Renewable Energy (Marine hydrokinetics)
498 Followers
Recent papers in Renewable Energy (Marine hydrokinetics)
Hydrokinetic energy conversion systems are the electromechanical devices that convert kinetic energy of river streams, tidal currents, man-made water channels or waves into electricity without using a special head and impoundment. This... more
Hydrokinetic energy conversion systems are the electromechanical devices that convert kinetic energy of river streams, tidal currents, man-made water channels or waves into electricity without using a special head and impoundment. This new technology became popular especially in the last two decades and needs to be well investigated. In this study, the hydrokinetic energy conversion systems were reviewed broadly. They have been categorized into two main groups as current and wave energy conversion devices. Their technology, working principles, environmental impacts, source potential, advantages, drawbacks and related issues were detailed.
Hydrokinetic energy is an emerging class of renewable energy that harnesses the kinetic energy of moving water. Distinct from conventional hydroelectric technology, which requires large dams or reservoirs to create significantly high... more
Hydrokinetic energy is an emerging class of renewable energy that harnesses the kinetic energy of moving water. Distinct from conventional hydroelectric technology, which requires large dams or reservoirs to create significantly high water head to drive the turbine; hydrokinetic technology can be deployed in rivers, streams, or constructed waterways with very low hydraulic head. This characteristic significantly increases the number of potential installation sites and applications possible with hydrokinetic technology. On the other hand, hydrokinetic energy has the advantages of high energy density, very good predictability over other types of renewable energy. This paper reviews the current state of hydrokinetic technology for riverine applications. The hydrokinetic energy theory is reviewed first, with practical examples to illustrate real-world physical meaning of mathematical formulae. Next, maximum power point tracking, turbine’s duct effect are reviewed. Finally, the two most popular categories of hydrokinetic turbines are discussed in detail with focus on advantages, drawbacks and preferable applications
A numerical modelling is proposed to efficiently compute the power produced by a row of Vertical Axis Water Turbines (VAWT) deployed in parallel within various types of water flows. As the computational cost of the unsteady Reynolds... more
A numerical modelling is proposed to efficiently
compute the power produced by a row of Vertical Axis Water
Turbines (VAWT) deployed in parallel within various types of
water flows. As the computational cost of the unsteady Reynolds Averaged Navier Stokes (URANS) approach is high, a coupled Blade Element Momentum (BEM) / (steady) Reynolds Averaged Navier-Stokes (RANS) approach is developed, restricted to a 2D approximation. More specifically, the HARVEST hydrokinetic devices considered in this study are made of twin contra-rotating VAWTs of ducted H-Darrieus type rotors. Momentum source terms are derived for such rotors from URANS simulations taking into account the presence of fairings. The source terms included in the BEM-RANS model are derived by also incorporating the optimal tip speed ratio (TSR), using a procedure based on the mass flow through each rotor and on local flow conditions upstream of the rotor path. When compared with reference URANS results, the BEM-RANS model yields an accurate prediction for a cost reduced by orders of magnitude.
This model is then applied to the targeted analysis of the power produced by a row of VAWTs through a river or a channel with various blockage ratios.
compute the power produced by a row of Vertical Axis Water
Turbines (VAWT) deployed in parallel within various types of
water flows. As the computational cost of the unsteady Reynolds Averaged Navier Stokes (URANS) approach is high, a coupled Blade Element Momentum (BEM) / (steady) Reynolds Averaged Navier-Stokes (RANS) approach is developed, restricted to a 2D approximation. More specifically, the HARVEST hydrokinetic devices considered in this study are made of twin contra-rotating VAWTs of ducted H-Darrieus type rotors. Momentum source terms are derived for such rotors from URANS simulations taking into account the presence of fairings. The source terms included in the BEM-RANS model are derived by also incorporating the optimal tip speed ratio (TSR), using a procedure based on the mass flow through each rotor and on local flow conditions upstream of the rotor path. When compared with reference URANS results, the BEM-RANS model yields an accurate prediction for a cost reduced by orders of magnitude.
This model is then applied to the targeted analysis of the power produced by a row of VAWTs through a river or a channel with various blockage ratios.
Hydrokinetic energy conversion systems are the electromechanical devices that convert kinetic energy of river streams, tidal currents, man-made water channels or waves into electricity without using a special head and impoundment. This... more
Hydrokinetic energy conversion systems are the electromechanical devices that convert kinetic energy of river streams, tidal currents, man-made water channels or waves into electricity without using a special head and impoundment. This new technology became popular especially in the last two decades and needs to be well investigated. In this study, the hydrokinetic energy conversion systems were reviewed broadly. They have been categorized into two main groups as current and wave energy conversion devices. Their technology, working principles, environmental impacts, source potential, advantages, drawbacks and related issues were detailed.
Abstrack Flow velocity distribution causes the use of the Savonius turbine in water streams to be less desirable. Tornado Savonius turbine is a new type of turbine developed by the Savonius turbine design. Innovation of the Tornado... more
Abstrack
Flow velocity distribution causes the use of the Savonius turbine in water streams to be less desirable. Tornado Savonius turbine is a new type of turbine developed by the Savonius turbine design. Innovation of the Tornado Savonius turbine is at the bottom of the blade which shrinks and enlarges at the top of the blade. This shape resembles the shape of the flow velocity distribution. This study was conducted by comparing the performance of the Savonius turbine and the Tornado Savonius turbine. It was carried out on a prismatic channel with 5 variations in velocity and 4 variations in depth. Relating to the flow velocity range (v) between 0.172 m/s – 0.453 m/s, the innovation of the Tornado Savonius turbine had elevated the Coefficient of Power (CP) value of the Tornado Savonius turbine to be greater than CP of the Savonius turbine. Based on experimental tests in this study, the Savonius turbine produced RPM values of 12.2–28.9 when the torque range between 0.063–0.213 Nm while the Tornado Savonius turbine produced RPM of 20.7–56.1 when the tested torque values range between 0.038–0.175 Nm. The optimal CP value produced by the Savonius turbine was 0.270 and the Tornado Savonius turbine produced an optimal CP value of 0.422. Based on the gradient of the change in flow velocity to the CP value, the Tornado Savonius turbine could work optimally at the same channel depth as the turbine height. This proves that the flow velocity distribution works better on the Tornado Savonius turbine compared to the Savonius turbine.
Keyword: flow velocity distribution, savonius, tornado savonius , turbine hydrokinetic
Abstrak
Konsep distribusi kecepatan aliran menyebabkan penggunaan turbin Savonius di aliran air kurang diminati. Turbin Tornado Savonius merupakan jenis turbin baru hasil pengembangan desain turbin Savonius. Inovasi dari turbin Tornado Savonius berada pada bagian bawah blade yang mengecil dan membesar pada bagian atas blade. Bentuk tersebut menyerupai bentuk distribusi kecepatan aliran. Studi ini dilakukan dengan membandingkan kinerja yang dihasilkan turbin Savonius dan turbin Tornado Savonius. Pengujian ini dilakukan pada saluran prismatik dengan 5 variasi kecepatan dan 3 variasi kedalaman. Pada rentang kecepatan aliran (v) antara 0,172 m/s–0,453 m/s, inovasi turbin Tornado Savonius menyebabkan nilai Coefficient of Power (CP) turbin Tornado Savonius lebih besar dari turbin Savonius. Berdasarkan uji eksperimen pada studi ini turbin Savonius menghasilkan nilai RPM sebesar 12,2–28,9 pada saat torsi ( ) sebesar 0,063–0,213 Nm sedangkan turbin Tornado Savonius menghasilkan RPM sebesar 20,7–56,1 pada saat nilai torsi pengujian sebesar 0,038–0,175 Nm. Nilai CP optimal yang dihasilkan turbin Savonius sebesar 0,270 dan turbin Tornado Savonius menghasilkan nilai CP optimal sebesar 0,422. Berdasarkan gradien perubahan kecepatan aliran terhadap nilai CP diketahui bahwa turbin Tornado Savonius dapat bekerja secara optimal pada kedalaman saluran yang sama dengan tinggi turbin. Hal ini membuktikan bahwa distribusi kecepatan aliran bekerja baik pada turbin Tornado Savonius dibandingkan turbin Savonius. τ
Kata Kunci: distribusi kecepatan aliran, savonius, tornado savonius, turbin hidrokinetik
Yudistira, R., Nindito, D.A. and Saputra, R.H., 2021. KINERJA TURBIN HIDROKINETIK TORNADO SAVONIUS. Jurnal Teknika: Jurnal Teoritis dan Terapan Bidang Keteknikan, 4(2), pp.181-186.
DAFTAR PUSTAKA
Antomo, T., Kamiana, I. M. & Nindito, D. A. 2020. Analisis Pengembangan Hidrokinetik Turbin Gorlov Akibat Penambahan Luas Bidang Tangkap. Teknika: Jurnal Sains dan Teknologi, 16(2), p. 159. doi: 10.36055/tjst.v16i2.9186.
Chow, V. Te. 1959. Open-Channel Hydraulics. Internatio. Edited by I. McGraw-Hill Book Company. New York.
Fertahi, S. ed-D. ̂n., Bouhai, T., Rajad. O., Kouskou, T., Arid, A. Rhafiki, L., Jamil, S & Benbassou, A. 2018. CFD Performance Enhancement of a Low Cut-in Speed Current Vertical Tidal Turbine Through the Nested Hybridization of Savonius and Darrieus. Energy Conversion and Management, 169, pp. 266–278.
Gerardo & Fo, T. 2003. The State of Art of Hydrokinetic Power in Brazil. Innovative Small Hydro Technologies, pp. 9.
Gorlov, A. M. 2001. Tidal Energy. in Encyclopedia of Ocean Sciences.
Khan, M. J., Bhuyan, G., Iqbal, M.T. & Quaicoe, J.E. 2009. Hydrokinetic Energy Conversion Systems and Assessment of Horizontal and Vertical Axis Turbines for River and Tidal Applications: A Technology Status Review. Applied Energy. Elsevier Ltd, 86(10), pp. 1823–1835. Lago, L. I., Ponta, F. L. & Chen, L. 2010. Advances and trends in hydrokinetic turbine systems. Energy for Sustainable Development. Elsevier B.V., 14(4), pp. 287–296.
Muis & Abdul. 2010. Turbin Air Pada PLTA Larona. Jurnal Ilmiah Matematika dan Terapan, 7, pp. 61–69.
Muscolo, G. G. & Molfino, R. 2014. From Savonius to Bronzinus: A Comparison Among Vertical Wind Turbines. Energy Procedia. Elsevier B.V., 50, pp. 10–18.
Nindito, D. A., Istiarto, I. & Kironoto, B. A. 2009. Simulasi Numeris Tiga Dimensi Kantong Lumpur Bendung Sapon. Journal of the Civil Engineering Forum, 18(1).
Patel, T., Patel, S., Patel, D & Bhensdadiya, M. 2015. An Analysis of Lift and Drag Forces of NACA Airfoils using Python. International Journal of Application or Innovation in Engineering & Management, 4(4), pp. 198–206.
Ragheb, M. & Ragheb, A. M. 2011. Wind Turbines Theory - The Betz Equation and Optimal Rotor Tip Speed Ratio. Fundamental and Advanced Topics in Wind Power.
Savonius, S. J. & Finland, H. 1931. Mechanical Engineering. Mechanical Engineering, 53(5), pp. 331–338.
Wardani, C. S., Nindito, D. A. & Jaya, A. R. 2020. Inovasi Dan Desain Turbin Hidrokinetik Darrieus Berdasarkan Bentuk Distribusi Kecepatan Aliran. Media Ilmiah Teknik Sipil, 9(1), pp. 32–43. doi: doi.org/10.33084/mits.v9i1.1771
Flow velocity distribution causes the use of the Savonius turbine in water streams to be less desirable. Tornado Savonius turbine is a new type of turbine developed by the Savonius turbine design. Innovation of the Tornado Savonius turbine is at the bottom of the blade which shrinks and enlarges at the top of the blade. This shape resembles the shape of the flow velocity distribution. This study was conducted by comparing the performance of the Savonius turbine and the Tornado Savonius turbine. It was carried out on a prismatic channel with 5 variations in velocity and 4 variations in depth. Relating to the flow velocity range (v) between 0.172 m/s – 0.453 m/s, the innovation of the Tornado Savonius turbine had elevated the Coefficient of Power (CP) value of the Tornado Savonius turbine to be greater than CP of the Savonius turbine. Based on experimental tests in this study, the Savonius turbine produced RPM values of 12.2–28.9 when the torque range between 0.063–0.213 Nm while the Tornado Savonius turbine produced RPM of 20.7–56.1 when the tested torque values range between 0.038–0.175 Nm. The optimal CP value produced by the Savonius turbine was 0.270 and the Tornado Savonius turbine produced an optimal CP value of 0.422. Based on the gradient of the change in flow velocity to the CP value, the Tornado Savonius turbine could work optimally at the same channel depth as the turbine height. This proves that the flow velocity distribution works better on the Tornado Savonius turbine compared to the Savonius turbine.
Keyword: flow velocity distribution, savonius, tornado savonius , turbine hydrokinetic
Abstrak
Konsep distribusi kecepatan aliran menyebabkan penggunaan turbin Savonius di aliran air kurang diminati. Turbin Tornado Savonius merupakan jenis turbin baru hasil pengembangan desain turbin Savonius. Inovasi dari turbin Tornado Savonius berada pada bagian bawah blade yang mengecil dan membesar pada bagian atas blade. Bentuk tersebut menyerupai bentuk distribusi kecepatan aliran. Studi ini dilakukan dengan membandingkan kinerja yang dihasilkan turbin Savonius dan turbin Tornado Savonius. Pengujian ini dilakukan pada saluran prismatik dengan 5 variasi kecepatan dan 3 variasi kedalaman. Pada rentang kecepatan aliran (v) antara 0,172 m/s–0,453 m/s, inovasi turbin Tornado Savonius menyebabkan nilai Coefficient of Power (CP) turbin Tornado Savonius lebih besar dari turbin Savonius. Berdasarkan uji eksperimen pada studi ini turbin Savonius menghasilkan nilai RPM sebesar 12,2–28,9 pada saat torsi ( ) sebesar 0,063–0,213 Nm sedangkan turbin Tornado Savonius menghasilkan RPM sebesar 20,7–56,1 pada saat nilai torsi pengujian sebesar 0,038–0,175 Nm. Nilai CP optimal yang dihasilkan turbin Savonius sebesar 0,270 dan turbin Tornado Savonius menghasilkan nilai CP optimal sebesar 0,422. Berdasarkan gradien perubahan kecepatan aliran terhadap nilai CP diketahui bahwa turbin Tornado Savonius dapat bekerja secara optimal pada kedalaman saluran yang sama dengan tinggi turbin. Hal ini membuktikan bahwa distribusi kecepatan aliran bekerja baik pada turbin Tornado Savonius dibandingkan turbin Savonius. τ
Kata Kunci: distribusi kecepatan aliran, savonius, tornado savonius, turbin hidrokinetik
Yudistira, R., Nindito, D.A. and Saputra, R.H., 2021. KINERJA TURBIN HIDROKINETIK TORNADO SAVONIUS. Jurnal Teknika: Jurnal Teoritis dan Terapan Bidang Keteknikan, 4(2), pp.181-186.
DAFTAR PUSTAKA
Antomo, T., Kamiana, I. M. & Nindito, D. A. 2020. Analisis Pengembangan Hidrokinetik Turbin Gorlov Akibat Penambahan Luas Bidang Tangkap. Teknika: Jurnal Sains dan Teknologi, 16(2), p. 159. doi: 10.36055/tjst.v16i2.9186.
Chow, V. Te. 1959. Open-Channel Hydraulics. Internatio. Edited by I. McGraw-Hill Book Company. New York.
Fertahi, S. ed-D. ̂n., Bouhai, T., Rajad. O., Kouskou, T., Arid, A. Rhafiki, L., Jamil, S & Benbassou, A. 2018. CFD Performance Enhancement of a Low Cut-in Speed Current Vertical Tidal Turbine Through the Nested Hybridization of Savonius and Darrieus. Energy Conversion and Management, 169, pp. 266–278.
Gerardo & Fo, T. 2003. The State of Art of Hydrokinetic Power in Brazil. Innovative Small Hydro Technologies, pp. 9.
Gorlov, A. M. 2001. Tidal Energy. in Encyclopedia of Ocean Sciences.
Khan, M. J., Bhuyan, G., Iqbal, M.T. & Quaicoe, J.E. 2009. Hydrokinetic Energy Conversion Systems and Assessment of Horizontal and Vertical Axis Turbines for River and Tidal Applications: A Technology Status Review. Applied Energy. Elsevier Ltd, 86(10), pp. 1823–1835. Lago, L. I., Ponta, F. L. & Chen, L. 2010. Advances and trends in hydrokinetic turbine systems. Energy for Sustainable Development. Elsevier B.V., 14(4), pp. 287–296.
Muis & Abdul. 2010. Turbin Air Pada PLTA Larona. Jurnal Ilmiah Matematika dan Terapan, 7, pp. 61–69.
Muscolo, G. G. & Molfino, R. 2014. From Savonius to Bronzinus: A Comparison Among Vertical Wind Turbines. Energy Procedia. Elsevier B.V., 50, pp. 10–18.
Nindito, D. A., Istiarto, I. & Kironoto, B. A. 2009. Simulasi Numeris Tiga Dimensi Kantong Lumpur Bendung Sapon. Journal of the Civil Engineering Forum, 18(1).
Patel, T., Patel, S., Patel, D & Bhensdadiya, M. 2015. An Analysis of Lift and Drag Forces of NACA Airfoils using Python. International Journal of Application or Innovation in Engineering & Management, 4(4), pp. 198–206.
Ragheb, M. & Ragheb, A. M. 2011. Wind Turbines Theory - The Betz Equation and Optimal Rotor Tip Speed Ratio. Fundamental and Advanced Topics in Wind Power.
Savonius, S. J. & Finland, H. 1931. Mechanical Engineering. Mechanical Engineering, 53(5), pp. 331–338.
Wardani, C. S., Nindito, D. A. & Jaya, A. R. 2020. Inovasi Dan Desain Turbin Hidrokinetik Darrieus Berdasarkan Bentuk Distribusi Kecepatan Aliran. Media Ilmiah Teknik Sipil, 9(1), pp. 32–43. doi: doi.org/10.33084/mits.v9i1.1771
Hydrokinetic energy is an unrecognized, low-cost renewable technology that can be deployed in Pakistan through a robust national energy strategy and international investment schemes to tackle the country’s acute energy crisis. This... more
Hydrokinetic energy is an unrecognized, low-cost renewable technology that can be deployed in Pakistan through a robust national energy strategy and international investment schemes to tackle the country’s acute energy crisis. This Article will be the first to show how national and local laws can be amended to favor progress in the sustainable energy sector and achieve hydrokinetic energy production in Pakistan, which if actualized, would be nothing short of a game changer – strategically and, even more so, environmentally. Despite current legal regimes that disfavor small scale hydroelectric power production, Pakistan and other less developed countries can adapt and deploy hydrokinetic technology through revamped investment laws, regulatory rules, and renewable energy tax reform.
The cost of utilizing kinetic energy of river stream, tidal and ocean current is considered to be higher than that of wind power generation because of difficulties in construction and maintenance of devices installed in seawater. As a... more
The cost of utilizing kinetic energy of river stream, tidal and ocean current is considered to be higher than that of wind power generation because of difficulties in construction and maintenance of devices installed in seawater. As a solution to the problem, the authors propose a new concept of water stream turbine. The main idea is in the manner of supporting turbine. Although it is similar to a vertical axis turbine, the direction of turbine axis is not firmly fixed and its tilt angle is passively adjustable to the stream velocity. Since it does not have to keep the turbine axis in upright position, required structural strength and weight of the device will be reduced significantly. This paper describes the application ranging from the small hydro power in river streams to large application of tidal and ocean current turbine. In the large capacity plant for tidal stream and ocean current, the main mechanism of turbine axis support is the same as that of the wind turbine authors proposed in the previous paper. It leads to the further opportunity of cost reduction. The sample design of a multi-megawatt ocean current turbine shows the possibility of high economic performance of the concept. The results show that the cost of energy in the concept can be comparable to a land based wind turbine.
Hydrokinetic is a recently introduced type of hydropower energy, having been proven as the most effective and predictable renewable energy source available around the world, especially in the rural and electrification areas. Most of these... more
Hydrokinetic is a recently introduced type of hydropower energy, having been proven as the most effective and predictable renewable energy source available around the world, especially in the rural and electrification areas. Most of these sites are dependent on small and micro scale stations to produce cheap but abundantly available and effective electrical energy. Hydrokinetic energy that can be harnessed from the flow of water in the irrigation and rainy channels is a promising technology in countries with vast current energy. Micro hydrokinetic energy scheme presents an attractive, environmentally friendly and efficient electric generation in rural, remote and hilly areas, as effort to reduce the ever-increasing greenhouse gas emissions and fuel prices in these sites. Though potential, this scheme is yet to be fully discovered to the considerable extent, as researchers are still searching for solution for the main problem of low velocity of current in the open flow channels. Deploying acceleration nozzle in the channel is a unique solution for increasing the channels current flow systems' efficiency. Acceleration nozzle channel method has numerous advantages especially on the environmental impact, yet has not been given much attention in the renewable energy field. This paper proposes a novel system configuration to capture as much as kinetic energy from in stream current water. This system, known as bidirectional diffuser-augmented channel functions by utilizing dual directed nozzles in the flow, surrounded by dual cross flow turbines. This type of turbine is commonly used for hydropower applications; and this study proposes the employment of this turbine for hydrokinetic power generation. Numerical investigations had been performed using finite volume Reynolds-Averaged Navier–Stokes Equations (RANSE) code Ansys CFX to investigate the flow field characteristics of the new system approach with and without the turbines. The performance of the twin (lower and upper) cross flow turbines had also been studied. It was found that the highest efficiency of 0.52 was recorded for lower turbine at tip speed ratio (TSR) of 0.5.
— This paper investigates the effects of Tidal Energy Converter (TEC) array size at a tidal channel on flood/ebb discharges at multi-inlet coastal lagoon by applying numerical modelling. The paper presents a case study for the Faro-Olhão... more
— This paper investigates the effects of Tidal Energy Converter (TEC) array size at a tidal channel on flood/ebb discharges at multi-inlet coastal lagoon by applying numerical modelling. The paper presents a case study for the Faro-Olhão inlet in the Ria Formosa (Portugal), a potential site for tidal in-stream energy extraction. Arrays of up to 11 rows with 5 TECs each were studied to assess impacts on inlets discharges changes. For the particular cases assessed the results show that tidal energy extraction will have a greater impact on Ancão and Armona inlets discharges together with the Faro-Olhão inlet. Future work is directed to include impacts on sediment dynamics and optimise TEC array size as a function of multiple design variables subject to environmental constraints.
Keywords— Tidal stream energy, hydrodynamic modelling, flood/ebb discharges impact, array size, multi-inlet coastal lagoon.
Keywords— Tidal stream energy, hydrodynamic modelling, flood/ebb discharges impact, array size, multi-inlet coastal lagoon.
A metamodel simulation based optimisation approach for the tidal turbine location problem is introduced. The method comprises design of experiments, computational simulations, metamodel construction and formulation of a mathematical... more
A metamodel simulation based optimisation approach for the tidal turbine location problem is introduced. The method comprises design of experiments, computational simulations, metamodel construction and formulation of a mathematical optimisation model. Sample plans with different number of data points are used to fit 2nd and 3rd order polynomial as a function of two design parameters: longitudinal and lateral spacing, with a view to approximating the power output of tidal turbine farms with inline and staggered layouts, each Aquatic Science and Technology ISSN 2168-9148 2015 34 of them with a fixed number of turbines. The major advantage this method has, in comparison to those reported in the literature, is the capability to analyse different design parameter combinations that satisfy optimality criteria in reasonable computational time, while taking into account complex flow-turbine interactions.
Turbulence is inherently chaotic and unsteady, so observing it and modeling it are no easy tasks. The ocean’s sheer size makes it even more difficult to observe, and its unpredictable and ever-changing forcings introduce additional... more
Turbulence is inherently chaotic and unsteady, so observing it and modeling it are no easy tasks. The ocean’s sheer size makes it even more difficult to observe, and its unpredictable and ever-changing forcings introduce additional complexities. Turbulence in the oceans ranges from basin scale to the scale of the molecular viscosity. The method of energy transfer between scales is, however, an area of active research, so observations of the ocean at all scales are crucial to understanding the basic dynamics of its motions. In this collection of work, I use a variety of datasets to characterize a wide range of scales of turbulence, including observations from multiple instruments and from models with different governing equations.
I analyzed the largest scales of the turbulent range using the global salinity data of the Argo profiling float network. Taking advantage of the scattered and discontinuous nature of this dataset, the second-order structure function was calculated down to 2000m depth, and shown to be useful for predicting spectral slopes. Results showed structure function slopes of 2 at small scales, and 0 at large scales, which corresponds with spectral slopes of -5/3 at small scales, and −1 at large scales. Using acoustic Doppler velocity measurements, I characterized the meter- to kilometer-scale turbulence at a potential tidal energy site in the Puget Sound, WA. Acoustic Doppler current profiler (ADCP) and acoustic Doppler velocimeter (ADV) observations provided the data for an analysis that includes coherence, anisotropy, and intermittency. In order to more simply describe these features, a parameterization was done with four turbulence metrics, and the anisotropy magnitude, introduced here, was shown to most closely capture the coherent events. Then, using both the NREL TurbSim stochastic turbulence generator and the NCAR large-eddy simulation (LES) model, I calculated turbulence statistics to validate the accuracy of these methods in reproducing the tidal channel. TurbSim models statistics at the height of a turbine hub (5m) well, but do not model coherent events, while the LES does create these events, but not realistically in this configuration, based on comparisons with observations.
Each of the datasets have disadvantages when it comes to observing turbulence. The Argo network is sparse in space, and few measurements are taken simultaneously in time. Therefore spatial and temporal averaging is needed, which requires the turbulence to be homogeneous and stationary if it is to be generalized. Though the acoustic Doppler current profiler provides a vertical profile of velocities, the fluctuations are dominated by instrument noise and beam spread, preventing it from being used for most turbulence metrics. ADV measurements have much less noise, and no beam spread, but the observations are made at one point in space, limiting us to temporal statistics or an assumption of “frozen turbulence” to infer spatial scales. As for the models, TurbSim does not have any real-world forcing, and uses parameterized spectra, and coherence functions and randomizes phase information, while LES models must make assumptions about sub-grid scales, which may be inaccurate. Additionally, all models are set up with idealizations of the forcing and domain, which may make the results unlike observations in a particular location and time. Despite these difficulties in observing and characterizing turbulence, I present several quantities that use the imperfect, yet still valuable observations, to attain a better description of the turbulence in the oceans.
I analyzed the largest scales of the turbulent range using the global salinity data of the Argo profiling float network. Taking advantage of the scattered and discontinuous nature of this dataset, the second-order structure function was calculated down to 2000m depth, and shown to be useful for predicting spectral slopes. Results showed structure function slopes of 2 at small scales, and 0 at large scales, which corresponds with spectral slopes of -5/3 at small scales, and −1 at large scales. Using acoustic Doppler velocity measurements, I characterized the meter- to kilometer-scale turbulence at a potential tidal energy site in the Puget Sound, WA. Acoustic Doppler current profiler (ADCP) and acoustic Doppler velocimeter (ADV) observations provided the data for an analysis that includes coherence, anisotropy, and intermittency. In order to more simply describe these features, a parameterization was done with four turbulence metrics, and the anisotropy magnitude, introduced here, was shown to most closely capture the coherent events. Then, using both the NREL TurbSim stochastic turbulence generator and the NCAR large-eddy simulation (LES) model, I calculated turbulence statistics to validate the accuracy of these methods in reproducing the tidal channel. TurbSim models statistics at the height of a turbine hub (5m) well, but do not model coherent events, while the LES does create these events, but not realistically in this configuration, based on comparisons with observations.
Each of the datasets have disadvantages when it comes to observing turbulence. The Argo network is sparse in space, and few measurements are taken simultaneously in time. Therefore spatial and temporal averaging is needed, which requires the turbulence to be homogeneous and stationary if it is to be generalized. Though the acoustic Doppler current profiler provides a vertical profile of velocities, the fluctuations are dominated by instrument noise and beam spread, preventing it from being used for most turbulence metrics. ADV measurements have much less noise, and no beam spread, but the observations are made at one point in space, limiting us to temporal statistics or an assumption of “frozen turbulence” to infer spatial scales. As for the models, TurbSim does not have any real-world forcing, and uses parameterized spectra, and coherence functions and randomizes phase information, while LES models must make assumptions about sub-grid scales, which may be inaccurate. Additionally, all models are set up with idealizations of the forcing and domain, which may make the results unlike observations in a particular location and time. Despite these difficulties in observing and characterizing turbulence, I present several quantities that use the imperfect, yet still valuable observations, to attain a better description of the turbulence in the oceans.
Energi terbarukan bisa digunakan sebagai solusi mengurangi ketergantungan pada bahan bakar fosil dengan cara menggunakan sumber hidroelektrik seperti penggunaan turbin vertikal berjenis Darrieus. Turbin Darrieus memiliki kelemahan yaitu... more
Energi terbarukan bisa digunakan sebagai solusi mengurangi ketergantungan pada bahan bakar fosil dengan cara menggunakan sumber hidroelektrik seperti penggunaan turbin vertikal berjenis Darrieus. Turbin Darrieus memiliki kelemahan yaitu kesulitan memulai awal putaran (self starting) pada rotornya karena berbasis gaya angkat. Studi ini menyelidiki pengaruh penambahan pengarah Omni Directional Guide Vanes (ODGV) dengan jumlah guide vanes dan besar sudut berbeda-beda terhadap turbin Darrieus dengan tujuan dapat menekan kelemahannya. Studi ini menggunakan turbin Darrieus 2 (dua) airfoil dan 3 (tiga) airfoil dengan profil NACA 0012 untuk diujikan di aliran air pada saluran prismatik. Hasil uji eksperimental menunjukkan bahwa penggunaan pengarah dengan perbandingan 1/6 celah ODGV (6 guide vanes) dan sudut 0º mengakibatkan bertambahnya nilai Coefficient of Power (Cp) dan nilai Tip Speed Ratio (TSR), sehingga mampu meningkatkan Cp rata-rata lebih besar 34,25% dari turbin Darrieus konvensional. Namun seiring bertambahnya jumlah guide vanes dan besar sudut membuat performa turbin menurun. Pengarah ODGV mampu meningkatkan nilai TSR sehingga dapat mengoptimalkan gaya angkat pada turbin.
Kata Kunci: Uji eksperimental, sudut guide vanes, turbin hidrokinetik darrieus, coefficient of power , tip speed ratio.
Renewable energy can be used as a solution to reduce dependence on fossil fuels by using hydroelectric sources such as the use of Darrieus vertical turbines. Darrieus turbines have the disadvantage of difficulty self-starting on the rotor because it is based on lift force. This study investigated the influence the addition of Omni Directional Guide Vanes (ODGV) with different number of guide vanes and angles to Darrieus turbines with the aim of suppressing their weaknesses. This study used 2 (two) and 3 (three) airfoils Darrieus turbines with NACA 0012 profile to be tested in water flow in prismatic channels. Experimental test results showed that the use of a guide with a ratio 1/6 ODGV gap (6 guide vanes) and angle of 0º resulted increase the value of the Coefficient of Power (Cp) and Tip Speed Ratio (TSR), so can increase the average Cp 34.25% larger than conventional Darrieus turbines. But as the increase number of guide vanes and large angles can be decreased turbine performance. ODGV is able to increase the TSR value so as to optimize the lift force on the turbine.
Keyword: experimental test, guide vanes angle, hydrokinetic darrieus turbine, Coefficient of Power , Tip Speed Ratio.
Octauria, E.P., Nindito, D.A. and Saputra, R.H., 2021. UJI EKSPERIMENTAL PENGARUH SUDUT OMNI DIRECTIONAL GUIDE VANES TERHADAP PERFORMA TURBIN HIDROKINETIK DARRIEUS. Eksergi, 17(2), pp.95-108.
[1] Alexander, A. S., & Santhanakrishnan, A. (2018). Trapped Cylindrical Flow with Multiple Inlets for Savonius Vertical Axis Wind Turbines. Journal of Fluids Engineering, Transactions of the ASME, 140(4), 1–26.
[2] Alom, N., & Saha, U. K. (2018). Four Decades of Research into the Augmentation Techniques of Savonius Wind Turbine Rotor. Journal of Energy Resources Technology, Transactions of the ASME, 140(5).
[3] Antomo, T., Kamiana, I. M., & Nindito, D. A. (2020). Analisis pengembangan hidrokinetik turbin gorlov akibat penambahan luas bidang tangkap. Teknika: Jurnal Sains Dan Teknologi, 16(2), 159. https://doi.org/10.36055/tjst.v16i2.9186
[4] Bedon, G., De Betta, S., & Benini, E. (2015). A computational assessment of the aerodynamic performance of a tilted Darrieus wind turbine. Journal of Wind Engineering and Industrial Aerodynamics, 145, 263–269.
[5] Bedon, G., Raciti Castelli, M., & Benini, E. (2013). Optimization of a Darrieus vertical-axis wind turbine using blade element - momentum theory and evolutionary algorithm. Renewable Energy, 59, 184–192.
[6] Bedon, G., Raciti Castelli, M., & Benini, E. (2014). Optimal spanwise chord and thickness distribution for a Troposkien Darrieus wind turbine. Journal of Wind Engineering and Industrial Aerodynamics, 125, 13–21.
[7] Erinofiardi, Gokhale, P., Date, A., Akbarzadeh, A., Bismantolo, P., Suryono, A. F., Mainil, A. K., & Nuramal, A. (2017). A Review on Micro Hydropower in Indonesia. Energy Procedia, 110(March), 316–321.
[8] Febrianto, Aris, & Agoes Santoso. (2016). Analisa Perbandingan Torsi dan RPM Turbin Tipe Darrieus Terhadap Efisiensi Turbin. Jurnal Teknik ITS, 5(2).
[9] Hantoro, R., Utama, I. K. A. P., Arief, I. S., Ismail, A., & Manggala, S. W. (2018). Innovation in Vertical Axis Hydrokinetic Turbine - Straight Blade Cascaded (VAHT-SBC) design and testing for low current speed power generation. Journal of Physics: Conference Series, 1022(1).
[10] Lim, Y. C., Chong, W. T., & Hsiao, F. B. (2013). Performance investigation and optimization of a vertical axis wind turbine with the omni-direction-guide-vane. Procedia Engineering, 67, 59–69.
[11] Malipeddi, A. R., & Chatterjee, D. (2012). Influence of duct geometry on the performance of Darrieus hydroturbine. Renewable Energy, 43, 292–300.
[12] Mohamed, M. H. (2012). Performance investigation of H-rotor Darrieus turbine with new airfoil shapes. Energy, 47(1), 522–530.
[13] Nindito, D. A., Istiarto, & Kironoto, B. A. (2008). Simulasi Numeris Tiga Dimensi Kantong Lumpur Bendung Sapon. Forum Teknik Sipil, XVIII(1), 712–724.
[14] Paraschivoiu, I., Delclaux, F., Fraunie, P., & Beguier, C. (1983). Aerodynamic Analysis of the Darrieus Rotor Including Secondary Effects. Journal of Energy, 7(5), 416–422.
[15] Patel, V., Eldho, T. I., & Prabhu, S. V. (2017). Experimental investigations on Darrieus straight blade turbine for tidal current application and parametric optimization for hydro farm arrangement. In International Journal of Marine Energy (Vol. 17). Elsevier Ltd.
[16] Sahim, K., Ihtisan, K., Santoso, D., & Sipahutar, R. (2014). Experimental study of darrieus-savonius water turbine with deflector: Effect of deflector on the performance. International Journal of Rotating Machinery, 2014.
[17] Saini, G., & Saini, R. P. (2019). A review on technology, configurations, and performance of cross-flow hydrokinetic turbines. International Journal of Energy Research, 43(13), 1–41.
[18] Saini, G., Kumar, A., & Saini, R. P. (2020). Assessment of hydrokinetic energy – A case study of eastern Yamuna canal. Materials Today: Proceedings, 2–6.
[19] Scungio, M., Arpino, F., Focanti, V., Profili, M., & Rotondi, M. (2016). Wind tunnel testing of scaled models of a newly developed Darrieus-style vertical axis wind turbine with auxiliary straight blades. Energy Conversion and Management, 130, p.60–70.
[20] Sheldahl, R. E., Klimas, P. C., & Feltz, L. V. (1980). Aerodynamic Performance of a 5-m-Diameter Darrieus Turbine. Journal of Energy, 4(5), 227–232.
[21] Shimizu, S., Fujii, M., Sumida, T., Sasa, K., Kimura, Y., Koga, E., & Motogi, H. (2016). Starting system for darrieus water turbine of tidal stream electricity generation. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, 6, 3–8.
[22] Shimokawa, K., Furukawa, A., Okuma, K., Matsushita, D., & Watanabe, S. (2010). Side-wall effect of runner casing on performance of Darrieus-type hydro turbine with inlet nozzle for extra-low head utilization. Science China Technological Sciences, 53(1), 93–99.
[23] Shimokawa, K., Furukawa, A., Okuma, K., Matsushita, D., & Watanabe, S. (2012). Experimental study on simplification of Darrieus-type hydro turbine with inlet nozzle for extra-low head hydropower utilization. Renewable Energy, 41, 376–382.
[24] Shiono, M., Suzuki, K., & Kiho, S. (2000). Experimental study of the characteristics of a Darrieus turbine for tidal power generation. Electrical Engineering in Japan (English Translation of Denki Gakkai Ronbunshi), 132(3), 38–47.
[25] Tchakoua, P., Wamkeue, R., Ouhrouche, M., Tameghe, T. A., & Ekemb, G. (2015). A new approach for modeling darrieus-type vertical axis wind turbine rotors using electrical equivalent circuit analogy: Basis of theoretical formulations and model development. Energies, 8(10), 10684–10717.
[26] Tjiu, W., Marnoto, T., Mat, S., Ruslan, M. H., & Sopian, K. (2015). Darrieus vertical axis wind turbine for power generation I: Assessment of Darrieus VAWT configurations. Renewable Energy, 75, 50–67.
[27] Torresi, M., Bari, P., David, V. R., Fortunato, B., Bari, P., David, V. R., Camporeale, S. M., Bari, P., & David, V. R. (2013). An Efficient 3D CFD Model For The Analysis Of The Flow Field Around Darrieus Rotors. Proceedings of ASME Turbo Expo 2013: Turbine Technical Conference and Exposition GT2013, 1, 1–14.
[28] Wardani, C. S., Nindito, D. A., & Jaya, A. R. (2020). Inovasi Dan Desain Turbin Hidrokinetik Darrieus Berdasarkan Bentuk Distribusi Kecepatan Aliran. Media Ilmiah Teknik Sipil, 9(1), 32–43. https://doi.org/10.33084/mits.v9i1.1771
Kata Kunci: Uji eksperimental, sudut guide vanes, turbin hidrokinetik darrieus, coefficient of power , tip speed ratio.
Renewable energy can be used as a solution to reduce dependence on fossil fuels by using hydroelectric sources such as the use of Darrieus vertical turbines. Darrieus turbines have the disadvantage of difficulty self-starting on the rotor because it is based on lift force. This study investigated the influence the addition of Omni Directional Guide Vanes (ODGV) with different number of guide vanes and angles to Darrieus turbines with the aim of suppressing their weaknesses. This study used 2 (two) and 3 (three) airfoils Darrieus turbines with NACA 0012 profile to be tested in water flow in prismatic channels. Experimental test results showed that the use of a guide with a ratio 1/6 ODGV gap (6 guide vanes) and angle of 0º resulted increase the value of the Coefficient of Power (Cp) and Tip Speed Ratio (TSR), so can increase the average Cp 34.25% larger than conventional Darrieus turbines. But as the increase number of guide vanes and large angles can be decreased turbine performance. ODGV is able to increase the TSR value so as to optimize the lift force on the turbine.
Keyword: experimental test, guide vanes angle, hydrokinetic darrieus turbine, Coefficient of Power , Tip Speed Ratio.
Octauria, E.P., Nindito, D.A. and Saputra, R.H., 2021. UJI EKSPERIMENTAL PENGARUH SUDUT OMNI DIRECTIONAL GUIDE VANES TERHADAP PERFORMA TURBIN HIDROKINETIK DARRIEUS. Eksergi, 17(2), pp.95-108.
[1] Alexander, A. S., & Santhanakrishnan, A. (2018). Trapped Cylindrical Flow with Multiple Inlets for Savonius Vertical Axis Wind Turbines. Journal of Fluids Engineering, Transactions of the ASME, 140(4), 1–26.
[2] Alom, N., & Saha, U. K. (2018). Four Decades of Research into the Augmentation Techniques of Savonius Wind Turbine Rotor. Journal of Energy Resources Technology, Transactions of the ASME, 140(5).
[3] Antomo, T., Kamiana, I. M., & Nindito, D. A. (2020). Analisis pengembangan hidrokinetik turbin gorlov akibat penambahan luas bidang tangkap. Teknika: Jurnal Sains Dan Teknologi, 16(2), 159. https://doi.org/10.36055/tjst.v16i2.9186
[4] Bedon, G., De Betta, S., & Benini, E. (2015). A computational assessment of the aerodynamic performance of a tilted Darrieus wind turbine. Journal of Wind Engineering and Industrial Aerodynamics, 145, 263–269.
[5] Bedon, G., Raciti Castelli, M., & Benini, E. (2013). Optimization of a Darrieus vertical-axis wind turbine using blade element - momentum theory and evolutionary algorithm. Renewable Energy, 59, 184–192.
[6] Bedon, G., Raciti Castelli, M., & Benini, E. (2014). Optimal spanwise chord and thickness distribution for a Troposkien Darrieus wind turbine. Journal of Wind Engineering and Industrial Aerodynamics, 125, 13–21.
[7] Erinofiardi, Gokhale, P., Date, A., Akbarzadeh, A., Bismantolo, P., Suryono, A. F., Mainil, A. K., & Nuramal, A. (2017). A Review on Micro Hydropower in Indonesia. Energy Procedia, 110(March), 316–321.
[8] Febrianto, Aris, & Agoes Santoso. (2016). Analisa Perbandingan Torsi dan RPM Turbin Tipe Darrieus Terhadap Efisiensi Turbin. Jurnal Teknik ITS, 5(2).
[9] Hantoro, R., Utama, I. K. A. P., Arief, I. S., Ismail, A., & Manggala, S. W. (2018). Innovation in Vertical Axis Hydrokinetic Turbine - Straight Blade Cascaded (VAHT-SBC) design and testing for low current speed power generation. Journal of Physics: Conference Series, 1022(1).
[10] Lim, Y. C., Chong, W. T., & Hsiao, F. B. (2013). Performance investigation and optimization of a vertical axis wind turbine with the omni-direction-guide-vane. Procedia Engineering, 67, 59–69.
[11] Malipeddi, A. R., & Chatterjee, D. (2012). Influence of duct geometry on the performance of Darrieus hydroturbine. Renewable Energy, 43, 292–300.
[12] Mohamed, M. H. (2012). Performance investigation of H-rotor Darrieus turbine with new airfoil shapes. Energy, 47(1), 522–530.
[13] Nindito, D. A., Istiarto, & Kironoto, B. A. (2008). Simulasi Numeris Tiga Dimensi Kantong Lumpur Bendung Sapon. Forum Teknik Sipil, XVIII(1), 712–724.
[14] Paraschivoiu, I., Delclaux, F., Fraunie, P., & Beguier, C. (1983). Aerodynamic Analysis of the Darrieus Rotor Including Secondary Effects. Journal of Energy, 7(5), 416–422.
[15] Patel, V., Eldho, T. I., & Prabhu, S. V. (2017). Experimental investigations on Darrieus straight blade turbine for tidal current application and parametric optimization for hydro farm arrangement. In International Journal of Marine Energy (Vol. 17). Elsevier Ltd.
[16] Sahim, K., Ihtisan, K., Santoso, D., & Sipahutar, R. (2014). Experimental study of darrieus-savonius water turbine with deflector: Effect of deflector on the performance. International Journal of Rotating Machinery, 2014.
[17] Saini, G., & Saini, R. P. (2019). A review on technology, configurations, and performance of cross-flow hydrokinetic turbines. International Journal of Energy Research, 43(13), 1–41.
[18] Saini, G., Kumar, A., & Saini, R. P. (2020). Assessment of hydrokinetic energy – A case study of eastern Yamuna canal. Materials Today: Proceedings, 2–6.
[19] Scungio, M., Arpino, F., Focanti, V., Profili, M., & Rotondi, M. (2016). Wind tunnel testing of scaled models of a newly developed Darrieus-style vertical axis wind turbine with auxiliary straight blades. Energy Conversion and Management, 130, p.60–70.
[20] Sheldahl, R. E., Klimas, P. C., & Feltz, L. V. (1980). Aerodynamic Performance of a 5-m-Diameter Darrieus Turbine. Journal of Energy, 4(5), 227–232.
[21] Shimizu, S., Fujii, M., Sumida, T., Sasa, K., Kimura, Y., Koga, E., & Motogi, H. (2016). Starting system for darrieus water turbine of tidal stream electricity generation. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, 6, 3–8.
[22] Shimokawa, K., Furukawa, A., Okuma, K., Matsushita, D., & Watanabe, S. (2010). Side-wall effect of runner casing on performance of Darrieus-type hydro turbine with inlet nozzle for extra-low head utilization. Science China Technological Sciences, 53(1), 93–99.
[23] Shimokawa, K., Furukawa, A., Okuma, K., Matsushita, D., & Watanabe, S. (2012). Experimental study on simplification of Darrieus-type hydro turbine with inlet nozzle for extra-low head hydropower utilization. Renewable Energy, 41, 376–382.
[24] Shiono, M., Suzuki, K., & Kiho, S. (2000). Experimental study of the characteristics of a Darrieus turbine for tidal power generation. Electrical Engineering in Japan (English Translation of Denki Gakkai Ronbunshi), 132(3), 38–47.
[25] Tchakoua, P., Wamkeue, R., Ouhrouche, M., Tameghe, T. A., & Ekemb, G. (2015). A new approach for modeling darrieus-type vertical axis wind turbine rotors using electrical equivalent circuit analogy: Basis of theoretical formulations and model development. Energies, 8(10), 10684–10717.
[26] Tjiu, W., Marnoto, T., Mat, S., Ruslan, M. H., & Sopian, K. (2015). Darrieus vertical axis wind turbine for power generation I: Assessment of Darrieus VAWT configurations. Renewable Energy, 75, 50–67.
[27] Torresi, M., Bari, P., David, V. R., Fortunato, B., Bari, P., David, V. R., Camporeale, S. M., Bari, P., & David, V. R. (2013). An Efficient 3D CFD Model For The Analysis Of The Flow Field Around Darrieus Rotors. Proceedings of ASME Turbo Expo 2013: Turbine Technical Conference and Exposition GT2013, 1, 1–14.
[28] Wardani, C. S., Nindito, D. A., & Jaya, A. R. (2020). Inovasi Dan Desain Turbin Hidrokinetik Darrieus Berdasarkan Bentuk Distribusi Kecepatan Aliran. Media Ilmiah Teknik Sipil, 9(1), 32–43. https://doi.org/10.33084/mits.v9i1.1771
Hydrokinetic turbines can recover the kinetic energy of marine or river currents. The Hydrofluv research and development project (funded by FUI with the support of the Tenerrdis, DERBI and DREAM clusters) aims to demonstrate the... more
Hydrokinetic turbines can recover the kinetic energy of marine or river currents. The Hydrofluv research and development project (funded by FUI with the support of the Tenerrdis, DERBI and DREAM clusters) aims to demonstrate the feasibility and acceptability of vertical-axis and transverse-flow turbines. Members of the Hydrofluv project, Hydroquest, FOC Transmissions, ERNEO, Biotope, EDF, Artelia and the LEGI laboratory are working both on improving the machines and on a more complete commercial offer (administrative authorizations, impact studies and profitability). Numerical modeling conducted by the LEGI laboratory and Hydroquest has led to the definition of the machine’s characteristics and main parameters. The incorporation of these terms in a larger three-dimensional numerical model has enabled other parameters to be analyzed, such as head loss around the machine (variation in the free surface and current), the interactions between machines and hydrosedimentary impacts. Several academic studies have validated the developments made by comparing the models. The practical application concerns a study of the prototype scheduled to be placed in the Loire at Orleans at the end of 2014. The model accurately represents the impacts of a machine on its environment and has proved to be highly representative compared to more specific local models, which are for the moment two-dimensional and require longer calculation times.
The Maine Tidal Power Initiative (MTPI), an interdisciplinary team of engineers, marine scientists, oceanographers, and social scientists, is using a transdisciplinary sustainability science approach to collect biophysical and social data... more
The Maine Tidal Power Initiative (MTPI), an interdisciplinary team of engineers, marine scientists, oceanographers, and social scientists, is using a transdisciplinary sustainability science approach to collect biophysical and social data necessary for understanding interactions between human and natural systems in the context of tidal power development in Maine. MTPI offers a unique opportunity to better understand how group structure and process influence outcomes in transdisciplinary sustainability science research. Through extensive participant observation and semi-structured interviews we: (1) describe MTPI’s organizational structure; (2) examine MTPI’s research approach and engagement with stakeholders from different sectors of society (i.e., industry, government, and the local community); and (3) identify challenges and opportunities for involving different disciplinary expertise and diverse stakeholders in transformational sustainability science research. We found that MTPI’s holistic mission, non-hierarchical structure, and iterative stakeholder engagement process led to important benefits and significant challenges. Positive outcomes include knowledge development, a transferable research framework, shared resources, personal reward, and a greater understanding of the local environment and community. Challenges identified include balancing diverse interests and priorities, maintaining engagement, managing stakeholder relationships, and limited resources. Lessons learned from the process of integrative collaborative research in Maine can offer guidance on what should be considered when carrying out similar transdisciplinary sustainability science projects in other research contexts.
Karakteristik blade sisi cekung turbin hidrokinetik Savonius yang memiliki nilai torsi negatif mengakibatkan kelemahan berupa efisiensi turbin yang relatif rendah, sehingga diperlukan sistem pengarah aliran berupa rectifier guide vane.... more
Karakteristik blade sisi cekung turbin hidrokinetik Savonius yang memiliki nilai torsi negatif mengakibatkan kelemahan berupa efisiensi turbin yang relatif rendah, sehingga diperlukan sistem pengarah aliran berupa rectifier guide vane. Studi ini bertujuan membandingkan performa yang dihasilkan turbin Savonius tanpa guide vanes dan turbin Savonius menggunakan guide vanes dengan memvariasikan lebar rectifier L=Rt/4, L=Rt/2 dan L=3Rt/4, dimana Rt adalah jari-jari turbin. Metode pengujian dilakukan secara eksperimental di saluran prismatik dengan kecepatan aliran 0,111-0,1415 m/s. Hasil studi menunjukkan bahwa penambahan guide vanes dengan variasi lebar rectifier L=Rt/4, L=Rt/2 dan L=3Rt/4 masing-masing menghasilkan peningkatan torsi sebesar 29,9%; 33,3%; dan 36,3%. Turbin Savonius menggunakan guide vanes dengan lebar rectifier L=3Rt/4 menghasilkan coefficient of torque (Ct) dan coefficient of power (Cp) yang lebih tinggi dibandingkan variasi lebar rectifier (L) lainnya, sehingga kinerja turbin meningkat.
Kata kunci: coefficient of power, hidrokinetik, savonius, rectifier guide vanes
ABSTRACT
The characteristic of the concave side blade of the Savonius hydrokinetic turbine which has a negative torque value, it leads to the weakness in the form of a relatively low turbine efficiency, thus a flow steering system is needed in the form of a rectifier guide vane. The aim of this study was to compare the performance of the Savonius turbine without guide vanes and the Savonius turbine using guide vanes by varying the width of the rectifier L=Rt/4, L=Rt/2 dan L=3Rt/4, where Rt is the turbine radius. The test method was undertaken experimentally in a prismatic channel with a flow velocity of 0.111–0.1415 m/s. The results of the study pointed out that the addition of guide vanes with variations in the width of the rectifier was L=Rt/4, L=Rt/2 dan L=3Rt/4 and each of them had an increase in torque of 29.9%, 33.3% and 36.3%. The Savonius turbine used guide vanes with a rectifier width of L=3Rt/4 and it resulted a higher coefficient of torque (Ct) and coefficient of power (Cp) compared to other variations of rectifier width (L), thus, the performance of turbine increased.
Keywords: coefficient of power, hydrokinetic, savonius, rectifier guide vanes
Ichsan, N., Nindito, D. A., & Saputra, R. H. (2021). Uji Eksperimental Pengaruh Dimensi Lebar Rectifier Guide Vanes terhadap Kinerja Turbin Hidrokinetik Savonius. RekaRacana: Jurnal Teknil Sipil, 7(2), 96.
Ichsan, N., Nindito, D.A. and Saputra, R.H., 2021. Uji Eksperimental Pengaruh Dimensi Lebar Rectifier Guide Vanes terhadap Kinerja Turbin Hidrokinetik Savonius. RekaRacana: Jurnal Teknil Sipil, 7(2), p.96.
Reference :
Adiwidodo, S., Wahyudi, B., Yudiyanto, E., Subagiyo, S., Hartono, M., & Baananto, F. (2020). Simulation Study of Savonius Tandem Blade Wind Turbine Using an Adjustable Deflector. IOP Conference Series: Materials Science and Engineering, 732(1), 012093.
Alexander, A. S., & Santhanakrishnan, A. (2017). Trapped Cylindrical Flow With Multiple Inlets for Savonius Vertical Axis Wind Turbines. Journal of Fluids Engineerinng, 1–26.
Alom, N., & Saha, U. K. (2018). Four Decades of Research Into the Augmentation Techniques of Savonius Wind Turbine Rotor. Journal of Energi Resrources Technology, 140, 1–14.
Antomo, T., Kamiana, I. M., & Nindito, D. A. (2020). Analisis Pengembangan Hidrokinetik Turbin Gorlov Akibat Penambahan Luas Bidang Tangkap. Teknika: Jurnal Sains dan Teknologi, 16(02), 159–170. https://doi.org/10.36055/tjst.v16i2.9186
Elbatran, A. H., Yaakob, O. B., Ahmed, Y. M., & Jalal, M. R. (2015). Novel Approach of Bidirectional Diffuser-Augmented Channels System for Enhancing Hydrokinetic Power Generation in Channels. Renewable Energy. Renewable Energy, 83, 809–819.
Kang, C., Liu, H., & Yang, X. (2014). Review of Fluid Dynamics Aspects of Savonius-Rotor-Based Vertical-Axis Wind Rotors. Renewable and Sustainable Energy Reviews, 33, 499–508.
Mahmoud, N. H., El-Haroun, A. A., Wahba, E., & Nasef, M. H. (2012). An Experimental Study on Improvement of Savonius Rotor Performance. Alexandria Engineering Journal, 51(1), 19–25.
Nindito, D. A., & Kamiana, I. M. (2010). Perencanaan Model PLTA Skala Kecil Berbasis Teknologi Lokal Di Daerah Pemukimam Tepi Sungai. PROTEKSI (Program Studi Teknik Sipil), II(02), 1–7.
Nindito, D. A., Istiarto, dan Kironoto, B. A. (2008). Simulasi Numeris Tiga Dimensi Kantong Lumpur Bendung Sapon. Civil Engineering Forum Teknik Sipil, XVIII(1), 712–724.
Octauria, E. P., Nindito, D. A., & Saputra, R. H. (2021). Uji Eksperimental Pengaruh Sudut Omni Directional Guide Vanes Terhadap Performa Turbin Hidrokinetik Darrieus. EKSERGI Jurnal Teknik Energi, 17(2), 95–108. https://doi.org/10.32497/eksergi.v17i2.2581
Prasetyo, A., Kristiawan, B., Danardono, D., & Hadi, S. (2018). The Effect of Deflector Angle in Savonius Water Turbine with Horizontal Axis on the Power Output of Water Flow in Pipe. Journal of Physics: Conference Series, 1–6.
Pratama, A., Nindito, D. A., & Saputra, R. H. (2021). Studi Eksperimental Sistem Pengarah Aliran Pada Turbin Hidrokinetik Archimedes Spiral. Jurnal Teknik, 19(1), 1–11. https://doi.org/10.37031/jt.v19i1.145
Roy, S., Mukherjee, P., & Saha, U. K. (2014) Aerodynamic Performance Evaluation of A Novel Savonius-Style Wind Turbine Unde An Oriented Jet. ASME 2014 Gas Turbine India Conference, 1–7.
Salim, E., Yahya, W., Danardono, D., & Himawanto, D. A. (2015). A Study of the Influence of Guide Vane Design to Increase Savonius Wind Turbine Performance. Modern Applied Science, 9(11), 222.
Tang, Z. P., Yao, Y. X., Zhou, L., & Yao, Q. (2012). Optimal Design of a New Type of Savonius Rotor Using Simulation Analysis. Key Engineering Materials, 499, 120–125.
Wardani, C. S., Nindito, D. A., & Jaya, A. R. (2020). Inovasi dan Desain Turbin Hidrokinetik Darrieus Berdasarkan Bentuk Distribusi Kecepatan Aliran. Media Ilmiah Teknik Sipil, 9(1), 32–43. http://doi.org/10.33084/mits.v9i1.1771
Wicaksono, Y. A., & Tjahjana, D. D. D. P. (2017). Computational Study: The Influence of Omni-Directional Guide Vane on the Flow Pattern Characteristic Around Savonius Wind Turbine. AIP Conference Proceedings, 1–4.
Yudistira, R., Nindito, D. A., & Saputra, R. H. (2021). Kinerja Turbin Hidrokinetik Tornado Savonius. Jurnal Teknika: Jurnal Teoritis Dan Terapan Bidang Keteknikan, 4(2), 181–186. https://doi.org/10.52868/jt.v4i2.2732
Yudistira, R., Nindito, D. A., & Saputra, R. H. (2021). Uji Eksperimental Pengembangan Turbin Hidrokinetik Savonius Berdasarkan Bentuk Profil Distribusi Kecepatan Aliran. RekaRacana: Jurnal Teknik Sipil 7(1), 1–11. https://doi.org/10.26760/rekaracana.v7i1.215
Kata kunci: coefficient of power, hidrokinetik, savonius, rectifier guide vanes
ABSTRACT
The characteristic of the concave side blade of the Savonius hydrokinetic turbine which has a negative torque value, it leads to the weakness in the form of a relatively low turbine efficiency, thus a flow steering system is needed in the form of a rectifier guide vane. The aim of this study was to compare the performance of the Savonius turbine without guide vanes and the Savonius turbine using guide vanes by varying the width of the rectifier L=Rt/4, L=Rt/2 dan L=3Rt/4, where Rt is the turbine radius. The test method was undertaken experimentally in a prismatic channel with a flow velocity of 0.111–0.1415 m/s. The results of the study pointed out that the addition of guide vanes with variations in the width of the rectifier was L=Rt/4, L=Rt/2 dan L=3Rt/4 and each of them had an increase in torque of 29.9%, 33.3% and 36.3%. The Savonius turbine used guide vanes with a rectifier width of L=3Rt/4 and it resulted a higher coefficient of torque (Ct) and coefficient of power (Cp) compared to other variations of rectifier width (L), thus, the performance of turbine increased.
Keywords: coefficient of power, hydrokinetic, savonius, rectifier guide vanes
Ichsan, N., Nindito, D. A., & Saputra, R. H. (2021). Uji Eksperimental Pengaruh Dimensi Lebar Rectifier Guide Vanes terhadap Kinerja Turbin Hidrokinetik Savonius. RekaRacana: Jurnal Teknil Sipil, 7(2), 96.
Ichsan, N., Nindito, D.A. and Saputra, R.H., 2021. Uji Eksperimental Pengaruh Dimensi Lebar Rectifier Guide Vanes terhadap Kinerja Turbin Hidrokinetik Savonius. RekaRacana: Jurnal Teknil Sipil, 7(2), p.96.
Reference :
Adiwidodo, S., Wahyudi, B., Yudiyanto, E., Subagiyo, S., Hartono, M., & Baananto, F. (2020). Simulation Study of Savonius Tandem Blade Wind Turbine Using an Adjustable Deflector. IOP Conference Series: Materials Science and Engineering, 732(1), 012093.
Alexander, A. S., & Santhanakrishnan, A. (2017). Trapped Cylindrical Flow With Multiple Inlets for Savonius Vertical Axis Wind Turbines. Journal of Fluids Engineerinng, 1–26.
Alom, N., & Saha, U. K. (2018). Four Decades of Research Into the Augmentation Techniques of Savonius Wind Turbine Rotor. Journal of Energi Resrources Technology, 140, 1–14.
Antomo, T., Kamiana, I. M., & Nindito, D. A. (2020). Analisis Pengembangan Hidrokinetik Turbin Gorlov Akibat Penambahan Luas Bidang Tangkap. Teknika: Jurnal Sains dan Teknologi, 16(02), 159–170. https://doi.org/10.36055/tjst.v16i2.9186
Elbatran, A. H., Yaakob, O. B., Ahmed, Y. M., & Jalal, M. R. (2015). Novel Approach of Bidirectional Diffuser-Augmented Channels System for Enhancing Hydrokinetic Power Generation in Channels. Renewable Energy. Renewable Energy, 83, 809–819.
Kang, C., Liu, H., & Yang, X. (2014). Review of Fluid Dynamics Aspects of Savonius-Rotor-Based Vertical-Axis Wind Rotors. Renewable and Sustainable Energy Reviews, 33, 499–508.
Mahmoud, N. H., El-Haroun, A. A., Wahba, E., & Nasef, M. H. (2012). An Experimental Study on Improvement of Savonius Rotor Performance. Alexandria Engineering Journal, 51(1), 19–25.
Nindito, D. A., & Kamiana, I. M. (2010). Perencanaan Model PLTA Skala Kecil Berbasis Teknologi Lokal Di Daerah Pemukimam Tepi Sungai. PROTEKSI (Program Studi Teknik Sipil), II(02), 1–7.
Nindito, D. A., Istiarto, dan Kironoto, B. A. (2008). Simulasi Numeris Tiga Dimensi Kantong Lumpur Bendung Sapon. Civil Engineering Forum Teknik Sipil, XVIII(1), 712–724.
Octauria, E. P., Nindito, D. A., & Saputra, R. H. (2021). Uji Eksperimental Pengaruh Sudut Omni Directional Guide Vanes Terhadap Performa Turbin Hidrokinetik Darrieus. EKSERGI Jurnal Teknik Energi, 17(2), 95–108. https://doi.org/10.32497/eksergi.v17i2.2581
Prasetyo, A., Kristiawan, B., Danardono, D., & Hadi, S. (2018). The Effect of Deflector Angle in Savonius Water Turbine with Horizontal Axis on the Power Output of Water Flow in Pipe. Journal of Physics: Conference Series, 1–6.
Pratama, A., Nindito, D. A., & Saputra, R. H. (2021). Studi Eksperimental Sistem Pengarah Aliran Pada Turbin Hidrokinetik Archimedes Spiral. Jurnal Teknik, 19(1), 1–11. https://doi.org/10.37031/jt.v19i1.145
Roy, S., Mukherjee, P., & Saha, U. K. (2014) Aerodynamic Performance Evaluation of A Novel Savonius-Style Wind Turbine Unde An Oriented Jet. ASME 2014 Gas Turbine India Conference, 1–7.
Salim, E., Yahya, W., Danardono, D., & Himawanto, D. A. (2015). A Study of the Influence of Guide Vane Design to Increase Savonius Wind Turbine Performance. Modern Applied Science, 9(11), 222.
Tang, Z. P., Yao, Y. X., Zhou, L., & Yao, Q. (2012). Optimal Design of a New Type of Savonius Rotor Using Simulation Analysis. Key Engineering Materials, 499, 120–125.
Wardani, C. S., Nindito, D. A., & Jaya, A. R. (2020). Inovasi dan Desain Turbin Hidrokinetik Darrieus Berdasarkan Bentuk Distribusi Kecepatan Aliran. Media Ilmiah Teknik Sipil, 9(1), 32–43. http://doi.org/10.33084/mits.v9i1.1771
Wicaksono, Y. A., & Tjahjana, D. D. D. P. (2017). Computational Study: The Influence of Omni-Directional Guide Vane on the Flow Pattern Characteristic Around Savonius Wind Turbine. AIP Conference Proceedings, 1–4.
Yudistira, R., Nindito, D. A., & Saputra, R. H. (2021). Kinerja Turbin Hidrokinetik Tornado Savonius. Jurnal Teknika: Jurnal Teoritis Dan Terapan Bidang Keteknikan, 4(2), 181–186. https://doi.org/10.52868/jt.v4i2.2732
Yudistira, R., Nindito, D. A., & Saputra, R. H. (2021). Uji Eksperimental Pengembangan Turbin Hidrokinetik Savonius Berdasarkan Bentuk Profil Distribusi Kecepatan Aliran. RekaRacana: Jurnal Teknik Sipil 7(1), 1–11. https://doi.org/10.26760/rekaracana.v7i1.215
A procedure for the optimisation of hydrokinetic turbine array layout through surrogate modelling is introduced. The method comprises design of experiments, computational fluid dynamics simulations, surrogate model construction, and... more
A procedure for the optimisation of hydrokinetic turbine array layout through surrogate modelling is introduced. The method comprises design of experiments, computational fluid dynamics simulations, surrogate model construction, and constrained optimisation. Design of experiments are used to build polynomial and Radial Basis Function surrogates as functions of two design parameters: inter-turbine longitudinal and lateral spacing, with a view to approximating the capacity factor of turbine arrays with inline and staggered layouts, each of which having a fixed number of turbines. For this purpose, two scenarios have been used as case studies, considering uniform and non-uniform free-stream flows. The major advantage of this method in comparison to those reported in the literature is its capability to analyse different design parameter combinations that satisfy optimality criteria in reasonable computational time, while taking into account complex floweturbine interactions and different turbine types.
This paper presents a study for estimating the size of a tidal turbine array for the Faro-Olhão Inlet (Potugal) using a surrogate optimization approach. The method compromises problem formulation, hydro-morphodynamic modelling, surrogate... more
This paper presents a study for estimating the size of a tidal turbine array for the Faro-Olhão Inlet (Potugal) using a surrogate optimization approach. The method compromises problem formulation, hydro-morphodynamic modelling, surrogate construction and validation, and constraint optimization. A total of 26 surrogates were built using linear RBFs as a function of two design variables: number of rows in the array and Tidal Energy Converters (TECs) per row. Surrogates describe array performance and environmental effects associated with hydrodynamic and morphological aspects of the multi inlet lagoon. After validation, surrogate models were used to formulate a constraint optimization model. Results evidence that the largest array size that satisfies performance and environmental constraints is made of 3 rows and 10 TECs per row.
Abstrak Perubahan arah aliran akibat gaya drag dan gaya lift yang mengenai turbin hidrokinetik Archimedes Spiral menjadi sebuah permasalahan yang dapat mempengaruhi performa turbin, sehingga perlu ditambahkan sistem pengarah aliran. Studi... more
Abstrak
Perubahan arah aliran akibat gaya drag dan gaya lift yang mengenai turbin hidrokinetik Archimedes Spiral menjadi sebuah permasalahan yang dapat mempengaruhi performa turbin, sehingga perlu ditambahkan sistem pengarah aliran. Studi ini bertujuan untuk mengetahui pengaruh penambahan sistem pengarah aliran berupa truncated cone dan ekor pengarah terhadap performa turbin Archimedes Spiral. Metode yang digunakan berupa uji eksperimental terhadap performa turbin menggunakan beberapa variasi kecepatan aliran di saluran terbuka. Hasil studi menunjukkan bahwa turbin Archimedes Spiral dengan sistem pengarah aliran menghasilkan nilai Cp sebesar 0,19–0,22 dan nilai TSR antara 1,76–1,85. Nilai torsi yang diperoleh berkisar antara 0,013–0,017 Nm pada rentang nilai RPM sebesar 28,64–33,60. Penambahan truncated cone mampu memperbesar gaya tangkap aliran. Penambahan ekor pengarah mampu meneruskan aliran vorteks memanjang ke bagian hilir turbin. Aliran vorteks yang diteruskan tersebut menghambat rotasi bilah turbin dan mengakibatkan gaya tekan pada turbin membesar. Gaya tekan pada bilah yang membesar menyebabkan nilai torsi meningkat. Meningkatnya torsi membuat konsep gaya drag yang digunakan turbin Archimedes Spiral dengan penambahan sistem pengarah aliran menjadi lebih tinggi dari pada konsep gaya lift. Penambahan truncated cone dan ekor pengarah berdampak meningkatnya performa turbin Archimedes Spiral.
Kata kunci: Archimedes Spiral; truncated cone; ekor pengarah; turbin hidrokinetik.
Abstract
Changes in flow direction due to drag and lift forces that hit the Archimedes Spiral hydrokinetic turbine is a problem that could affect turbine performance, hence, it is important to add a flow steering system. This study aims to determine the effect of adding a flow guide system in the form of a truncated cone and tail guide on the performance of the Archimedes Spiral turbine. The method used is experimental tests on turbine performance using several variations of flow velocity in open channels. The results of the study show that the Archimedes Spiral turbine with a flow guide system produces a Cp value of 0.19–0.22 and a TSR value of 1.76–1.85. The torque value obtained is in the range of 0.013–0.017 Nm within the range of 28.64–33.60 RPM. The addition of a truncated cone was able to increase the flow capture force. The addition of a guide tail could forward the vortex flow lengthwise to the downstream of the turbine. The forwarded vortex flow inhibits the rotation of the turbine blades and causes the compressive force on the turbine to increase. The increased compression force on the blade caused the torque value to increase. In the Archimedes Spiral turbine with the addition of a flow steering system, the increased torque caused the concept drag force to be higher than the concept of lift force. The addition of a truncated cone and guide tail increased the performance of the Archimedes Spiral turbine.
Keywords: Archimedes Spiral; truncated cone; guide tail; hydrokinetic turbine.
Pratama, A., Nindito, D. A. and Saputra, R. H. 2021. Studi Eksperimental Sistem Pengarah Aliran Pada Turbin Hidrokinetik Archimedes Spiral, JURNAL TEKNIK, 19(1), pp. 1–11. https://doi.org/10.37031/jt.v19i1.145.
REFERENCES
Abbasi, A., Ghassemi, H., & Molyneux, D. (2018). Numerical Analysis of the Hydrodynamic Performance of HATST with Different Blade Geometries. American Journal of Civil Engineering and Architecture, 6(November), 1–5.
Antomo, T., Kamiana, I. M., & Nindito, D. A. (2020). Analisis Pengembangan Hidrokinetik Turbin Gorlov Akibat Penambahan Luas Bidang Tangkap. Teknika: Jurnal Sains Dan Teknologi, 16(2), 159.
Cao, H. (2011). Aerodynamics Analysis of Small Horizontal Axis Wind Turbine Blades by Using 2D and 3D CFD Modelling (May 2011, p. 82).
Ebrahimi, S., & Ghassemi, M. A. (2018). Numerical Aerodynamics Analysis of the Archimedes Screw Wind Turbine. International Journal of Multidisciplinary Sciences and Engineering, 9(10), 12–15.
Jang, H., Kim, D., Hwang, Y., Paek, I., Kim, S., & Baek, J. (2019). Analysis of Archimedes Spiral Wind Turbine Performance By Simulation and Field Test. Energies, 12(24).
Ji, H. S., Baek, J. H., Mieremet, R., & Kim, K. C. (2016a). The Aerodynamic Performance Study on Small Wind Turbine with 500W Class through Wind Tunnel Experiments. International Journal of Renewable Energy Sources, 1, 7–12.
Ji, H. S., Qiang, L., Beak, J. H., Mieremet, R., & Kim, K. C. (2016b). Effect of the Wind Direction on the Near Wake Structures of an Archimedes Spiral Wind Turbine Blade. Journal of Visualization, 19(4), 653–665.
Khan, M. J., Bhuyan, G., Iqbal, M. T., & Quaicoe, J. E. (2009). Hydrokinetic Energy Conversion Systems and Assessment of Horizontal and Vertical Axis Turbines for River and Tidal Applications: A Technology Status Review. Applied Energy, 86(10), 1823–1835.
Kholiq, I. (2015). Pemanfaatan Energi Alternatif Sebagai Energi Terbarukan Untuk Mendukung Subtitusi BBM. Jurnal IPTEK, 19(2), 75–91.
Kim, K. C., Kim, Y. K., Ji, H. S., Beak, J. H., & Mieremet, R. (2013). Aerodynamic Characteristics of Horizontal Axis Wind Turbine with Archimedes Spiral Blade. Proceedings of the ASME 2013 International Mechanical Engineering Congress and Exposition, 1–6.
Mieremet, R. (2014). The Aerodynamic Method of the Archimedes Windturbine. POWER Solutions, 1–9.
Nindito, D. A., Istiarto, & Kironoto, B. A. (2008). Simulasi Numeris Tiga Dimensi Kantong Lumpur Bendung Sapon. Journal of the Civil Engineering Forum, 18(1), 712–724.
Octauria, E. P., Nindito, D. A., & Saputra, R. H. (2021). Uji Eksperimental Pengaruh Sudut Omni Directional Guide Vanes Terhadap Performa Turbin Hidrokinetik Darrieus. EKSERGI Jurnal Teknik Energi, 17(2), 95–108. http://dx.doi.org/10.32497/eksergi.v17i2.2581
Patil, Y. (2018). Design, Fabrication and Analysis of Fibonacci Spiral Horizontal Axis Wind Turbine. International Journal of Aerospace and Mechanical Engineering, 5(2), 19–22.
Rakesh, B., Rao, S. S., Kiran, C. Y. V, Anand, M., & Duryodhana, D. (2019). Design , Fabrication and Experimental Analysis of Archimedes Spiral Wind Turbine. International Journal of Innovative Research InTechnology (IJIRT), 5(11), 304–310.
Rao, S., Shanmukesh, K., Naidu, M. K., & Praveen Kalla. (2018). Design and Analysis of Archimedes Aero-Foil Wind Turbine Blade for Light and Moderate Wind Speeds. International Journal on Recent Technologies in Mechanical and Electrical Engineering (IJRMEE), 5(8), 1–5.
Rat, C. L., Prostean, O., & Filip, I. (2018). Hardware-in-the-Loop Emulator for a Hydrokinetic Turbine. IOP Conference Series: Materials Science and Engineering, 294(1), 11.
Rat, C. L., Prostean, O., Filip, I., & Vasar, C. (2018). The Modeling and Simulation of an Archimedes Spiral Turbine for use in a Hydrokinetic Energy Conversion System. 2018 IEEE 22nd International Conference on Intelligent Engineering Systems (INES), 245–248.
Shivanegara, S. D., Vernekar, K. K., Rathod, K., Ravikumar, C., & Y, D. R. P. (2017). Design, Fabrication and Aerodynamic Analysis of a Modified Archimedes Wind Turbine. Issue VI, 598(May), 2321–9653.
Verma, D. R., & Katkade, P. S. D. (2018). Horizontal Axis Water Turbine : Generation and Optimization of Green Energy. International Journal of Applied Engineering Research, 13(5), 9–14.
Wardani, C. S., Nindito, D. A., & Jaya, A. R. (2020). Inovasi dan Desain Turbin Hidrokinetik Darrieus Berdasarkan Bentuk Distribusi Kecepatan Aliran. Media Ilmiah Teknik Sipil, 9(1), 32–43.
Yang, S. M., Ji, H. S., Shim, D. S., Baek, J. H., & Park, S. H. (2017). Conical Roll-Twist-Bending Process for Fabrication of Metallic Archimedes Spiral Blade Used in Small Wind Power Generator. International Journal of Precision Engineering and Manufacturing - Green Technology, 4(4), 431–439.
Yudistira, R., Nindito, D. A., & Saputra, R. H. (2021). Kinerja Turbin Hidrokinetik Tornado Savonius. Jurnal Teknika: Jurnal Teoritis Dan Terapan Bidang Keteknikan, 4(2), 181–186. http://dx.doi.org/10.52868/jt.v4i2.2732
Perubahan arah aliran akibat gaya drag dan gaya lift yang mengenai turbin hidrokinetik Archimedes Spiral menjadi sebuah permasalahan yang dapat mempengaruhi performa turbin, sehingga perlu ditambahkan sistem pengarah aliran. Studi ini bertujuan untuk mengetahui pengaruh penambahan sistem pengarah aliran berupa truncated cone dan ekor pengarah terhadap performa turbin Archimedes Spiral. Metode yang digunakan berupa uji eksperimental terhadap performa turbin menggunakan beberapa variasi kecepatan aliran di saluran terbuka. Hasil studi menunjukkan bahwa turbin Archimedes Spiral dengan sistem pengarah aliran menghasilkan nilai Cp sebesar 0,19–0,22 dan nilai TSR antara 1,76–1,85. Nilai torsi yang diperoleh berkisar antara 0,013–0,017 Nm pada rentang nilai RPM sebesar 28,64–33,60. Penambahan truncated cone mampu memperbesar gaya tangkap aliran. Penambahan ekor pengarah mampu meneruskan aliran vorteks memanjang ke bagian hilir turbin. Aliran vorteks yang diteruskan tersebut menghambat rotasi bilah turbin dan mengakibatkan gaya tekan pada turbin membesar. Gaya tekan pada bilah yang membesar menyebabkan nilai torsi meningkat. Meningkatnya torsi membuat konsep gaya drag yang digunakan turbin Archimedes Spiral dengan penambahan sistem pengarah aliran menjadi lebih tinggi dari pada konsep gaya lift. Penambahan truncated cone dan ekor pengarah berdampak meningkatnya performa turbin Archimedes Spiral.
Kata kunci: Archimedes Spiral; truncated cone; ekor pengarah; turbin hidrokinetik.
Abstract
Changes in flow direction due to drag and lift forces that hit the Archimedes Spiral hydrokinetic turbine is a problem that could affect turbine performance, hence, it is important to add a flow steering system. This study aims to determine the effect of adding a flow guide system in the form of a truncated cone and tail guide on the performance of the Archimedes Spiral turbine. The method used is experimental tests on turbine performance using several variations of flow velocity in open channels. The results of the study show that the Archimedes Spiral turbine with a flow guide system produces a Cp value of 0.19–0.22 and a TSR value of 1.76–1.85. The torque value obtained is in the range of 0.013–0.017 Nm within the range of 28.64–33.60 RPM. The addition of a truncated cone was able to increase the flow capture force. The addition of a guide tail could forward the vortex flow lengthwise to the downstream of the turbine. The forwarded vortex flow inhibits the rotation of the turbine blades and causes the compressive force on the turbine to increase. The increased compression force on the blade caused the torque value to increase. In the Archimedes Spiral turbine with the addition of a flow steering system, the increased torque caused the concept drag force to be higher than the concept of lift force. The addition of a truncated cone and guide tail increased the performance of the Archimedes Spiral turbine.
Keywords: Archimedes Spiral; truncated cone; guide tail; hydrokinetic turbine.
Pratama, A., Nindito, D. A. and Saputra, R. H. 2021. Studi Eksperimental Sistem Pengarah Aliran Pada Turbin Hidrokinetik Archimedes Spiral, JURNAL TEKNIK, 19(1), pp. 1–11. https://doi.org/10.37031/jt.v19i1.145.
REFERENCES
Abbasi, A., Ghassemi, H., & Molyneux, D. (2018). Numerical Analysis of the Hydrodynamic Performance of HATST with Different Blade Geometries. American Journal of Civil Engineering and Architecture, 6(November), 1–5.
Antomo, T., Kamiana, I. M., & Nindito, D. A. (2020). Analisis Pengembangan Hidrokinetik Turbin Gorlov Akibat Penambahan Luas Bidang Tangkap. Teknika: Jurnal Sains Dan Teknologi, 16(2), 159.
Cao, H. (2011). Aerodynamics Analysis of Small Horizontal Axis Wind Turbine Blades by Using 2D and 3D CFD Modelling (May 2011, p. 82).
Ebrahimi, S., & Ghassemi, M. A. (2018). Numerical Aerodynamics Analysis of the Archimedes Screw Wind Turbine. International Journal of Multidisciplinary Sciences and Engineering, 9(10), 12–15.
Jang, H., Kim, D., Hwang, Y., Paek, I., Kim, S., & Baek, J. (2019). Analysis of Archimedes Spiral Wind Turbine Performance By Simulation and Field Test. Energies, 12(24).
Ji, H. S., Baek, J. H., Mieremet, R., & Kim, K. C. (2016a). The Aerodynamic Performance Study on Small Wind Turbine with 500W Class through Wind Tunnel Experiments. International Journal of Renewable Energy Sources, 1, 7–12.
Ji, H. S., Qiang, L., Beak, J. H., Mieremet, R., & Kim, K. C. (2016b). Effect of the Wind Direction on the Near Wake Structures of an Archimedes Spiral Wind Turbine Blade. Journal of Visualization, 19(4), 653–665.
Khan, M. J., Bhuyan, G., Iqbal, M. T., & Quaicoe, J. E. (2009). Hydrokinetic Energy Conversion Systems and Assessment of Horizontal and Vertical Axis Turbines for River and Tidal Applications: A Technology Status Review. Applied Energy, 86(10), 1823–1835.
Kholiq, I. (2015). Pemanfaatan Energi Alternatif Sebagai Energi Terbarukan Untuk Mendukung Subtitusi BBM. Jurnal IPTEK, 19(2), 75–91.
Kim, K. C., Kim, Y. K., Ji, H. S., Beak, J. H., & Mieremet, R. (2013). Aerodynamic Characteristics of Horizontal Axis Wind Turbine with Archimedes Spiral Blade. Proceedings of the ASME 2013 International Mechanical Engineering Congress and Exposition, 1–6.
Mieremet, R. (2014). The Aerodynamic Method of the Archimedes Windturbine. POWER Solutions, 1–9.
Nindito, D. A., Istiarto, & Kironoto, B. A. (2008). Simulasi Numeris Tiga Dimensi Kantong Lumpur Bendung Sapon. Journal of the Civil Engineering Forum, 18(1), 712–724.
Octauria, E. P., Nindito, D. A., & Saputra, R. H. (2021). Uji Eksperimental Pengaruh Sudut Omni Directional Guide Vanes Terhadap Performa Turbin Hidrokinetik Darrieus. EKSERGI Jurnal Teknik Energi, 17(2), 95–108. http://dx.doi.org/10.32497/eksergi.v17i2.2581
Patil, Y. (2018). Design, Fabrication and Analysis of Fibonacci Spiral Horizontal Axis Wind Turbine. International Journal of Aerospace and Mechanical Engineering, 5(2), 19–22.
Rakesh, B., Rao, S. S., Kiran, C. Y. V, Anand, M., & Duryodhana, D. (2019). Design , Fabrication and Experimental Analysis of Archimedes Spiral Wind Turbine. International Journal of Innovative Research InTechnology (IJIRT), 5(11), 304–310.
Rao, S., Shanmukesh, K., Naidu, M. K., & Praveen Kalla. (2018). Design and Analysis of Archimedes Aero-Foil Wind Turbine Blade for Light and Moderate Wind Speeds. International Journal on Recent Technologies in Mechanical and Electrical Engineering (IJRMEE), 5(8), 1–5.
Rat, C. L., Prostean, O., & Filip, I. (2018). Hardware-in-the-Loop Emulator for a Hydrokinetic Turbine. IOP Conference Series: Materials Science and Engineering, 294(1), 11.
Rat, C. L., Prostean, O., Filip, I., & Vasar, C. (2018). The Modeling and Simulation of an Archimedes Spiral Turbine for use in a Hydrokinetic Energy Conversion System. 2018 IEEE 22nd International Conference on Intelligent Engineering Systems (INES), 245–248.
Shivanegara, S. D., Vernekar, K. K., Rathod, K., Ravikumar, C., & Y, D. R. P. (2017). Design, Fabrication and Aerodynamic Analysis of a Modified Archimedes Wind Turbine. Issue VI, 598(May), 2321–9653.
Verma, D. R., & Katkade, P. S. D. (2018). Horizontal Axis Water Turbine : Generation and Optimization of Green Energy. International Journal of Applied Engineering Research, 13(5), 9–14.
Wardani, C. S., Nindito, D. A., & Jaya, A. R. (2020). Inovasi dan Desain Turbin Hidrokinetik Darrieus Berdasarkan Bentuk Distribusi Kecepatan Aliran. Media Ilmiah Teknik Sipil, 9(1), 32–43.
Yang, S. M., Ji, H. S., Shim, D. S., Baek, J. H., & Park, S. H. (2017). Conical Roll-Twist-Bending Process for Fabrication of Metallic Archimedes Spiral Blade Used in Small Wind Power Generator. International Journal of Precision Engineering and Manufacturing - Green Technology, 4(4), 431–439.
Yudistira, R., Nindito, D. A., & Saputra, R. H. (2021). Kinerja Turbin Hidrokinetik Tornado Savonius. Jurnal Teknika: Jurnal Teoritis Dan Terapan Bidang Keteknikan, 4(2), 181–186. http://dx.doi.org/10.52868/jt.v4i2.2732
A metamodel simulation based optimisation approach for the tidal turbine location problem is introduced. The method comprises design of experiments, computational simulations, metamodel construction and formulation of a mathematical... more
A metamodel simulation based optimisation approach for the tidal turbine location problem is introduced. The method comprises design of experiments, computational simulations, metamodel construction and formulation of a mathematical optimisation model. Sample plans with different number of data points are used to fit 2nd and 3rd order polynomial as a function of two design parameters: longitudinal and lateral spacing, with a view to approximating the power output of tidal turbine farms with inline and staggered layouts, each Aquatic Science and Technology ISSN 2168-9148 2015 34 of them with a fixed number of turbines. The major advantage this method has, in comparison to those reported in the literature, is the capability to analyse different design parameter combinations that satisfy optimality criteria in reasonable computational time, while taking into account complex flow-turbine interactions.
A metamodel simulation based optimisation approach for the tidal turbine location problem is introduced. The method comprises design of experiments, computational simulations, metamodel construction and formulation of a mathematical... more
A metamodel simulation based optimisation approach for the tidal turbine location problem is introduced. The method comprises design of experiments, computational simulations, metamodel construction and formulation of a mathematical optimisation model. Sample plans with different number of data points are used to fit 2nd and 3rd order polynomial as a function of two design parameters: longitudinal and lateral spacing, with a view to approximating the power output of tidal turbine farms with inline and staggered layouts, each
The Marine Energy Community has been engaged with Standards since 2008 as a necessary adjunct to the development of a maturing industry. This paper seeks to present a brief rationale for standards in this context; to provide a summary of... more
The Marine Energy Community has been engaged with Standards since 2008 as a necessary adjunct to the development of a maturing industry. This paper seeks to present a brief rationale for standards in this context; to provide a summary of the key events to date and to explain the International arrangements for standards-making and compliance in the Marine Energy sectormaking brief mention of future plans. Finally, the paper is intended to challenge and encourage people to become involved in the making of standards for Marine Energy.
This document presents the experimentally determined power generation efficiency for the drive-train and motor of a 20 kW experimental ocean current turbine. This efficiency assessment was performed using a custom designed dynamometer and... more
This document presents the experimentally determined power generation efficiency for the drive-train and motor of a 20 kW experimental ocean current turbine. This efficiency assessment was performed using a custom designed dynamometer and covered much of the generator's expected operating range. These measurements are used with numerically modeled rotor performance to predict the overall efficiency of the ocean current turbine when converting kinetic energy flux to electric power.
Related Topics