricip fpj − 2Rikpj fkp .
4.1. Computation I: Ricci Flow. Suppose that ut = −∆u + Ru and u > 0, we want to show the
nonpositivity of the term
∇2ij f + Rij −
gij
2τ
for f = − log u which satisfies
ft = −∆f + |∇f |2 − R .
Equivalently, if we had chosen f = log u, we can show the positivity of
∇2ij f − Rij +
gij
2τ
for f = log u which satisfies
ft = −∆f − |∇f |2 + R .
We set τ = T − t, Lij = fij − Ricij , Hij = τ Lij + gij /2 = τ [fij − Ricij ] + gij /2.
FLOW BY MEAN CURVATURE INSIDE A MOVING AMBIENT SPACE
6
(∂t + ∆)Hij = − Lij − Ricij
+ τ [∆fij + ∇2ij ft + (∇i Ricjk + ∇j Ricik − ∇k Ricij )∇k f ]
− τ [∂t Ricij + ∆Ricij ]
= − Lij − Ricij
+ τ [∆fij − ∇2ij ∆f − ∇2ij |∇f |2
+ (∇i Ricjk + ∇j Ricik − ∇k Ricij )∇k f ]
− τ [2∆Ricij + 2Ricpq Ripjq − 2Ricip Ricpj − ∇2 R]
= − Lij − Ricij
+ τ [(∇i Ricjk + ∇j Ricik − ∇k Ricij )∇k f
+ Ricjp fip + Ricip fpj + 2Rikpj fkp
− ∇2ij |∇f |2 + (∇i Ricjk + ∇j Ricik − ∇k Ricij )∇k f ]
− τ [2∆Ricij + 2Ricpq Ripjq − 2Ricip Ricpj − ∇2 R]
= − Lij − Ricij
+ τ [Ricjp fip + Ricip fpj + 2Rikpj fkp
− 2fip fjp − 2∇3ijk f ∇k f + 2(∇i Ricjk + ∇j Ricik − ∇k Ricij )∇k f ]
− τ [2∆Ricij + 2Ricpq Ripjq − 2Ricip Ricpj − ∇2 R]
= − Lij − Ricij
+ τ [Ricjp fip + Ricip fpj + 2Rikpj fkp
− 2fip fjp − ∇3ijk f ∇k f − ∇3jik f ∇k f + 2(∇i Ricjk + ∇j Ricik − ∇k Ricij )∇k f ]
− τ [2∆Ricij + 2Ricpq Ripjq − 2Ricip Ricpj − ∇2 R]
= − Lij − Ricij
+ τ [Ricjp fip + Ricip fpj + 2Rikpj fkp
− 2fip fjp − 2∇3kij f ∇k f − 2Rikjp ∇p f ∇k f + 2(∇i Ricjk + ∇j Ricik − ∇k Ricij )∇k f ]
− τ [2∆Ricij + 2Ricpq Ripjq − 2Ricip Ricpj − ∇2 R]
= − Lij − Ricij
+ τ [Ricjp fip + Ricip fpj − 2fip fjp − 2∇3kij f ∇k f ]
− τ [2∆Ricij + 2Ricpq Ripjq − 2Ricip Ricpj − ∇2 R]
+ τ [2(∇i Ricjk + ∇j Ricik − ∇k Ricij )∇k f
− 2Rikjp fpk − 2Rikjp ∇p f ∇k f ]
substituting, Lij = [Hij − gij /2]/τ and fij = [Hij − gij /2]/τ + Ricij , we get
FLOW BY MEAN CURVATURE INSIDE A MOVING AMBIENT SPACE
7
(∂t + ∆)Hij = − Hij /τ + gij /2τ − Ricij
+ τ [Ricjp Ricip + Ricip Ricpj − 2∇k Ricij ∇k f ]
2
− 2τ [Hij
/τ 2 − Hij /τ 2 + gij /4τ 2 + Ricik Rickj + Ricik Hjk /τ + Ricjk Hik /τ − Ricij /τ ]
+ [Ricjp Hip + Ricip Hpj − 2∇k Hij ∇k f ]
− Ricij
− τ [2∆Ricij + 2Ricpq Ripjq − 2Ricip Ricpj − ∇2ij R]
+ τ [2(∇i Ricjk + ∇j Ricik − ∇k Ricij )∇k f ]
− 2τ Rikjp Ricpk − 2Rikjp Hpk + Ricij
− 2τ Rikjp ∇p f ∇k f
2
= [Hij − 2Hij
]/τ + Ricij + τ [Ricjp Ricip + Ricip Ricpj − 2∇k Ricij ∇k f ]
− 2τ [Ricik Rickj + Ricik Hjk /τ + Ricjk Hik /τ ]
+ [Ricjp Hip + Ricip Hpj − 2∇k Hij ∇k f ]
− τ [2∆Ricij + 4Ricpq Ripjq − 2Ricip Ricpj − ∇2ij R]
+ τ [2(∇i Ricjk + ∇j Ricik − ∇k Ricij )∇k f ]
− 2Rikjp Hpk − 2τ Rikjp ∇p f ∇k f
2
= [Hij − 2Hij
]/τ − 2∇k Hij ∇k f
− [Ricik Hjk + Ricjk Hik + 2Rikjp Hpk ]
− τ [2∆Ricij − 2Ricjp Ricip + 4Ricpq Ripjq − ∇2ij R − Ricij /τ ]
+ τ [2(∇i Ricjk + ∇j Ricik − 2∇k Ricij )∇k f ]
− 2τ Rikjp ∇p f ∇k f
so finally, we get
2
(∂t + ∆)Hij = [Hij − 2Hij
]/τ − 2∇k Hij ∇k f − Ricki Hkj − Rickj Hki − 2Ripjq H pq
− τ [2∆Ricij − 2g pq Ricip Ricjq + 4Ricpq Ripjq − ∇2ij R − Ricij /τ ]
+ 2τ (∇i Ricjk + ∇j Ricik − 2∇k Ricij )∇k f − 2τ Ripjq ∇p f ∇q f .
Notice that the second and third lines gives the Hamilton’s Harnack quadratic with a wrong term
−Ricij /τ .
4.2. Computation II: Back–Ricci Flow. Suppose that ut = −∆u − Ru and u > 0, we want to
show the nonpositivity of the term
gij
∇2ij f − Rij −
2τ
for f = − log u which satisfies
ft = −∆f + |∇f |2 + R .
Equivalently, if we had chosen f = log u we can show the positivity of
gij
∇2ij f + Rij +
2τ
for f = log u which satisfies
ft = −∆f − |∇f |2 − R .
• Evolution equations for Ricci tensor and scalar curvature under back–Ricci flow:
∂t Ricij = −(∆Ricij + 2Ricpq Ripjq − 2g pq Ricip Ricqj )
∂t R = −(∆R + 2|Ric|2 ) .
FLOW BY MEAN CURVATURE INSIDE A MOVING AMBIENT SPACE
8
• Evolution equations for Christoffel symbols under back–Ricci flow:
∂t Γkij = g kl (∇i Ricjl + ∇j Ricil − ∇l Ricij ) .
We set fi = ∇i f , fij = ∇2ij f and Lij = fij + Ricij , Hij = τ Lij + gij /2 = τ [fij + Ricij ] + gij /2,
(∂t + ∆)Hij = − Lij + Ricij
+ τ [∆fij + ∇2ij ft − (∇i Ricjk + ∇j Ricik − ∇k Ricij )∇k f ]
+ τ [∂t Ricij + ∆Ricij ]
= − fij + τ [∆fij − ∇2ij ∆f − ∇2ij |∇f |2 − (∇i Ricjk + ∇j Ricik − ∇k Ricij )∇k f ]
− τ [2Ricpq Ripjq − 2g pq Ricip Ricqj + ∇2ij R]
= − fij + τ [(∇i Ricjk + ∇j Ricik − ∇k Ricij )∇k f + g pq Ricjp fiq + g pq Ricip fqj − 2Ripjq f pq ]
+ τ [−∇2ij |∇f |2 − (∇i Ricjk + ∇j Ricik − ∇k Ricij )∇k f ]
− τ [2Ricpq Ripjq − 2g pq Ricip Ricqj + ∇2ij R]
= − fij + τ [g pq Ricjp fiq + g pq Ricip fqj − 2Ripjq f pq − ∇2ij |∇f |2 ]
− τ [2Ricpq Ripjq − 2g pq Ricip Ricqj + ∇2ij R]
= − fij + τ [g pq Ricjp fiq + g pq Ricip fqj − 2Ripjq f pq ]
− τ [2Ricpq Ripjq − 2g pq Ricip Ricqj + ∇2ij R]
− τ [2fip fjp + 2∇3ijk f ∇k f ]
= − fij + τ [g pq Ricjp fiq + g pq Ricip fqj − 2Ripjq f pq ]
− τ [2Ricpq Ripjq − 2g pq Ricip Ricqj + ∇2ij R]
− τ [2fip fjp + 2∇3kij f ∇k f + 2Ripjq ∇p f ∇q f ] .
Suppose now that at time t > 0, the tensor Hij (which goes +∞ as t → T − ) get its “last” zero
eigenvalue at some point (p, t) in space and time, with V i unit zero eigenvector. We extend V i in
space such that ∇V (p) = ∇2 V (p) = 0 and constant in time. Then if Z = Hij V i V j we have that Z
has a global minimum on M × [t, T ] at (p, t). At such point we have Z = 0, ∇Z = 0 and ∆Z ≥ 0,
hence, fij V i V j = −Ricij V i V j − 1/2τ , and as ∇Z = 0, ∇k fij V i V j = −∇k Ricij V i V j . Then
0 ≤ ∂t Z + ∆Z = (∂t Hij + ∆Hij )V i V j
= {−fij + τ [g pq Ricjp fiq + g pq Ricip fqj − 2Ripjq f pq ]
− τ [2Ricpq Ripjq − 2g pq Ricip Ricqj + ∇2ij R]
− τ [2fip fjp + 2∇3kij f ∇k f + 2Ripjq ∇p f ∇q f ]}V i V j
= {Ricij + gij /2τ + τ [−2Ric2ij − Ricij /τ + 2Ricpq Ripjq + Ricij /τ ]
− τ [2Ricpq Ripjq − 2g pq Ricip Ricqj + ∇2ij R]
− τ [2Ric2ij + 2Ricij /τ + gij /2τ 2 − 2∇k Ricij ∇k f + 2Ripjq ∇p f ∇q f ]}V i V j
= {−Ricij − τ [2Ric2ij + ∇2ij R − 2∇k Ricij ∇k f + 2Ripjq ∇p f ∇q f ]}V i V j
= − τ {∇2ij R + 2Ric2ij + Ricij /τ − 2∇k Ricij ∇k f + 2Ripjq ∇p f ∇q f ]}V i V j .
By this computation, it follows that we would get a contradiction by maximum principle, if the
following Hamilton–Harnack type inequality is true.
∇2ij R + 2Ric2ij + Ricij /τ − 2∇k Ricij U k + 2Ripjq U p U q ≥ 0 .
See [4] and also [2].
4.3. Dimension 2. In the special two–dimensional case of a surface with bounded and positive
scalar curvature this inequality holds, see [1, Chapter 15, Section 3].
If a positive function u satisfies
ut = −∆u − Ru
FLOW BY MEAN CURVATURE INSIDE A MOVING AMBIENT SPACE
9
for a closed curve moving by its curvature k inside a surface evolving by gt = 2Ric = Rg, we
have
Z
Z
√
d √
2
u ds ≤ − τ
τ
k − ∇⊥ log u u ds ,
dt
γ
γ
where ν is the unit normal to the curve γ.
4.4. A Very Special Case. In dimension 2, for a surface with positive and bounded scalar curvature, we consider the scalar curvature function u = R > 0.
It satisfies
ut = −∆u − Ru
as, under the back–Ricci flow, we have
∂t R = −∆R − R2 .
In this case we can get directly the monotonicity formula
Z
Z
√
d √
2
R ds ≤ − τ
τ
k − ∇⊥ log R R ds ,
dt
γ
γ
as the Li–Yau quadratic in this case, that is,
1
,
2τ
is nonnegative being exactly the “special” form of Hamilton–Harnack inequality for surfaces
with positive scalar curvature (see [1]).
This inequality becomes an equality (for every curve) iff M is a gradient expanding Ricci soliton with R > 0 and k = ∇⊥ log R.
∇2νν log R + R/2 +
R EFERENCES
1. B. Chow, S.-C. Chu, D. Glickenstein, C. Guenther, J. Isenberg, T. Ivey, D. Knopf, P. Lu, F. Luo, and L. Ni, The Ricci
Flow: Techniques and Applications. Part II: Analytic Aspects, Mathematical Surveys and Monographs, vol. 144, American
Mathematical Society, Providence, RI, 2008.
2. M. Feldman, T. Ilmanen, and L. Ni, Entropy and reduced distance for Ricci expanders, J. Geom. Anal. 15 (2005), no. 1, 49–62.
3. R. S. Hamilton, Monotonicity formulas for parabolic flows on manifolds, Comm. Anal. Geom. 1 (1993), no. 1, 127–137.
4. L. Ni, A matrix Li-Yau-Hamilton estimate for Kähler-Ricci flow, J. Diff. Geom. 75 (2007), no. 2, 303–358.
(Annibale Magni) SISSA – I NTERNATIONAL S CHOOL
34014
E-mail address, A. Magni:
[email protected]
FOR
A DVANCED S TUDIES , V IA B EIRUT 2–4, T RIESTE , I TALY,
(Carlo Mantegazza) S CUOLA N ORMALE S UPERIORE P ISA , I TALY, 56126
E-mail address, C. Mantegazza:
[email protected]
(Efstratios Tsatis) D EPARTMENT OF P HYSICS , U NIVERSITY OF PATRAS , G REECE , GR-26500
E-mail address, Efstratios Tsatis:
[email protected]
View publication stats