Academia.eduAcademia.edu

N -(4-Methoxy-2-nitrophenyl)- N -(methylsulfonyl)methanesulfonamide

2012, Acta Crystallographica Section E Structure Reports Online

N-(4-Methoxy-2-nitrophenyl)-N-(methylsulfonyl)methanesulfonamide Sammer Yousuf, Hina Siddiqui, Rabia Farooq and M. Iqbal Choudhary S1. Comment Compounds containing the sulfonamide moiety have attracted a wide interest due to their interesting chemical and biological properties, which makes them promising candidates in drug discovery. Sulfonamides posses wide variety of

organic compounds Acta Crystallographica Section E Mo K radiation  = 0.43 mm1 T = 273 K 0.55  0.47  0.11 mm b = 7.5987 (6) Å c = 19.2434 (15) Å  = 103.672 (2) V = 1349.43 (18) Å3 Z=4 Structure Reports Online ISSN 1600-5368 Data collection N-(4-Methoxy-2-nitrophenyl)-N-(methylsulfonyl)methanesulfonamide Sammer Yousuf,a* Hina Siddiqui,a Rabia Farooqa and M. Iqbal Choudharya,b a H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan, and b Department of Biochemistry, Faculty of Sciences, King Abdul Aziz University, Jeddah 21589, Saudi Arabia Correspondence e-mail: [email protected] Bruker SMART APEX CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2000) Tmin = 0.799, Tmax = 0.955 9504 measured reflections 3362 independent reflections 2711 reflections with I > 2(I) Rint = 0.023 Refinement R[F 2 > 2(F 2)] = 0.040 wR(F 2) = 0.113 S = 1.05 3362 reflections 185 parameters H-atom parameters constrained max = 0.31 e Å3 min = 0.30 e Å3 Table 1 Received 29 May 2012; accepted 31 May 2012 Hydrogen-bond geometry (Å,  ). Key indicators: single-crystal X-ray study; T = 273 K; mean (C–C) = 0.003 Å; R factor = 0.040; wR factor = 0.113; data-to-parameter ratio = 18.2. D—H  A i In the title compound, C9H12N2O7S2, the nitro substituent is slightly twisted from the benzene ring [dihedral angle = 14.69 (10) ]. The molecular geometry is stabilized by intramolecular C—H  O hydrogen bonds, forming S(6) ring motifs. In the crystal, molecules are linked by C—H  O hydrogen bonds into layers parallel to (102). Related literature For the biological activities of sulfonamides, see: Alsughayer et al. (2011); Joshi & Khosla (2003); Scozzafava et al. (2003); Drews (2000); Peixoto & Beverley (1987). For crystal structures of closely related compounds, see: Boechat et al. (2010); Zia-ur-Rehman et al. (2009). C1—H1B  O2 C8—H8B  O4 C8—H8C  O5ii C9—H9B  O1 C9—H9B  O1iii D—H H  A D  A D—H  A 0.93 0.96 0.96 0.96 0.96 2.46 2.58 2.58 2.59 2.47 3.368 3.225 3.250 3.226 3.173 165 125 127 124 130 (2) (3) (3) (3) (3) Symmetry codes: (i) x þ 2; y  12; z þ 12; (ii) x; y þ 1; z; (iii) x þ 1; y; z. Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2009). Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5148). References Experimental Crystal data Monoclinic, P21 =c a = 9.4976 (7) Å C9H12N2O7S2 Mr = 324.33 o2090 Yousuf et al. Alsughayer, A., Elassar, A. A., Mustafa, S. & Sagheer, F. (2011). J. Biomater. Nanobiotechnol. 2, 144–149. Boechat, N., Santos Lages, A. dos, Kover, W. B., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2010). Acta Cryst. E66, o506–o507. Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Drews, J. (2000). Science, 287, 1960–1964. Joshi, S. & Khosla, N. (2003). Bioorg. Med. Chem. Lett. 13, 3747–3751. Nardelli, M. (1995). J. Appl. Cryst. 28, 659. Peixoto, M. P. & Beverley, S. M. (1987). Antimicrob. Agents Chemother. 31, 1575–1578. Scozzafava, A., Owa, T., Mastrolorenzo, A. & Supuran, C. (2003). Curr. Med. Chem. 10, 925–953. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Spek, A. L. (2009). Acta Cryst. D65, 148–155. Zia-ur-Rehman, M., Sepehrianazar, A., Ali, M., Siddiqui, W. A. & Çaylak, N. (2009). Acta Cryst. E65, o941. doi:10.1107/S160053681202483X Acta Cryst. (2012). E68, o2090 supporting information supporting information Acta Cryst. (2012). E68, o2090 [https://doi.org/10.1107/S160053681202483X] N-(4-Methoxy-2-nitrophenyl)-N-(methylsulfonyl)methanesulfonamide Sammer Yousuf, Hina Siddiqui, Rabia Farooq and M. Iqbal Choudhary S1. Comment Compounds containing the sulfonamide moiety have attracted a wide interest due to their interesting chemical and biological properties, which makes them promising candidates in drug discovery. Sulfonamides posses wide variety of biological activities including anti-bacterial, anti-leishmanial, anti-inflammatory, anti-cancer, and carbonic anhydrase inhibitory activities (Alsughayer et al., 2011; Joshi & Khosla, 2003; Scozzafava et al., 2003; Drews, 2000; Peixoto & Beverley, 1987). The title compound was prepared as a part of our ongoing research to synthesize different sulfonamide derivatives to study their bioactive potential and structure activity relationship (SAR). In the title compound (Fig. 1), the nitro group was found to be slightly twisted with the dihedral angle of 14.69 (10)° between the NO2 group and the benzene ring. The S1—N2—C3—C4 and S2—N2—C3—C4 torsion angles are 82.83 (19) and -92.42 (17)°, respectively. The molecule is stabilized by two intramolecular C8—H8B···O4 and C9—H9B···O1 interactions to form two S(6) ring motifs. In the crystal structure, the molecules are linked to form a two-dimensional network through C1—H1B···O2i, C8 —H8C···O5ii and C9—H9B···O1iii intermolecular hydrogen bonds (Fig. 2 and Table 1). The bond lengths and angles are within the normal range and similar to other closley related structures (Boechat et al., 2010; Zia-ur-Rehman et al., 2009). S2. Experimental To a stirring solution of methanesulfonyl chloride (1.0 g, 8.7 mmol) in CH2Cl2 (20 ml) at 0 °C, 3 ml Et3N and 4-methoxy-2-nitroaniline (1.1 eq., 1.61 g m, 9.6 mmol) were added along with catalytic amount of dimethylamino pyridine (DMAP). Progress of the reaction was monitored by thin layer chromatography in 7:3 hexanes: ethyl acetate solvent system. After complete consumption of starting material (2 hrs), workup was performed with H2O (10 ml), organic layer was separated and aqueous layer was extracted with CH2Cl2 (2 × 10 ml). Organic layers were further washed with brine (10 ml), and dried over MgSO4, filtered, and concentrated in vacuum to obtain the crude product (0.9 g, 90% yield). Flash chromatography was performed hexanes: ethyl acetate (7:3), to obtain crystalline compound I, in 55% yield. Crystals were found suitable for single-crystal X-ray diffraction studies. All the starting materials and solvents were purchased from commercial suppliers and used for reaction without purification. S3. Refinement H atoms were positioned geometrically with C—H = 0.96 or 0.93 Å, and constrained to ride on their parent atoms with Uiso(H)= 1.2Ueq(C) or 1.5Ueq(Cmethyl). A rotating group model was applied to the methyl groups. Acta Cryst. (2012). E68, o2090 sup-1 supporting information Figure 1 The molecular structure of the title compound with displacement ellipsoids drawn at 30% probability level. Figure 2 The crystal packing of the title compound. Only hydrogen atoms involved in hydrogen bonding are shown. Acta Cryst. (2012). E68, o2090 sup-2 supporting information N-(4-Methoxy-2-nitrophenyl)-N-(methylsulfonyl)methanesulfonamide Crystal data C9H12N2O7S2 Mr = 324.33 Monoclinic, P21/c Hall symbol: -P 2ybc a = 9.4976 (7) Å b = 7.5987 (6) Å c = 19.2434 (15) Å β = 103.672 (2)° V = 1349.43 (18) Å3 Z=4 F(000) = 672 Dx = 1.596 Mg m−3 Mo Kα radiation, λ = 0.71073 Å Cell parameters from 3096 reflections θ = 2.2–27.7° µ = 0.43 mm−1 T = 273 K Block, yellow 0.55 × 0.47 × 0.11 mm Data collection Bruker SMART APEX CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scan Absorption correction: multi-scan (SADABS; Bruker, 2000) Tmin = 0.799, Tmax = 0.955 9504 measured reflections 3362 independent reflections 2711 reflections with I > 2σ(I) Rint = 0.023 θmax = 28.3°, θmin = 2.2° h = −12→12 k = −10→9 l = −25→23 Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.040 wR(F2) = 0.113 S = 1.05 3362 reflections 185 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained w = 1/[σ2(Fo2) + (0.0641P)2 + 0.2074P] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.001 Δρmax = 0.31 e Å−3 Δρmin = −0.30 e Å−3 Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 Extinction coefficient: 0.0101 (14) Special details Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) S1 S2 O1 x y z Uiso*/Ueq 0.80706 (5) 0.67671 (5) 0.55361 (15) 0.21065 (6) 0.31016 (6) 0.22596 (19) −0.02024 (2) 0.09782 (2) 0.05410 (8) 0.03866 (15) 0.03825 (15) 0.0529 (4) Acta Cryst. (2012). E68, o2090 sup-3 supporting information O2 O3 O4 O5 O6 O7 N1 N2 C1 H1B C2 C3 C4 H4B C5 H5A C6 C7 H7A H7B H7C C8 H8A H8B H8C C9 H9A H9B H9C 0.71498 (16) 0.95185 (15) 0.70649 (16) 0.80101 (17) 0.99411 (19) 1.36416 (14) 0.92993 (18) 0.82155 (15) 1.14724 (19) 1.1802 1.01332 (18) 0.96028 (17) 1.04925 (19) 1.0171 1.1838 (2) 1.2407 1.23354 (19) 1.4561 (2) 1.5458 1.4090 1.4752 0.6647 (3) 0.5830 0.6528 0.7517 0.7335 (2) 0.7196 0.6421 0.7986 0.2788 (2) 0.2109 (2) 0.3355 (2) −0.07491 (19) −0.20742 (17) 0.2232 (2) −0.07629 (18) 0.24662 (18) 0.0885 (2) −0.0117 0.0890 (2) 0.2371 (2) 0.3835 (2) 0.4833 0.3863 (2) 0.4872 0.2382 (3) 0.3748 (3) 0.3458 0.4680 0.4123 0.5369 (3) 0.5830 0.5598 0.5927 −0.0003 (3) −0.0262 −0.0054 −0.0849 0.17294 (7) −0.02879 (7) −0.05856 (7) 0.12618 (9) 0.18046 (9) 0.25913 (8) 0.15472 (8) 0.06736 (7) 0.20463 (9) 0.2313 0.15816 (8) 0.11724 (8) 0.12521 (10) 0.0982 0.17185 (10) 0.1764 0.21179 (9) 0.27101 (13) 0.3040 0.2905 0.2265 0.08270 (13) 0.0981 0.0326 0.1091 −0.03754 (11) −0.0875 −0.0246 −0.0100 0.0514 (4) 0.0522 (4) 0.0561 (4) 0.0608 (4) 0.0602 (4) 0.0503 (4) 0.0381 (3) 0.0329 (3) 0.0345 (4) 0.041* 0.0311 (3) 0.0315 (3) 0.0406 (4) 0.049* 0.0428 (4) 0.051* 0.0366 (4) 0.0630 (6) 0.095* 0.095* 0.095* 0.0576 (6) 0.086* 0.086* 0.086* 0.0507 (5) 0.076* 0.076* 0.076* Atomic displacement parameters (Å2) S1 S2 O1 O2 O3 O4 O5 O6 O7 N1 N2 C1 C2 C3 C4 U11 U22 U33 U12 U13 U23 0.0379 (3) 0.0339 (2) 0.0338 (7) 0.0573 (9) 0.0448 (8) 0.0582 (9) 0.0512 (9) 0.0801 (12) 0.0351 (7) 0.0530 (9) 0.0306 (7) 0.0407 (9) 0.0388 (9) 0.0323 (8) 0.0416 (10) 0.0453 (3) 0.0363 (2) 0.0560 (9) 0.0568 (9) 0.0697 (10) 0.0632 (9) 0.0431 (8) 0.0310 (7) 0.0564 (9) 0.0287 (7) 0.0356 (7) 0.0316 (8) 0.0254 (8) 0.0300 (8) 0.0297 (8) 0.0321 (2) 0.0449 (3) 0.0673 (10) 0.0437 (8) 0.0460 (8) 0.0421 (7) 0.0834 (11) 0.0648 (10) 0.0529 (8) 0.0343 (7) 0.0310 (7) 0.0311 (8) 0.0307 (8) 0.0317 (8) 0.0466 (10) −0.00244 (18) −0.00356 (16) −0.0104 (6) −0.0021 (7) −0.0059 (7) 0.0097 (7) −0.0183 (7) −0.0038 (7) −0.0008 (6) −0.0084 (6) −0.0017 (6) 0.0033 (7) −0.0054 (6) −0.0036 (6) −0.0064 (7) 0.00691 (18) 0.00994 (18) 0.0088 (6) 0.0191 (6) 0.0185 (6) 0.0020 (6) 0.0065 (8) 0.0078 (8) −0.0029 (6) 0.0137 (6) 0.0044 (5) 0.0082 (6) 0.0114 (6) 0.0062 (6) 0.0029 (7) 0.00241 (17) −0.00732 (18) −0.0157 (7) −0.0065 (6) −0.0001 (7) 0.0133 (7) 0.0071 (7) 0.0130 (7) −0.0013 (7) −0.0001 (6) −0.0005 (6) 0.0031 (6) −0.0010 (6) 0.0016 (6) 0.0078 (7) Acta Cryst. (2012). E68, o2090 sup-4 supporting information C5 C6 C7 C8 C9 0.0403 (10) 0.0336 (9) 0.0358 (11) 0.0612 (14) 0.0521 (12) 0.0347 (9) 0.0417 (9) 0.0725 (15) 0.0352 (10) 0.0529 (12) 0.0508 (11) 0.0337 (9) 0.0743 (15) 0.0733 (15) 0.0456 (11) −0.0112 (7) −0.0008 (7) −0.0108 (10) 0.0068 (9) −0.0100 (9) 0.0054 (8) 0.0065 (7) 0.0002 (10) 0.0096 (11) 0.0089 (9) 0.0039 (8) −0.0032 (7) −0.0152 (13) −0.0051 (10) −0.0160 (9) Geometric parameters (Å, º) S1—O4 S1—O3 S1—N2 S1—C9 S2—O1 S2—O2 S2—N2 S2—C8 O5—N1 O6—N1 O7—C6 O7—C7 N1—C2 N2—C3 C1—C2 C1—C6 1.4223 (15) 1.4231 (14) 1.6809 (14) 1.748 (2) 1.4210 (14) 1.4247 (14) 1.6882 (15) 1.747 (2) 1.218 (2) 1.211 (2) 1.359 (2) 1.431 (3) 1.478 (2) 1.437 (2) 1.371 (2) 1.389 (2) C1—H1B C2—C3 C3—C4 C4—C5 C4—H4B C5—C6 C5—H5A C7—H7A C7—H7B C7—H7C C8—H8A C8—H8B C8—H8C C9—H9A C9—H9B C9—H9C 0.9300 1.397 (2) 1.383 (2) 1.377 (2) 0.9300 1.382 (3) 0.9300 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 O4—S1—O3 O4—S1—N2 O3—S1—N2 O4—S1—C9 O3—S1—C9 N2—S1—C9 O1—S2—O2 O1—S2—N2 O2—S2—N2 O1—S2—C8 O2—S2—C8 N2—S2—C8 C6—O7—C7 O6—N1—O5 O6—N1—C2 O5—N1—C2 C3—N2—S1 C3—N2—S2 S1—N2—S2 C2—C1—C6 C2—C1—H1B C6—C1—H1B C1—C2—C3 119.21 (9) 107.30 (8) 105.27 (8) 108.87 (10) 109.43 (10) 105.93 (9) 120.15 (9) 106.83 (8) 105.73 (8) 109.48 (11) 108.96 (10) 104.52 (10) 117.75 (16) 123.14 (15) 117.92 (15) 118.94 (14) 120.43 (11) 118.43 (11) 120.96 (8) 119.80 (16) 120.1 120.1 121.66 (15) C5—C4—C3 C5—C4—H4B C3—C4—H4B C4—C5—C6 C4—C5—H5A C6—C5—H5A O7—C6—C5 O7—C6—C1 C5—C6—C1 O7—C7—H7A O7—C7—H7B H7A—C7—H7B O7—C7—H7C H7A—C7—H7C H7B—C7—H7C S2—C8—H8A S2—C8—H8B H8A—C8—H8B S2—C8—H8C H8A—C8—H8C H8B—C8—H8C S1—C9—H9A S1—C9—H9B 122.23 (16) 118.9 118.9 119.50 (17) 120.3 120.3 125.38 (17) 114.93 (17) 119.70 (16) 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 Acta Cryst. (2012). E68, o2090 sup-5 supporting information C1—C2—N1 C3—C2—N1 C4—C3—C2 C4—C3—N2 C2—C3—N2 115.57 (14) 122.77 (15) 117.11 (15) 118.25 (15) 124.63 (15) H9A—C9—H9B S1—C9—H9C H9A—C9—H9C H9B—C9—H9C 109.5 109.5 109.5 109.5 O4—S1—N2—C3 O3—S1—N2—C3 C9—S1—N2—C3 O4—S1—N2—S2 O3—S1—N2—S2 C9—S1—N2—S2 O1—S2—N2—C3 O2—S2—N2—C3 C8—S2—N2—C3 O1—S2—N2—S1 O2—S2—N2—S1 C8—S2—N2—S1 C6—C1—C2—C3 C6—C1—C2—N1 O6—N1—C2—C1 O5—N1—C2—C1 O6—N1—C2—C3 O5—N1—C2—C3 −139.57 (14) −11.63 (15) 104.25 (14) 35.55 (12) 163.50 (10) −80.63 (12) −150.32 (13) −21.24 (15) 93.69 (15) 34.46 (12) 163.53 (10) −81.53 (12) 0.0 (3) −179.76 (15) −14.8 (2) 165.47 (17) 165.42 (17) −14.3 (2) C1—C2—C3—C4 N1—C2—C3—C4 C1—C2—C3—N2 N1—C2—C3—N2 S1—N2—C3—C4 S2—N2—C3—C4 S1—N2—C3—C2 S2—N2—C3—C2 C2—C3—C4—C5 N2—C3—C4—C5 C3—C4—C5—C6 C7—O7—C6—C5 C7—O7—C6—C1 C4—C5—C6—O7 C4—C5—C6—C1 C2—C1—C6—O7 C2—C1—C6—C5 0.4 (2) −179.79 (15) 179.70 (15) −0.5 (3) 82.83 (19) −92.42 (17) −96.42 (17) 88.33 (19) −0.8 (3) 179.87 (17) 0.7 (3) 2.6 (3) −177.73 (17) 179.46 (18) −0.2 (3) −179.86 (15) −0.2 (3) Hydrogen-bond geometry (Å, º) D—H···A i C1—H1B···O2 C8—H8B···O4 C8—H8C···O5ii C9—H9B···O1 C9—H9B···O1iii D—H H···A D···A D—H···A 0.93 0.96 0.96 0.96 0.96 2.46 2.58 2.58 2.59 2.47 3.368 (2) 3.225 (3) 3.250 (3) 3.226 (3) 3.173 (3) 165 125 127 124 130 Symmetry codes: (i) −x+2, y−1/2, −z+1/2; (ii) x, y+1, z; (iii) −x+1, −y, −z. Acta Cryst. (2012). E68, o2090 sup-6