organic compounds
Acta Crystallographica Section E
Z=4
Mo K radiation
= 0.58 mm1
Structure Reports
Online
ISSN 1600-5368
T = 296 (2) K
0.22 0.14 0.07 mm
Data collection
N-(4-Chloro-2-nitrophenyl)methanesulfonamide
Bruker APEXII CCD area-detector
diffractometer
Absorption correction: none
10700 measured reflections
2590 independent reflections
1199 reflections with I > 2(I)
Rint = 0.081
Refinement
Muhammad Zia-ur-Rehman,a* Jamil Anwar Choudary,b
Nosheen Akbar,c Islam Ullah Khand and Muhammad
Nadeem Arshadd
R[F 2 > 2(F 2)] = 0.050
wR(F 2) = 0.147
S = 0.97
2556 reflections
140 parameters
H atoms treated by a mixture of
independent and constrained
refinement
max = 0.25 e Å3
min = 0.39 e Å3
a
Applied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore 54600,
Pakistan, bInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan,
c
Centre for High Energy Physics, University of the Punjab, Lahore 54590, Pakistan,
and dDepartment of Chemistry, Government College University, Lahore 54000,
Pakistan
Correspondence e-mail:
[email protected]
Received 18 September 2008; accepted 25 September 2008
Key indicators: single-crystal X-ray study; T = 296 K; mean (C–C) = 0.005 Å;
R factor = 0.050; wR factor = 0.147; data-to-parameter ratio = 18.3.
Table 1
Hydrogen-bond geometry (Å, ).
D—H A
D—H
H A
D A
D—H A
N1—H1 O3
C3—H3 O3i
C5—H5 O2ii
C6—H6 O2
C7—H8 O3iii
0.80 (4)
0.93
0.93
0.93
0.96
2.03 (4)
2.59
2.47
2.27
2.53
2.631
3.417
3.325
2.951
3.394
131 (3)
148
152
130
150
Symmetry codes: (i)
x þ 2; y; z þ 2.
The title compound, C7H7ClN2O4S, is of interest as a
precursor to biologically active substituted quinolines. Its
structure resembles those of the previously reported
N-phenylmethane sulfonamide and its 4-nitro, 4-fluoro and
4-bromo derivatives, with slightly different geometric parameters. An intramolecular N—H O hydrogen bond gives
rise to a six-membered ring. Intermolecular C—H O
contacts stabilize the crystal packing.
Related literature
For related literature, see: Ahn et al. (1997); Allen et al. (1987);
Ozbek et al. (2007); Siddiqui et al. (2007); Gennarti et al.
(1994); Gowda et al. (2007a,b,c); Hanson et al. (1999); Moree et
al. (1991); Oppolzer et al. (1991); Rough et al. (1998); Zia-urRehman et al. (2005, 2006, 2007, 2008).
x þ 32; y 12; z þ 32;
(ii)
(4)
(4)
(5)
(5)
(5)
x þ 1; y þ 1; z þ 2;
(iii)
Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT
(Bruker, 2007); data reduction: SAINT; program(s) used to solve
structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine
structure: SHELXL97 (Sheldrick, 2008); molecular graphics:
SHELXTL (Sheldrick, 2008); software used to prepare material for
publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).
The authors are grateful to the PCSIR Laboratories
Complex, Lahore, Pakistan, for provision of the necessary
chemicals, and to the Higher Education Commission of
Pakistan for the grant to purchase the diffractometer.
Supplementary data and figures for this paper are available from the
IUCr electronic archives (Reference: BT2794).
References
Experimental
Crystal data
C7H7ClN2O4S
Mr = 250.67
Monoclinic, P21 =n
a = 11.728 (3) Å
o2034
Zia-ur-Rehman et al.
b = 4.9798 (13) Å
c = 17.988 (5) Å
= 107.334 (8)
V = 1002.8 (5) Å3
Ahn, K. H., Ham, C., Kim, S.-K. & Cho, C.-W. (1997). J. Org. Chem. 62, 7047–
7048.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor,
R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin,
USA.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
Gennarti, C., Salom, B., Potenza, D. & Williams, A. (1994). Angew. Chem. Int.
Ed. Engl. 33, 2067–2069.
Gowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o2339.
Gowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o2570.
Gowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o2597.
Hanson, P. R., Probst, D. A., Robinson, R. E. & Yau, M. (1999). Tetrahedron
Lett. 40, 4761–4763.
Moree, W. J., Van der Marel, G. A. & Liskamp, R. M. (1991). Tetrahedron Lett.
32, 409–411.
Oppolzer, W., Kingma, A. J. & Pillai, S.-K. (1991). Tetrahedron Lett. 32, 4893–
4895.
Ozbek, N., Katircioğlu, H., Karacan, N. & Baykal, T. (2007). Bioorg. Med.
Chem. 15, 5105–5109.
doi:10.1107/S1600536808031048
Acta Cryst. (2008). E64, o2034–o2035
organic compounds
Rough, W. R., Gwaltney, S. L., Cheng, J., Scheidt, K. A., Mc Kerrow, J. H. &
Hansell, E. (1998). J. Am. Chem. Soc. 120, 10994–10995.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Siddiqui, N., Pandeya, S. N., Khan, S. A., Stables, J., Rana, A., Alam, M.,
Arshad, M. F. & Bhat, M. A. (2007). Bioorg. Med. Chem. Lett. 17, 255–259.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.
Zia-ur-Rehman, M., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem.
Soc. 26, 1771–1775.
Acta Cryst. (2008). E64, o2034–o2035
Zia-ur-Rehman, M. Z., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006).
Chem. Pharm. Bull. 54, 1175–1178.
Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. &
Khan, K. M. (2008). Eur. J. Med. Chem. In the press. doi: 10.1016/
j.ejmech.2008.08.002.
Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. &
Weaver, G. W. (2007). Acta Cryst. E63, o4215–o4216.
Zia-ur-Rehman et al.
C7H7ClN2O4S
o2035
supplementary materials
supplementary materials
Acta Cryst. (2008). E64, o2034-o2035
[ doi:10.1107/S1600536808031048 ]
N-(4-Chloro-2-nitrophenyl)methanesulfonamide
M. Zia-ur-Rehman, J. A. Choudary, N. Akbar, I. U. Khan and M. Nadeem Arshad
Comment
Sulfonamides are familiar for their enormous potential as biologically active molecules (Hanson et al., 1999; Moree et al.,
1991; Rough et al., 1998). They are being used as anti-microbial (Ozbek et al., 2007), anti-convulsant (Siddiqui et al., 2007),
and for the treatment of inflammatory rheumatic and non-rheumatic processes including onsets and traumatologic lesions
(Gennarti et al., 1994). Besides, these are known as compounds being used as agricultural agents and chiral auxiliaries (Ahn
et al., 1997; Oppolzer et al., 1991). Among these, alkyl sulfonanilides are of special interest due to their stereochemistry
with amide hydrogen on one side of the plane of benzene ring making it a good receptor site for biological reactions. In
the present paper, the structure of N-(4-chloro-2-nitrophenyl)methanesulfonamide has been determined as part of a research
program involving the synthesis and biological evaluation of sulfur containing heterocyclic compounds (Zia-ur-Rehman et
al., 2005, 2006, 2007, 2008). In the molecule of (I) (Fig. 1), bond lengths and bond angles are almost similar to those in
the related molecules (Gowda et al., 2007a,b,c) and are within normal ranges (Allen et al., 1987). Intramolecular interaction [N1—H1···O3] is observed in the title molecule giving rise to six-membered hydrogen bonded ring. Each molecule is
centrosymmetrically linked to its adjacent one through intermolecular [C7—H8···O3] hydrogen bonds on one side, and via
[C5—H5···O2] hydrogen bonds on the other side, giving rise to a zigzag chain along a axis. Each molecule of a chain is
further linked to the member of adjacent chain via [C3—H3···O3] hydrogen bonds along c giving rise to a three dimensional
network.
Experimental
A mixture of 4-chloro-2-nitroaniline (3.452 g; 20.0 mmoles) and mesyl chloride (2.52 g; 22.0 mmoles) and toluene (25.0
ml) was heated to reflux for half an hour. Solvent was then distilled off under reduced pressure and the resultant solids were
washed with cold methanol. Crystals suitable for analysis were obtained by slow evaporation of methanolic solution over
a period of two days.
Refinement
H atoms bound to C were placed in calculated positions (C—H distance = 0.95 Å) using a riding model. H atoms on N
and O were freely refined.
Figures
Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the
50% probability level.
sup-1
supplementary materials
Fig. 2. Perspective view of the crystal packing showing hydrogen bonds (dashed lines). H
atoms not involved in hydrogen bonding have been omitted for clarity.
N-(4-Chloro-2-nitrophenyl)methanesulfonamide
Crystal data
C7H7ClN2O4S
F000 = 512
Mr = 250.67
Dx = 1.660 Mg m−3
Monoclinic, P21/n
Melting point: 388 K
Hall symbol: -P 2yn
a = 11.728 (3) Å
b = 4.9798 (13) Å
c = 17.988 (5) Å
β = 107.334 (8)º
V = 1002.8 (5) Å3
Z=4
Mo Kα radiation
λ = 0.71073 Å
Cell parameters from 1283 reflections
θ = 2.4–20.9º
µ = 0.58 mm−1
T = 296 (2) K
Needle, light yellow
0.22 × 0.14 × 0.07 mm
Data collection
Bruker APEXII CCD area-detector
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
2590 independent reflections
1199 reflections with I > 2σ(I)
Rint = 0.081
Detector resolution: 7.5 pixels mm-1
θmax = 28.7º
T = 296(2) K
θmin = 1.9º
φ and ω scans
Absorption correction: none
10700 measured reflections
h = −15→15
k = −6→6
l = −23→24
Refinement
Refinement on F2
Least-squares matrix: full
R[F2 > 2σ(F2)] = 0.050
wR(F2) = 0.148
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring
sites
H atoms treated by a mixture of
independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0627P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97
(Δ/σ)max < 0.001
2556 reflections
Δρmax = 0.25 e Å−3
sup-2
supplementary materials
Δρmin = −0.39 e Å−3
140 parameters
Primary atom site location: structure-invariant direct
Extinction correction: none
methods
Special details
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations
between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of
cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating Rfactors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be even larger.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
Cl1
S1
O1
O2
O3
O4
H1
N1
N2
C1
C2
C3
H3
C4
C5
H5
C6
H6
C7
H8
H9
H7
x
y
z
Uiso*/Ueq
0.36565 (9)
0.82089 (9)
0.9148 (3)
0.7141 (2)
0.8855 (2)
0.8088 (2)
0.852 (3)
0.7906 (3)
0.8034 (3)
0.6920 (3)
0.6953 (3)
0.5963 (3)
0.6013
0.4913 (3)
0.4847 (3)
0.4136
0.5830 (4)
0.5767
0.8741 (4)
0.9413
0.8121
0.8984
−0.3010 (2)
0.53780 (17)
0.7102 (5)
0.6562 (5)
0.1004 (5)
−0.2740 (5)
0.324 (7)
0.3571 (6)
−0.0641 (6)
0.1941 (6)
−0.0052 (6)
−0.1573 (7)
−0.2884
−0.1147 (7)
0.0733 (7)
0.0974
0.2266 (7)
0.3554
0.3148 (8)
0.2183
0.1903
0.4127
0.78879 (7)
1.02558 (6)
1.01960 (19)
1.03188 (16)
0.85222 (14)
0.80406 (15)
0.938 (2)
0.94717 (19)
0.83722 (16)
0.91264 (19)
0.85865 (19)
0.8216 (2)
0.7859
0.8376 (2)
0.8916 (2)
0.9037
0.9282 (2)
0.9642
1.1025 (3)
1.0959
1.1036
1.1507
0.0757 (4)
0.0499 (3)
0.0756 (9)
0.0647 (8)
0.0554 (7)
0.0613 (7)
0.047 (11)*
0.0509 (8)
0.0441 (7)
0.0416 (8)
0.0397 (8)
0.0473 (9)
0.057*
0.0507 (9)
0.0559 (10)
0.067*
0.0556 (10)
0.067*
0.0756 (13)
0.113*
0.113*
0.113*
Atomic displacement parameters (Å2)
Cl1
S1
O1
U11
0.0495 (6)
0.0594 (6)
0.083 (2)
U22
0.0871 (8)
0.0414 (5)
0.0540 (15)
U33
0.0875 (9)
0.0527 (6)
0.100 (2)
U12
−0.0078 (5)
0.0081 (4)
−0.0184 (14)
U13
0.0156 (6)
0.0224 (5)
0.0431 (19)
U23
−0.0033 (6)
−0.0082 (4)
−0.0276 (15)
sup-3
supplementary materials
O2
O3
O4
N1
N2
C1
C2
C3
C4
C5
C6
C7
0.0700 (18)
0.0468 (15)
0.0608 (17)
0.050 (2)
0.0457 (18)
0.048 (2)
0.042 (2)
0.050 (2)
0.042 (2)
0.044 (2)
0.060 (3)
0.086 (3)
0.0622 (16)
0.0678 (16)
0.0650 (16)
0.0539 (18)
0.0526 (17)
0.0412 (18)
0.0445 (18)
0.053 (2)
0.058 (2)
0.061 (2)
0.053 (2)
0.075 (3)
0.0661 (19)
0.0571 (18)
0.0627 (19)
0.058 (2)
0.0364 (17)
0.040 (2)
0.0361 (19)
0.040 (2)
0.053 (2)
0.071 (3)
0.063 (3)
0.058 (3)
0.0267 (13)
−0.0027 (13)
0.0092 (12)
0.0022 (16)
0.0107 (15)
0.0068 (16)
0.0112 (15)
0.0066 (17)
0.0034 (17)
0.0128 (19)
0.0093 (19)
0.021 (2)
0.0267 (14)
0.0238 (13)
0.0255 (14)
0.0296 (17)
0.0157 (13)
0.0205 (17)
0.0167 (16)
0.0149 (17)
0.0137 (18)
0.029 (2)
0.032 (2)
0.010 (2)
−0.0096 (13)
−0.0109 (13)
−0.0258 (13)
−0.0131 (14)
−0.0016 (13)
0.0032 (15)
0.0071 (14)
−0.0007 (16)
0.0078 (18)
0.006 (2)
−0.0051 (18)
0.003 (2)
Geometric parameters (Å, °)
Cl1—C4
S1—O2
S1—O1
S1—N1
S1—C7
O3—N2
O4—N2
N1—C1
N1—H1
N2—C2
C1—C2
1.741 (4)
1.419 (3)
1.426 (3)
1.621 (3)
1.739 (4)
1.231 (3)
1.215 (3)
1.397 (4)
0.80 (3)
1.461 (4)
1.397 (4)
C1—C6
C2—C3
C3—C4
C3—H3
C4—C5
C5—C6
C5—H5
C6—H6
C7—H8
C7—H9
C7—H7
1.397 (5)
1.380 (5)
1.363 (4)
0.9300
1.368 (5)
1.375 (5)
0.9300
0.9300
0.9600
0.9600
0.9600
O2—S1—O1
O2—S1—N1
O1—S1—N1
O2—S1—C7
O1—S1—C7
N1—S1—C7
C1—N1—S1
C1—N1—H1
S1—N1—H1
O4—N2—O3
O4—N2—C2
O3—N2—C2
C2—C1—C6
C2—C1—N1
C6—C1—N1
C3—C2—C1
C3—C2—N2
C1—C2—N2
118.43 (17)
109.28 (17)
104.05 (17)
108.5 (2)
110.0 (2)
105.77 (19)
130.3 (3)
118 (3)
108 (3)
121.9 (3)
118.6 (3)
119.5 (3)
116.0 (3)
122.1 (3)
121.9 (3)
122.1 (3)
115.7 (3)
122.2 (3)
C4—C3—C2
C4—C3—H3
C2—C3—H3
C3—C4—C5
C3—C4—Cl1
C5—C4—Cl1
C4—C5—C6
C4—C5—H5
C6—C5—H5
C5—C6—C1
C5—C6—H6
C1—C6—H6
S1—C7—H8
S1—C7—H9
H8—C7—H9
S1—C7—H7
H8—C7—H7
H9—C7—H7
119.7 (3)
120.1
120.1
120.2 (3)
119.5 (3)
120.3 (3)
120.2 (3)
119.9
119.9
121.8 (3)
119.1
119.1
109.5
109.5
109.5
109.5
109.5
109.5
O2—S1—N1—C1
O1—S1—N1—C1
C7—S1—N1—C1
S1—N1—C1—C2
S1—N1—C1—C6
−37.6 (4)
−165.0 (3)
79.0 (4)
−161.2 (3)
21.0 (5)
O4—N2—C2—C1
O3—N2—C2—C1
C1—C2—C3—C4
N2—C2—C3—C4
C2—C3—C4—C5
163.9 (3)
−17.0 (4)
−0.1 (5)
−179.5 (3)
−1.7 (5)
sup-4
supplementary materials
C6—C1—C2—C3
N1—C1—C2—C3
C6—C1—C2—N2
N1—C1—C2—N2
O4—N2—C2—C3
O3—N2—C2—C3
1.3 (5)
−176.7 (3)
−179.3 (3)
2.7 (5)
−16.6 (4)
162.5 (3)
C2—C3—C4—Cl1
C3—C4—C5—C6
Cl1—C4—C5—C6
C4—C5—C6—C1
C2—C1—C6—C5
N1—C1—C6—C5
178.3 (3)
2.2 (6)
−177.8 (3)
−1.0 (6)
−0.7 (5)
177.2 (3)
Hydrogen-bond geometry (Å, °)
D—H···A
N1—H1···O3
D—H
0.80 (4)
H···A
2.03 (4)
D···A
2.631 (4)
D—H···A
131 (3)
C3—H3···O3i
0.93
2.59
3.417 (4)
148
ii
C5—H5···O2
C6—H6···O2
0.93
2.47
3.325 (5)
152
0.93
2.27
2.951 (5)
130
3.394 (5)
150
0.96
2.53
C7—H8···O3iii
Symmetry codes: (i) −x+3/2, y−1/2, −z+3/2; (ii) −x+1, −y+1, −z+2; (iii) −x+2, −y, −z+2.
sup-5
supplementary materials
Fig. 1
sup-6
supplementary materials
Fig. 2
sup-7