Academia.eduAcademia.edu

Diaquabis(dimethyl sulfoxide-κO)disaccharinatocadmium

2011, Acta Crystallographica Section E Structure Reports Online

metal-organic compounds Acta Crystallographica Section E Experimental Structure Reports Online Crystal data ISSN 1600-5368 Diaquabis(dimethyl sulfoxide-jO)disaccharinatocadmium Fezile S. W. Potwana and Werner E. Van Zyl* School of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa Correspondence e-mail: [email protected] Received 19 October 2011; accepted 25 October 2011 = 98.889 (1) V = 1250.63 (11) Å3 Z=2 Mo K radiation  = 1.26 mm 1 T = 173 K 0.14  0.11  0.08 mm Data collection Bruker Kappa DUO APEXII diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1997) Tmin = 0.843, Tmax = 0.906 12452 measured reflections 3121 independent reflections 2624 reflections with I > 2(I) Rint = 0.038 Refinement Key indicators: single-crystal X-ray study; T = 173 K; mean (C–C) = 0.003 Å; R factor = 0.025; wR factor = 0.061; data-to-parameter ratio = 18.4. The title compound, [Cd(C7H4NO3S)2(C2H6OS)2(H2O)2], contains a Cd2+ cation in an octahedral coordination environment. The metal atom is surrounded by the two different neutral ligands dimethyl sulfoxide (DMSO) and water, each coordinating through the O atom. The anionic saccharinate (sac; 1,1,3-trioxo-2,3-dihydro-16,2-benzothiazol2-ide) ligand coordinates through the N atom. Each of the three similar ligand pairs is in a trans configuration with respect to each other. The Cd atom lies on a crystallographic center of symmetry. The DMSO ligand coordinates through the lone pair of electrons on the O atom, as can be seen from the Cd—O—S bond angle of 123.96 (9) . Related literature For a general review article on the coordination chemistry of saccharinate ligands, see: Baran & Yilmaz (2006). For cadmium saccharinate complexes, see: Deng et al. (2008) and for cadmium complexes with saccharinate as a non-coordinating ligand, see: Batsanov et al. (2011). For a cadmium complex that contains both saccharinate and DMSO, see: Yilmaz et al. (2003). For the preparation of cadmium precursor complexes, see: Haider et al. (1984). Acta Cryst. (2011). E67, m1635 [Cd(C7H4NO3S)2(C2H6OS)2(H2O)2] Mr = 669.03 Monoclinic, P21 =c a = 10.2613 (5) Å b = 15.4294 (8) Å c = 7.9951 (4) Å R[F 2 > 2(F 2)] = 0.025 wR(F 2) = 0.061 S = 1.03 3121 reflections 170 parameters 2 restraints H atoms treated by a mixture of independent and constrained refinement max = 0.42 e Å 3 min = 0.41 e Å 3 Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XSEED (Barbour, 2001); software used to prepare material for publication: SHELXL97. WEvZ gratefully acknowledges financial support from the University of KwaZulu-Natal. FSWP thanks the National Research Foundation (NRF) for an Innovative Grant. Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FF2035). References Baran, E. J. & Yilmaz, V. T. (2006). Coord. Chem. Rev. 250, 1980–1999. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191. Batsanov, A. S., Bilton, C., Deng, R. M. K., Dillon, K. B., Goeta, A. E., Howard, J. A. K., Shepherd, H. J., Simon, S. & Tembwe, I. (2011). Inorg. Chim. Acta, 365, 225–231. Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA Deng, R. M. K., Dillon, K. B., Goeta, A. E. & Sekwale, M. S. (2008). Inorg. Chim. Acta, 361, 1542–1546. Haider, S. Z., Malik, K. M. A., Das, S. & Hursthouse, M. B. (1984). Acta Cryst. C40, 1147–1150. Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Yilmaz, V. T., Hamamci, S. & Thöne, C. (2003). Z. Anorg. Allg. Chem. 629, 711–715. doi:10.1107/S1600536811044497 Potwana and Van Zyl m1635 supporting information supporting information Acta Cryst. (2011). E67, m1635 [doi:10.1107/S1600536811044497] Diaquabis(dimethyl sulfoxide-κO)disaccharinatocadmium Fezile S. W. Potwana and Werner E. Van Zyl S1. Comment Saccharin (o-sulfobenzimide; 1,2-benzothiazole-3(2H)-one 1,1-dioxide; Hsac) is a widely used artificial sweetening agent. The imino hydrogen is acidic and can be readily deprotonated. The coordination chemistry of this anion is versatile due to the different coordination sites to metallic centers it can accommodate, i.e., one N, one O (carbonylic) and two O (sulfonic) atoms. These donor atoms of the anion can thus readily generate either N– or O-monodentate or bidentate (N, O) coordination. Saccharin is normally used as the sodium or calcium salt which dramatically improves water solubility. Most metal complexes contain the deprotonated form of saccharin, and this saccharinate anion (sac) is commercially available as the sodium salt, used in the present study. The reaction of sodium saccharinate with a variety of divalent transition metal ions results in coordination complexes with general formula [M(sac)2(H2O)4].2H2O, (M = V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd), which all show a clear preference to bind through the deprotonated anionic N-atom (Baran and Yilmaz, 2006). These octahedral complexes contain two N-bonded sac ligands in trans positions, and complexes of the type [M(sac)2(H2O)4].2H2O are thus commonly used as precursors in the synthesis of mixed-ligand saccharinate complexes. The aqua ligands in these metal complexes are labile and readily displaced by direct reaction of neutral ligands. The addition of the ligands to the solutions of the complexes usually results in the substitution of all four aqua ligands, thereby forming stable new mixed-ligand complexes. In cases where the incoming neutral ligand is relatively bulky, as in the present study, it causes steric hindrance and only two of the four aqua ligands become displaced in order for the Cd center to remain octahedral. Although there are a number of Cd(II) saccharinate complexes previously reported (Batsanov et al., 2011, and refs. therein), we are aware of only one other report that contains both saccharinate and dmso as ligands in a structurally characterized Cd(II) complex (Yilmaz et al., 2003). S2. Experimental [Cd(sac)2(H2O)4].2H2O was prepared as per literature method (Haider et al., 1984). Colorless crystals of [Cd(sac)2(H2O)4].2H2O (1.13 g; 2.10 mmol) was placed in a 100 ml beaker and dissolved in excess amount of dimethyl sulfoxide (dmso) (20 ml). The reaction mixture was gently heated on a heating mantle with stirring to reduce the volume of dmso to ~7 ml. The beaker was removed from the heat source and allowed to stand for 6 days during which time large colorless blocky crystals of the title compound were obtained. Yield (1.30 g, 92%); Mp 114°C; 13C NMR (CD3OD, 101 MHz) d(p.p.m.): 40.39 (CH3-dmso), 121.20 (C6-ring), 124.91 (C6-ring), 133.42 (C6-ring), 134.21 (C6-ring), 134.24 (C6ring), 144.90 (C6-ring) 171.90 (C=O); IR (ATR) 3481, 3016 n(OH), 1646, 1609 n(C=O), 1583, 1460 n(C=C), 1271, 1256 n(O=S=O); 1054, 1036 n(S=O). S3. Refinement All non-H atoms were refined anisotropically. All hydrogen atoms could be found in the difference electron density maps. All, except H5A and H5B on O5, were placed in idealized positions refining in riding models with Uiso set at 1.2 or 1.5 Acta Cryst. (2011). E67, m1635 sup-1 supporting information times those of their parent atoms. The water hydrogen atoms H5A and H5B were located in the difference electron density maps and refined with independent isotropic temperature factors and simple bond length constraints of d(O—H) = 0.980 (2) Å. The structure was refined to R factor of 0.0253. Figure 1 The ORTEP molecular structure of the title complex, shown with 50% probability ellipsoids. [Symmetry codes: (i) 1-x, 2y, -z] Diaquabis(dimethyl sulfoxide)bis(1,1,3-trioxo-2,3-dihydro-1λ6,2-benzothiazol-2-ido)cadmium Crystal data [Cd(C7H4NO3S)2(C2H6OS)2(H2O)2] Mr = 669.03 Monoclinic, P21/c Hall symbol: -P 2ybc a = 10.2613 (5) Å b = 15.4294 (8) Å c = 7.9951 (4) Å β = 98.889 (1)° V = 1250.63 (11) Å3 Z=2 F(000) = 676 Dx = 1.777 Mg m−3 Mo Kα radiation, λ = 0.71073 Å Cell parameters from 12452 reflections θ = 2.0–28.4° µ = 1.26 mm−1 T = 173 K Plate, colourless 0.14 × 0.11 × 0.08 mm Data collection Bruker Kappa DUO APEXII diffractometer Radiation source: fine-focus sealed tube Graphite monochromator 0.5° φ scans and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 1997) Tmin = 0.843, Tmax = 0.906 Acta Cryst. (2011). E67, m1635 12452 measured reflections 3121 independent reflections 2624 reflections with I > 2σ(I) Rint = 0.038 θmax = 28.4°, θmin = 2.0° h = −13→13 k = −20→19 l = −10→10 sup-2 supporting information Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.025 wR(F2) = 0.061 S = 1.03 3121 reflections 170 parameters 2 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement w = 1/[σ2(Fo2) + (0.026P)2 + 0.4033P] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.001 Δρmax = 0.42 e Å−3 Δρmin = −0.41 e Å−3 Special details Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) Cd1 S1 S2 O1 O2 O3 O4 O5 H5A H5B N1 C1 C2 H2 C3 H3 C4 H4 C5 H5 C6 C7 C8 H8A x y z Uiso*/Ueq 0.5000 0.52294 (5) 0.26624 (5) 0.37534 (15) 0.23352 (16) 0.17818 (14) 0.52173 (15) 0.62293 (15) 0.7063 (14) 0.599 (3) 0.28899 (17) 0.12665 (19) 0.0586 (2) 0.0842 −0.0494 (2) −0.0998 −0.0848 (2) −0.1590 −0.0139 (2) −0.0382 0.09327 (19) 0.1890 (2) 0.3957 (2) 0.3100 1.0000 0.80523 (4) 0.99004 (4) 1.02578 (12) 0.90145 (11) 1.06754 (10) 0.85326 (10) 1.02147 (11) 0.9905 (16) 1.0050 (18) 1.00406 (12) 1.05728 (14) 1.08352 (15) 1.0655 1.13759 (16) 1.1564 1.16459 (17) 1.2016 1.13854 (15) 1.1572 1.08447 (14) 1.05113 (14) 0.72722 (17) 0.7565 0.0000 0.19576 (7) 0.27847 (6) 0.39322 (19) 0.3102 (2) −0.15887 (18) 0.02902 (18) 0.25981 (19) 0.261 (4) 0.3695 (18) 0.0832 (2) 0.2691 (3) 0.3962 (3) 0.5101 0.3494 (3) 0.4329 0.1830 (3) 0.1548 0.0564 (3) −0.0574 0.1024 (3) −0.0059 (3) 0.1524 (3) 0.1340 0.01487 (7) 0.02107 (12) 0.01863 (12) 0.0269 (4) 0.0286 (4) 0.0236 (3) 0.0226 (3) 0.0219 (3) 0.053 (10)* 0.056 (11)* 0.0187 (4) 0.0173 (4) 0.0226 (5) 0.027* 0.0285 (5) 0.034* 0.0315 (6) 0.038* 0.0240 (5) 0.029* 0.0173 (4) 0.0181 (4) 0.0338 (6) 0.051* Acta Cryst. (2011). E67, m1635 sup-3 supporting information H8B H8C C9 H9A H9B H9C 0.3996 0.4071 0.6623 (2) 0.6571 0.6642 0.7428 0.6874 0.6945 0.73625 (17) 0.7007 0.6985 0.7714 0.2485 0.0505 0.2127 (4) 0.1103 0.3116 0.2254 0.051* 0.051* 0.0379 (6) 0.057* 0.057* 0.057* Atomic displacement parameters (Å2) Cd1 S1 S2 O1 O2 O3 O4 O5 N1 C1 C2 C3 C4 C5 C6 C7 C8 C9 U11 U22 U33 U12 U13 U23 0.01608 (10) 0.0264 (3) 0.0167 (2) 0.0193 (8) 0.0331 (9) 0.0227 (8) 0.0322 (9) 0.0233 (8) 0.0180 (8) 0.0144 (9) 0.0245 (11) 0.0290 (12) 0.0244 (12) 0.0220 (11) 0.0155 (9) 0.0165 (9) 0.0393 (14) 0.0325 (13) 0.01350 (11) 0.0166 (3) 0.0241 (3) 0.0431 (10) 0.0243 (9) 0.0323 (9) 0.0142 (8) 0.0270 (9) 0.0238 (10) 0.0180 (10) 0.0245 (12) 0.0309 (13) 0.0355 (14) 0.0272 (13) 0.0181 (10) 0.0202 (11) 0.0272 (13) 0.0331 (15) 0.01516 (10) 0.0201 (2) 0.0156 (2) 0.0180 (8) 0.0296 (9) 0.0156 (7) 0.0219 (8) 0.0156 (7) 0.0149 (8) 0.0191 (10) 0.0194 (10) 0.0286 (12) 0.0356 (13) 0.0225 (10) 0.0179 (10) 0.0176 (10) 0.0339 (13) 0.0490 (16) 0.00098 (8) 0.0016 (2) 0.0032 (2) 0.0014 (7) 0.0055 (7) 0.0056 (7) 0.0017 (6) 0.0019 (6) 0.0040 (7) −0.0006 (8) −0.0031 (9) 0.0065 (10) 0.0106 (11) 0.0047 (9) −0.0020 (8) −0.0009 (8) −0.0102 (11) 0.0124 (11) 0.00279 (7) 0.0034 (2) 0.00400 (19) 0.0016 (6) 0.0089 (7) 0.0027 (6) 0.0060 (7) 0.0039 (6) 0.0045 (7) 0.0013 (8) 0.0055 (9) 0.0136 (10) 0.0076 (10) 0.0026 (9) 0.0017 (8) 0.0029 (8) 0.0024 (11) 0.0089 (12) 0.00131 (8) 0.0023 (2) 0.0044 (2) 0.0029 (7) 0.0086 (7) 0.0038 (7) 0.0041 (6) −0.0007 (6) 0.0028 (8) 0.0018 (8) 0.0010 (9) −0.0020 (11) 0.0008 (12) 0.0031 (10) −0.0013 (8) 0.0007 (9) 0.0086 (11) 0.0184 (13) Geometric parameters (Å, º) Cd1—O5i Cd1—O5 Cd1—O4 Cd1—O4i Cd1—N1i Cd1—N1 S1—O4 S1—C8 S1—C9 S2—O2 S2—O1 S2—N1 S2—C1 O3—C7 O5—H5A O5—H5B N1—C7 Acta Cryst. (2011). E67, m1635 2.2817 (15) 2.2817 (15) 2.2833 (15) 2.2833 (15) 2.3620 (17) 2.3620 (17) 1.5236 (15) 1.770 (2) 1.771 (2) 1.4393 (17) 1.4429 (17) 1.6286 (17) 1.761 (2) 1.237 (2) 0.979 (2) 0.979 (2) 1.364 (3) C1—C2 C1—C6 C2—C3 C2—H2 C3—C4 C3—H3 C4—C5 C4—H4 C5—C6 C5—H5 C6—C7 C8—H8A C8—H8B C8—H8C C9—H9A C9—H9B C9—H9C 1.379 (3) 1.388 (3) 1.391 (3) 0.9500 1.388 (3) 0.9500 1.394 (3) 0.9500 1.384 (3) 0.9500 1.498 (3) 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 sup-4 supporting information O5i—Cd1—O5 O5i—Cd1—O4 O5—Cd1—O4 O5i—Cd1—O4i O5—Cd1—O4i O4—Cd1—O4i O5i—Cd1—N1i O5—Cd1—N1i O4—Cd1—N1i O4i—Cd1—N1i O5i—Cd1—N1 O5—Cd1—N1 O4—Cd1—N1 O4i—Cd1—N1 N1i—Cd1—N1 O4—S1—C8 O4—S1—C9 C8—S1—C9 O2—S2—O1 O2—S2—N1 O1—S2—N1 O2—S2—C1 O1—S2—C1 N1—S2—C1 S1—O4—Cd1 Cd1—O5—H5A Cd1—O5—H5B H5A—O5—H5B C7—N1—S2 C7—N1—Cd1 S2—N1—Cd1 C2—C1—C6 180.0 88.86 (6) 91.14 (6) 91.14 (6) 88.86 (6) 180.0 98.15 (6) 81.85 (6) 85.58 (6) 94.42 (6) 81.85 (6) 98.15 (6) 94.42 (6) 85.58 (6) 180.00 (9) 104.67 (10) 104.85 (11) 99.72 (13) 115.48 (10) 111.53 (10) 110.29 (9) 110.89 (9) 110.36 (10) 96.72 (9) 123.96 (9) 107.3 (19) 126.8 (19) 102 (3) 111.33 (14) 121.01 (13) 122.67 (9) 122.70 (19) C2—C1—S2 C6—C1—S2 C1—C2—C3 C1—C2—H2 C3—C2—H2 C4—C3—C2 C4—C3—H3 C2—C3—H3 C3—C4—C5 C3—C4—H4 C5—C4—H4 C6—C5—C4 C6—C5—H5 C4—C5—H5 C5—C6—C1 C5—C6—C7 C1—C6—C7 O3—C7—N1 O3—C7—C6 N1—C7—C6 S1—C8—H8A S1—C8—H8B H8A—C8—H8B S1—C8—H8C H8A—C8—H8C H8B—C8—H8C S1—C9—H9A S1—C9—H9B H9A—C9—H9B S1—C9—H9C H9A—C9—H9C H9B—C9—H9C 129.98 (17) 107.30 (15) 116.8 (2) 121.6 121.6 121.1 (2) 119.4 119.4 121.4 (2) 119.3 119.3 117.6 (2) 121.2 121.2 120.35 (19) 128.20 (19) 111.39 (18) 124.79 (19) 122.33 (19) 112.85 (17) 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 C8—S1—O4—Cd1 C9—S1—O4—Cd1 O5i—Cd1—O4—S1 O5—Cd1—O4—S1 O4i—Cd1—O4—S1 N1i—Cd1—O4—S1 N1—Cd1—O4—S1 O2—S2—N1—C7 O1—S2—N1—C7 C1—S2—N1—C7 O2—S2—N1—Cd1 O1—S2—N1—Cd1 C1—S2—N1—Cd1 O5i—Cd1—N1—C7 124.57 (12) −130.95 (13) −143.39 (10) 36.61 (10) 140 (100) 118.34 (11) −61.66 (11) 109.33 (16) −120.95 (16) −6.30 (17) −95.51 (12) 34.20 (14) 148.86 (11) −45.91 (16) O1—S2—C1—C2 N1—S2—C1—C2 O2—S2—C1—C6 O1—S2—C1—C6 N1—S2—C1—C6 C6—C1—C2—C3 S2—C1—C2—C3 C1—C2—C3—C4 C2—C3—C4—C5 C3—C4—C5—C6 C4—C5—C6—C1 C4—C5—C6—C7 C2—C1—C6—C5 S2—C1—C6—C5 −58.7 (2) −173.3 (2) −111.05 (16) 119.69 (15) 5.10 (16) 1.7 (3) 179.95 (18) −1.0 (4) 0.1 (4) 0.1 (4) 0.5 (3) −176.6 (2) −1.5 (3) 179.89 (17) Acta Cryst. (2011). E67, m1635 sup-5 supporting information O5—Cd1—N1—C7 O4—Cd1—N1—C7 O4i—Cd1—N1—C7 N1i—Cd1—N1—C7 O5i—Cd1—N1—S2 O5—Cd1—N1—S2 O4—Cd1—N1—S2 O4i—Cd1—N1—S2 N1i—Cd1—N1—S2 O2—S2—C1—C2 134.09 (16) −134.12 (16) 45.88 (16) 142 (3) 161.27 (12) −18.73 (12) 73.06 (11) −106.94 (11) −11 (2) 70.5 (2) C2—C1—C6—C7 S2—C1—C6—C7 S2—N1—C7—O3 Cd1—N1—C7—O3 S2—N1—C7—C6 Cd1—N1—C7—C6 C5—C6—C7—O3 C1—C6—C7—O3 C5—C6—C7—N1 C1—C6—C7—N1 176.04 (19) −2.5 (2) −176.23 (18) 28.1 (3) 5.7 (2) −149.94 (14) −2.6 (4) −180.0 (2) 175.5 (2) −1.8 (3) Symmetry code: (i) −x+1, −y+2, −z. Acta Cryst. (2011). E67, m1635 sup-6