metal-organic compounds
Acta Crystallographica Section E
Experimental
Structure Reports
Online
Crystal data
ISSN 1600-5368
Diaquabis(dimethyl sulfoxide-jO)disaccharinatocadmium
Fezile S. W. Potwana and Werner E. Van Zyl*
School of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag
X54001, Durban 4000, South Africa
Correspondence e-mail:
[email protected]
Received 19 October 2011; accepted 25 October 2011
= 98.889 (1)
V = 1250.63 (11) Å3
Z=2
Mo K radiation
= 1.26 mm 1
T = 173 K
0.14 0.11 0.08 mm
Data collection
Bruker Kappa DUO APEXII
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
Tmin = 0.843, Tmax = 0.906
12452 measured reflections
3121 independent reflections
2624 reflections with I > 2(I)
Rint = 0.038
Refinement
Key indicators: single-crystal X-ray study; T = 173 K; mean (C–C) = 0.003 Å;
R factor = 0.025; wR factor = 0.061; data-to-parameter ratio = 18.4.
The title compound, [Cd(C7H4NO3S)2(C2H6OS)2(H2O)2],
contains a Cd2+ cation in an octahedral coordination
environment. The metal atom is surrounded by the two
different neutral ligands dimethyl sulfoxide (DMSO) and
water, each coordinating through the O atom. The anionic
saccharinate (sac; 1,1,3-trioxo-2,3-dihydro-16,2-benzothiazol2-ide) ligand coordinates through the N atom. Each of the
three similar ligand pairs is in a trans configuration with
respect to each other. The Cd atom lies on a crystallographic
center of symmetry. The DMSO ligand coordinates through
the lone pair of electrons on the O atom, as can be seen from
the Cd—O—S bond angle of 123.96 (9) .
Related literature
For a general review article on the coordination chemistry of
saccharinate ligands, see: Baran & Yilmaz (2006). For
cadmium saccharinate complexes, see: Deng et al. (2008) and
for cadmium complexes with saccharinate as a non-coordinating ligand, see: Batsanov et al. (2011). For a cadmium
complex that contains both saccharinate and DMSO, see:
Yilmaz et al. (2003). For the preparation of cadmium precursor
complexes, see: Haider et al. (1984).
Acta Cryst. (2011). E67, m1635
[Cd(C7H4NO3S)2(C2H6OS)2(H2O)2]
Mr = 669.03
Monoclinic, P21 =c
a = 10.2613 (5) Å
b = 15.4294 (8) Å
c = 7.9951 (4) Å
R[F 2 > 2(F 2)] = 0.025
wR(F 2) = 0.061
S = 1.03
3121 reflections
170 parameters
2 restraints
H atoms treated by a mixture of
independent and constrained
refinement
max = 0.42 e Å 3
min = 0.41 e Å 3
Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT
(Bruker, 2006); data reduction: SAINT; program(s) used to solve
structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine
structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XSEED (Barbour, 2001); software used to prepare material for
publication: SHELXL97.
WEvZ gratefully acknowledges financial support from the
University of KwaZulu-Natal. FSWP thanks the National
Research Foundation (NRF) for an Innovative Grant.
Supplementary data and figures for this paper are available from the
IUCr electronic archives (Reference: FF2035).
References
Baran, E. J. & Yilmaz, V. T. (2006). Coord. Chem. Rev. 250, 1980–1999.
Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
Batsanov, A. S., Bilton, C., Deng, R. M. K., Dillon, K. B., Goeta, A. E.,
Howard, J. A. K., Shepherd, H. J., Simon, S. & Tembwe, I. (2011). Inorg.
Chim. Acta, 365, 225–231.
Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin,
USA
Deng, R. M. K., Dillon, K. B., Goeta, A. E. & Sekwale, M. S. (2008). Inorg.
Chim. Acta, 361, 1542–1546.
Haider, S. Z., Malik, K. M. A., Das, S. & Hursthouse, M. B. (1984). Acta Cryst.
C40, 1147–1150.
Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Yilmaz, V. T., Hamamci, S. & Thöne, C. (2003). Z. Anorg. Allg. Chem. 629,
711–715.
doi:10.1107/S1600536811044497
Potwana and Van Zyl
m1635
supporting information
supporting information
Acta Cryst. (2011). E67, m1635
[doi:10.1107/S1600536811044497]
Diaquabis(dimethyl sulfoxide-κO)disaccharinatocadmium
Fezile S. W. Potwana and Werner E. Van Zyl
S1. Comment
Saccharin (o-sulfobenzimide; 1,2-benzothiazole-3(2H)-one 1,1-dioxide; Hsac) is a widely used artificial sweetening
agent. The imino hydrogen is acidic and can be readily deprotonated. The coordination chemistry of this anion is versatile
due to the different coordination sites to metallic centers it can accommodate, i.e., one N, one O (carbonylic) and two O
(sulfonic) atoms. These donor atoms of the anion can thus readily generate either N– or O-monodentate or bidentate (N,
O) coordination. Saccharin is normally used as the sodium or calcium salt which dramatically improves water solubility.
Most metal complexes contain the deprotonated form of saccharin, and this saccharinate anion (sac) is commercially
available as the sodium salt, used in the present study. The reaction of sodium saccharinate with a variety of divalent
transition metal ions results in coordination complexes with general formula [M(sac)2(H2O)4].2H2O, (M = V, Cr, Mn, Fe,
Co, Ni, Cu, Zn, Cd), which all show a clear preference to bind through the deprotonated anionic N-atom (Baran and
Yilmaz, 2006). These octahedral complexes contain two N-bonded sac ligands in trans positions, and complexes of the
type [M(sac)2(H2O)4].2H2O are thus commonly used as precursors in the synthesis of mixed-ligand saccharinate
complexes. The aqua ligands in these metal complexes are labile and readily displaced by direct reaction of neutral
ligands. The addition of the ligands to the solutions of the complexes usually results in the substitution of all four aqua
ligands, thereby forming stable new mixed-ligand complexes. In cases where the incoming neutral ligand is relatively
bulky, as in the present study, it causes steric hindrance and only two of the four aqua ligands become displaced in order
for the Cd center to remain octahedral. Although there are a number of Cd(II) saccharinate complexes previously reported
(Batsanov et al., 2011, and refs. therein), we are aware of only one other report that contains both saccharinate and dmso
as ligands in a structurally characterized Cd(II) complex (Yilmaz et al., 2003).
S2. Experimental
[Cd(sac)2(H2O)4].2H2O was prepared as per literature method (Haider et al., 1984). Colorless crystals of
[Cd(sac)2(H2O)4].2H2O (1.13 g; 2.10 mmol) was placed in a 100 ml beaker and dissolved in excess amount of dimethyl
sulfoxide (dmso) (20 ml). The reaction mixture was gently heated on a heating mantle with stirring to reduce the volume
of dmso to ~7 ml. The beaker was removed from the heat source and allowed to stand for 6 days during which time large
colorless blocky crystals of the title compound were obtained. Yield (1.30 g, 92%); Mp 114°C; 13C NMR (CD3OD, 101
MHz) d(p.p.m.): 40.39 (CH3-dmso), 121.20 (C6-ring), 124.91 (C6-ring), 133.42 (C6-ring), 134.21 (C6-ring), 134.24 (C6ring), 144.90 (C6-ring) 171.90 (C=O); IR (ATR) 3481, 3016 n(OH), 1646, 1609 n(C=O), 1583, 1460 n(C=C), 1271, 1256
n(O=S=O); 1054, 1036 n(S=O).
S3. Refinement
All non-H atoms were refined anisotropically. All hydrogen atoms could be found in the difference electron density maps.
All, except H5A and H5B on O5, were placed in idealized positions refining in riding models with Uiso set at 1.2 or 1.5
Acta Cryst. (2011). E67, m1635
sup-1
supporting information
times those of their parent atoms. The water hydrogen atoms H5A and H5B were located in the difference electron
density maps and refined with independent isotropic temperature factors and simple bond length constraints of d(O—H)
= 0.980 (2) Å. The structure was refined to R factor of 0.0253.
Figure 1
The ORTEP molecular structure of the title complex, shown with 50% probability ellipsoids. [Symmetry codes: (i) 1-x, 2y, -z]
Diaquabis(dimethyl sulfoxide)bis(1,1,3-trioxo-2,3-dihydro-1λ6,2-benzothiazol-2-ido)cadmium
Crystal data
[Cd(C7H4NO3S)2(C2H6OS)2(H2O)2]
Mr = 669.03
Monoclinic, P21/c
Hall symbol: -P 2ybc
a = 10.2613 (5) Å
b = 15.4294 (8) Å
c = 7.9951 (4) Å
β = 98.889 (1)°
V = 1250.63 (11) Å3
Z=2
F(000) = 676
Dx = 1.777 Mg m−3
Mo Kα radiation, λ = 0.71073 Å
Cell parameters from 12452 reflections
θ = 2.0–28.4°
µ = 1.26 mm−1
T = 173 K
Plate, colourless
0.14 × 0.11 × 0.08 mm
Data collection
Bruker Kappa DUO APEXII
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
0.5° φ scans and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
Tmin = 0.843, Tmax = 0.906
Acta Cryst. (2011). E67, m1635
12452 measured reflections
3121 independent reflections
2624 reflections with I > 2σ(I)
Rint = 0.038
θmax = 28.4°, θmin = 2.0°
h = −13→13
k = −20→19
l = −10→10
sup-2
supporting information
Refinement
Refinement on F2
Least-squares matrix: full
R[F2 > 2σ(F2)] = 0.025
wR(F2) = 0.061
S = 1.03
3121 reflections
170 parameters
2 restraints
Primary atom site location: structure-invariant
direct methods
Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H atoms treated by a mixture of independent
and constrained refinement
w = 1/[σ2(Fo2) + (0.026P)2 + 0.4033P]
where P = (Fo2 + 2Fc2)/3
(Δ/σ)max = 0.001
Δρmax = 0.42 e Å−3
Δρmin = −0.41 e Å−3
Special details
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full
covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and
torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry.
An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,
conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used
only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2
are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
Cd1
S1
S2
O1
O2
O3
O4
O5
H5A
H5B
N1
C1
C2
H2
C3
H3
C4
H4
C5
H5
C6
C7
C8
H8A
x
y
z
Uiso*/Ueq
0.5000
0.52294 (5)
0.26624 (5)
0.37534 (15)
0.23352 (16)
0.17818 (14)
0.52173 (15)
0.62293 (15)
0.7063 (14)
0.599 (3)
0.28899 (17)
0.12665 (19)
0.0586 (2)
0.0842
−0.0494 (2)
−0.0998
−0.0848 (2)
−0.1590
−0.0139 (2)
−0.0382
0.09327 (19)
0.1890 (2)
0.3957 (2)
0.3100
1.0000
0.80523 (4)
0.99004 (4)
1.02578 (12)
0.90145 (11)
1.06754 (10)
0.85326 (10)
1.02147 (11)
0.9905 (16)
1.0050 (18)
1.00406 (12)
1.05728 (14)
1.08352 (15)
1.0655
1.13759 (16)
1.1564
1.16459 (17)
1.2016
1.13854 (15)
1.1572
1.08447 (14)
1.05113 (14)
0.72722 (17)
0.7565
0.0000
0.19576 (7)
0.27847 (6)
0.39322 (19)
0.3102 (2)
−0.15887 (18)
0.02902 (18)
0.25981 (19)
0.261 (4)
0.3695 (18)
0.0832 (2)
0.2691 (3)
0.3962 (3)
0.5101
0.3494 (3)
0.4329
0.1830 (3)
0.1548
0.0564 (3)
−0.0574
0.1024 (3)
−0.0059 (3)
0.1524 (3)
0.1340
0.01487 (7)
0.02107 (12)
0.01863 (12)
0.0269 (4)
0.0286 (4)
0.0236 (3)
0.0226 (3)
0.0219 (3)
0.053 (10)*
0.056 (11)*
0.0187 (4)
0.0173 (4)
0.0226 (5)
0.027*
0.0285 (5)
0.034*
0.0315 (6)
0.038*
0.0240 (5)
0.029*
0.0173 (4)
0.0181 (4)
0.0338 (6)
0.051*
Acta Cryst. (2011). E67, m1635
sup-3
supporting information
H8B
H8C
C9
H9A
H9B
H9C
0.3996
0.4071
0.6623 (2)
0.6571
0.6642
0.7428
0.6874
0.6945
0.73625 (17)
0.7007
0.6985
0.7714
0.2485
0.0505
0.2127 (4)
0.1103
0.3116
0.2254
0.051*
0.051*
0.0379 (6)
0.057*
0.057*
0.057*
Atomic displacement parameters (Å2)
Cd1
S1
S2
O1
O2
O3
O4
O5
N1
C1
C2
C3
C4
C5
C6
C7
C8
C9
U11
U22
U33
U12
U13
U23
0.01608 (10)
0.0264 (3)
0.0167 (2)
0.0193 (8)
0.0331 (9)
0.0227 (8)
0.0322 (9)
0.0233 (8)
0.0180 (8)
0.0144 (9)
0.0245 (11)
0.0290 (12)
0.0244 (12)
0.0220 (11)
0.0155 (9)
0.0165 (9)
0.0393 (14)
0.0325 (13)
0.01350 (11)
0.0166 (3)
0.0241 (3)
0.0431 (10)
0.0243 (9)
0.0323 (9)
0.0142 (8)
0.0270 (9)
0.0238 (10)
0.0180 (10)
0.0245 (12)
0.0309 (13)
0.0355 (14)
0.0272 (13)
0.0181 (10)
0.0202 (11)
0.0272 (13)
0.0331 (15)
0.01516 (10)
0.0201 (2)
0.0156 (2)
0.0180 (8)
0.0296 (9)
0.0156 (7)
0.0219 (8)
0.0156 (7)
0.0149 (8)
0.0191 (10)
0.0194 (10)
0.0286 (12)
0.0356 (13)
0.0225 (10)
0.0179 (10)
0.0176 (10)
0.0339 (13)
0.0490 (16)
0.00098 (8)
0.0016 (2)
0.0032 (2)
0.0014 (7)
0.0055 (7)
0.0056 (7)
0.0017 (6)
0.0019 (6)
0.0040 (7)
−0.0006 (8)
−0.0031 (9)
0.0065 (10)
0.0106 (11)
0.0047 (9)
−0.0020 (8)
−0.0009 (8)
−0.0102 (11)
0.0124 (11)
0.00279 (7)
0.0034 (2)
0.00400 (19)
0.0016 (6)
0.0089 (7)
0.0027 (6)
0.0060 (7)
0.0039 (6)
0.0045 (7)
0.0013 (8)
0.0055 (9)
0.0136 (10)
0.0076 (10)
0.0026 (9)
0.0017 (8)
0.0029 (8)
0.0024 (11)
0.0089 (12)
0.00131 (8)
0.0023 (2)
0.0044 (2)
0.0029 (7)
0.0086 (7)
0.0038 (7)
0.0041 (6)
−0.0007 (6)
0.0028 (8)
0.0018 (8)
0.0010 (9)
−0.0020 (11)
0.0008 (12)
0.0031 (10)
−0.0013 (8)
0.0007 (9)
0.0086 (11)
0.0184 (13)
Geometric parameters (Å, º)
Cd1—O5i
Cd1—O5
Cd1—O4
Cd1—O4i
Cd1—N1i
Cd1—N1
S1—O4
S1—C8
S1—C9
S2—O2
S2—O1
S2—N1
S2—C1
O3—C7
O5—H5A
O5—H5B
N1—C7
Acta Cryst. (2011). E67, m1635
2.2817 (15)
2.2817 (15)
2.2833 (15)
2.2833 (15)
2.3620 (17)
2.3620 (17)
1.5236 (15)
1.770 (2)
1.771 (2)
1.4393 (17)
1.4429 (17)
1.6286 (17)
1.761 (2)
1.237 (2)
0.979 (2)
0.979 (2)
1.364 (3)
C1—C2
C1—C6
C2—C3
C2—H2
C3—C4
C3—H3
C4—C5
C4—H4
C5—C6
C5—H5
C6—C7
C8—H8A
C8—H8B
C8—H8C
C9—H9A
C9—H9B
C9—H9C
1.379 (3)
1.388 (3)
1.391 (3)
0.9500
1.388 (3)
0.9500
1.394 (3)
0.9500
1.384 (3)
0.9500
1.498 (3)
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
sup-4
supporting information
O5i—Cd1—O5
O5i—Cd1—O4
O5—Cd1—O4
O5i—Cd1—O4i
O5—Cd1—O4i
O4—Cd1—O4i
O5i—Cd1—N1i
O5—Cd1—N1i
O4—Cd1—N1i
O4i—Cd1—N1i
O5i—Cd1—N1
O5—Cd1—N1
O4—Cd1—N1
O4i—Cd1—N1
N1i—Cd1—N1
O4—S1—C8
O4—S1—C9
C8—S1—C9
O2—S2—O1
O2—S2—N1
O1—S2—N1
O2—S2—C1
O1—S2—C1
N1—S2—C1
S1—O4—Cd1
Cd1—O5—H5A
Cd1—O5—H5B
H5A—O5—H5B
C7—N1—S2
C7—N1—Cd1
S2—N1—Cd1
C2—C1—C6
180.0
88.86 (6)
91.14 (6)
91.14 (6)
88.86 (6)
180.0
98.15 (6)
81.85 (6)
85.58 (6)
94.42 (6)
81.85 (6)
98.15 (6)
94.42 (6)
85.58 (6)
180.00 (9)
104.67 (10)
104.85 (11)
99.72 (13)
115.48 (10)
111.53 (10)
110.29 (9)
110.89 (9)
110.36 (10)
96.72 (9)
123.96 (9)
107.3 (19)
126.8 (19)
102 (3)
111.33 (14)
121.01 (13)
122.67 (9)
122.70 (19)
C2—C1—S2
C6—C1—S2
C1—C2—C3
C1—C2—H2
C3—C2—H2
C4—C3—C2
C4—C3—H3
C2—C3—H3
C3—C4—C5
C3—C4—H4
C5—C4—H4
C6—C5—C4
C6—C5—H5
C4—C5—H5
C5—C6—C1
C5—C6—C7
C1—C6—C7
O3—C7—N1
O3—C7—C6
N1—C7—C6
S1—C8—H8A
S1—C8—H8B
H8A—C8—H8B
S1—C8—H8C
H8A—C8—H8C
H8B—C8—H8C
S1—C9—H9A
S1—C9—H9B
H9A—C9—H9B
S1—C9—H9C
H9A—C9—H9C
H9B—C9—H9C
129.98 (17)
107.30 (15)
116.8 (2)
121.6
121.6
121.1 (2)
119.4
119.4
121.4 (2)
119.3
119.3
117.6 (2)
121.2
121.2
120.35 (19)
128.20 (19)
111.39 (18)
124.79 (19)
122.33 (19)
112.85 (17)
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
C8—S1—O4—Cd1
C9—S1—O4—Cd1
O5i—Cd1—O4—S1
O5—Cd1—O4—S1
O4i—Cd1—O4—S1
N1i—Cd1—O4—S1
N1—Cd1—O4—S1
O2—S2—N1—C7
O1—S2—N1—C7
C1—S2—N1—C7
O2—S2—N1—Cd1
O1—S2—N1—Cd1
C1—S2—N1—Cd1
O5i—Cd1—N1—C7
124.57 (12)
−130.95 (13)
−143.39 (10)
36.61 (10)
140 (100)
118.34 (11)
−61.66 (11)
109.33 (16)
−120.95 (16)
−6.30 (17)
−95.51 (12)
34.20 (14)
148.86 (11)
−45.91 (16)
O1—S2—C1—C2
N1—S2—C1—C2
O2—S2—C1—C6
O1—S2—C1—C6
N1—S2—C1—C6
C6—C1—C2—C3
S2—C1—C2—C3
C1—C2—C3—C4
C2—C3—C4—C5
C3—C4—C5—C6
C4—C5—C6—C1
C4—C5—C6—C7
C2—C1—C6—C5
S2—C1—C6—C5
−58.7 (2)
−173.3 (2)
−111.05 (16)
119.69 (15)
5.10 (16)
1.7 (3)
179.95 (18)
−1.0 (4)
0.1 (4)
0.1 (4)
0.5 (3)
−176.6 (2)
−1.5 (3)
179.89 (17)
Acta Cryst. (2011). E67, m1635
sup-5
supporting information
O5—Cd1—N1—C7
O4—Cd1—N1—C7
O4i—Cd1—N1—C7
N1i—Cd1—N1—C7
O5i—Cd1—N1—S2
O5—Cd1—N1—S2
O4—Cd1—N1—S2
O4i—Cd1—N1—S2
N1i—Cd1—N1—S2
O2—S2—C1—C2
134.09 (16)
−134.12 (16)
45.88 (16)
142 (3)
161.27 (12)
−18.73 (12)
73.06 (11)
−106.94 (11)
−11 (2)
70.5 (2)
C2—C1—C6—C7
S2—C1—C6—C7
S2—N1—C7—O3
Cd1—N1—C7—O3
S2—N1—C7—C6
Cd1—N1—C7—C6
C5—C6—C7—O3
C1—C6—C7—O3
C5—C6—C7—N1
C1—C6—C7—N1
176.04 (19)
−2.5 (2)
−176.23 (18)
28.1 (3)
5.7 (2)
−149.94 (14)
−2.6 (4)
−180.0 (2)
175.5 (2)
−1.8 (3)
Symmetry code: (i) −x+1, −y+2, −z.
Acta Cryst. (2011). E67, m1635
sup-6