Academia.eduAcademia.edu

Resolver problemas para aprender sobre los modelos

2011, Revista Q

Esta investigacion diseno y probo una estrategia didactica basada en la resolucion de problemas practicos contextualizados usando la modelizacion experimental, con el objetivo de influir positivamente en el conocimiento acerca de la naturaleza de los modelos de los estudiantes de undecimo grado de un colegio publico de Medellin, Colombia. Esta investigacion tuvo un enfoque cuasi experimental con un grupo experimental, un grupo control y, una posprueba aplicada a ambos grupos. Los resultados muestran que la mayor diferencia entre los dos grupos se presento en su conocimiento sobre las caracteristicas de un modelo, el uso general de los mismos, y sus usos explicativos y predictivos, y que, el menor porcentaje de respuestas correctas en ambos grupos fue obtenido al indagar acerca del conocimiento sobre las caracteristicas de un modelo. Los resultados del estudio ademas muestran desarrollos significativos del grupo experimental en relacion con el grupo control en el conocimiento global ...

Vol. 6 No. 11 | Julio - Diciembre de 2011 | Medellín - Colombia | ISSN: 1909-2814 RESOLVER PROBLEMAS PARA APRENDER SOBRE LOS MODELOS Autor José Joaquín García García ([email protected]) Edilma Rentería Rodríguez ([email protected]) Título en inglés Problem resolution to learn about models. Tipo de artículo Artículo de investigación académica, científica y tecnológica Eje temático Didáctica Resumen Esta investigación diseñó y probó una estrategia didáctica basada en la resolución de problemas prácticos contextualizados usando la modelización experimental, con el objetivo de influir positivamente en el conocimiento acerca de la naturaleza de los modelos de los estudiantes de undécimo grado de un colegio público de Medellín, Colombia. Esta investigación tuvo un enfoque cuasi experimental con un grupo experimental, un grupo control y, una posprueba aplicada a ambos grupos. Los resultados muestran que la mayor diferencia entre los dos grupos se presentó en su conocimiento sobre las características de un modelo, el uso general de los mismos, y sus usos explicativos y predictivos, y que, el menor porcentaje de respuestas correctas en ambos grupos fue obtenido al indagar acerca del conocimiento sobre las características de un modelo. Los resultados del estudio además muestran desarrollos significativos del grupo experimental en relación con el grupo control en el conocimiento global sobre la modelización y los modelos. Abstract This quasi-experimental study designed and tested a didactic strategy based on contextualized, practical problem-solving through experimental modeling. In order to discover how to positively influence students’ knowledge about the nature of models, researchers administered a post-test to one experimental and one control group of 11thgrade students at a public school in Medellín, Colombia. The analysis of the post-test data indicated that the major differences between the experimental and control groups surfaced on their knowledge of the model characteristics and their general, explicative and predictive uses of different models. The analysis also found that the lowest percentage of correct answers appeared when asking what students knew about the characteristics of a specific model. Overall, findings demonstrated significant developments on the experimental group in their global knowledge of modeling and the models themselves. 1 Vol. 6 No. 11 | Julio - Diciembre de 2011 | Medellín - Colombia | ISSN: 1909-2814 Palabras clave Didáctica, educación, estrategia, modelos, problemas. Key words Didactic, education, models, problems, strategy. Datos de la investigación, a la experiencia o la tesis Este texto surge a partir de la investigación “Los Trabajos Prácticos fundamentados en el proceso de Modelización y orientados a la Resolución de Problemas “, desarrollada en el marco de la Maestría en Educación en Ciencias Experimentales y tuvo financiación de la Universidad de Antioquia. Realizada durante Junio de 2006 y Julio de 2009. Trayectoria profesional y afiliación institucional del autor o los autores José Joaquín García García Licenciado en Biología y Química. Magíster en Docencia de la Química, Magíster en Didáctica de las Ciencias Experimentales y Doctor en Didáctica de las Ciencias Experimentales por la Universidad de Granada, actualmente es docente de la Universidad de Antioquia. Edilma Rentería Rodriguez Licenciada en Matemáticas y Física. Especialista en Evaluación Pedagógica. Magíster en educación énfasis Ciencias Experimentales Coinvestigadora del grupo de Investigación Innovaciencia de la Universidad de Antioquia. Referencia bibliográfica completa García, J. y Rentería, E. (2011). Resolver problemas para aprender sobre los modelos. (Artículo de investigación académica, científica y tecnológica) Revista Q, 6 (11), 23, juliodiciembre. Disponible en: http://revistaq.upb.edu.co Cantidad de páginas 23 páginas Fecha de recepción y aceptación del trabajo 14 de septiembre de 2011 – 30 de octubre de 2011 Aviso legal Todos los artículos publicados en REVISTA Q se pueden reproducir en otros medios de comunicación sin ánimo de lucro, siempre y cuando se cite la fuente completa: tanto los datos del autor del artículo como de la publicación. En medios con ánimo de lucro se debe contar con la autorización expresa del autor; en tal caso se debe citar la fuente completa de la publicación original (incluyendo los datos del autor y los de la Revista). 2 Vol. 6 No. 11 | Julio - Diciembre de 2011 | Medellín - Colombia | ISSN: 1909-2814 Introducción La ciencia hoy se entiende como un proceso en el cual se construyen modelos acerca de los fenómenos, así que es interesante, determinar de que maneras se puede mejorar el conocimiento de lo estudiantes sobre la naturaleza de dichos modelos. Esto con el fin de empoderarlos para que estén en capacidad de construirlos, criticarlos, y estudiarlos, es decir, de llevar a cabo procesos de aprendizaje más acordes con aquellos que intervienen en la producción de conocimientos científicos. El objetivo del estudio aquí presentado fue diseñar y probar una estrategia didáctica basada en la resolución de problemas abiertos, orientada por procesos de modelización experimental y enmarcada en el enfoque de aprender a construir modelos, con el fin de determinar su eficacia para mejorar los conocimientos de los estudiantes acerca de la naturaleza de los modelos científicos. La naturaleza de los modelos y la modelización Un modelo es una estructura fruto de procesos de abstracción precisa de fenómenos reales múltiples y complejos, que usa datos sobre procesos, funciones y objetos (Rubinstein y Firstenberg, 1996). Igualmente, un modelo se puede definir como una construcción o estructura imaginaria, hipotética y alternativa, arbitraria y simplificada de objetos o procesos (situación empírica) que pueden o no pertenecer al mundo natural, y que, constituye un simulacro de los mismos, elaborado con el fin de investigarlos y estudiarlos (Van Dalen y Meyer, 1971; Moles, 1975; Castro, 1992). Por otra parte, construir un modelo, es decir modelizar, implica la idealización de la realidad (Giere, 1992; Concari, 2001; Weisberg, 2006; Strevens, 2008; Adúriz e Izquierdo, 2008). Dicha idealización provee reglas generales para explicar las situaciones que incluyan lo modelado. Para Gravemeijer (1997) modelizar es traducir una situación real a términos matemáticos y conceptos con estructura, e incluye además el organizar la información proveniente de un problema. Según Gilbert y Boulter (1998) el proceso de modelización; puede concebirse como un proceso con dos polos y una fase intermedia. En el primer polo, estarían las acciones correspondientes a describir o simplificar la complejidad de los fenómenos y a visibilizar constructos abstractos, con el objeto de comprenderlos mejor. En el otro extremo, la modelización implicaría la realización de acciones tendientes a formular explicaciones y predicciones sobre los fenómenos estudiados. Estos mismos autores, conciben a la modelización como un proceso que tiene por objetivos explicar y predecir el comportamiento de los fenómenos usando diversos tipos de representación (ver figura1). La construcción del concepto de modelo Según Lehrer (1994) y Justi y Gilbert (2002) la construcción del concepto de modelo por parte de los sujetos trátese de estudiantes, de docentes o de científicos en activo requiere del 3 Vol. 6 No. 11 | Julio - Diciembre de 2011 | Medellín - Colombia | ISSN: 1909-2814 cumplimiento de los siguientes compromisos epistemológicos: Separación entre fenómeno y noúmeno comprendiendo que la representación puede ser o no similar, pero no igual a lo representado. La construcción de una representación implica desarrollar y desplegar un sistema formal. La comprensión de la posibilidad de hacer predicciones y señalar comportamientos nuevos en un sistema al desarrollar representaciones. Otros autores argumentan que el conocimiento procedimental, epistémico y conceptual sobre los modelos, que deben tener los estudiantes (Grossilight, 1991; Crawford y Cullin, 2002 y 2004), incluye los siguientes aspectos: Habilidad para identificar y clasificar los modelos. Reconocimiento de las características y de las funciones de los modelos. Capacidad para usar y construir modelos sobre diferentes fenómenos. Uso y reelaboración de modelos en el proceso de investigación. Reconocimiento de la variabilidad temporal de los modelos científicos. Reconocer y usar múltiples modelos para explicar un fenómeno. Criterios para seleccionar variables a incluir al construir un modelo. Figura 1. Papel y función de los modelos (Gilbert y Boulter, 1998). 4 Vol. 6 No. 11 | Julio - Diciembre de 2011 | Medellín - Colombia | ISSN: 1909-2814 Las ideas de los docentes sobre los modelos Según varios autores (Lederman 1992; Khalick y Lederman, 2000; Gilbert y Reiner, 2000; Justi y Gilbert, 2001, De Jong y Van Driel, 2001; Justi, 2002; Crawford y Cullin, 2004) los docentes presentan un grupo de ideas sobre la naturaleza y las funciones de los modelos. En primer lugar, los profesores aunque valoran la contribución de los modelos en la educación científica no creen en su papel para mejorar el aprendizaje de las ciencias. En segundo lugar, los docentes comprenden deficientemente el papel de los modelos en la ciencia, y el desarrollo del pensamiento experimental. En tercer lugar, los docentes no poseen el conocimiento ni las habilidades para enseñarles a hacer ciencia a sus estudiantes construyendo con ellos modelos. Otros autores (Verloop, 1999, 2002; Smith y Finegold, 1995; Islas y Pesa, 2003; Justi y Gilbert 2001; Crawford y Cullin, 2004;) han reportado que los docentes presentan las siguientes concepciones sobre los modelos: Es difícil usar sus formalizaciones en la explicación de fenómenos. Es complejo distinguir entre ellos y la realidad. Las ideas de los estudiantes sobre los modelos no son importantes. Se usan como analogías para comprender, comunicar, describir, ejemplarizar y explicar los contenidos, pero no para predecir e investigar. Pueden existir varios modelos sobre un mismo fenómeno. Deben ser cercanos a la realidad. Son generados por el pensamiento humano. Los modelos científicos, históricos, curriculares y de enseñanza son diferentes. Es necesario un currículo basado en la enseñanza y elaboración de modelos, aunque esto no se haga. A pesar de estas concepciones, los docentes siguen enseñando de forma tradicional, sin debatir ni construir modelos en su clases (Justi, 2002), y, creyendo que los modelos curriculares son simplificaciones de los científicos e históricos, que se usan para ayudar a comprender a los estudiantes (De Jong y Van Driel, 2001). Ideas de los estudiantes acerca de los modelos De otro lado, varios autores (Gilbert y Osborne, 1980; Martinand, 1986; Grossligt, 1991; Ingham y Gilbert, 1991; Palmer, Pilles, Lehrer y Schauble, 1997; Chittlebrough y Tapelo, 2002; Alurralde y Salinas, J. 2002; Treagust, Chittleborough y Mamiala 2002; Crawford y Cullin, 2004) han reportado las siguientes creencias de los estudiantes acerca de la naturaleza de los modelos científicos: Epistemología realista ingenua: el modelo y el fenómeno ontológico tiene una relación de correspondencia idéntica, así el fenómeno no sea visible, el modelo es su réplica o copia física exacta. Interpretación superficial, reduccionista e irracional de los modelos, olvidando sus 5 Vol. 6 No. 11 | Julio - Diciembre de 2011 | Medellín - Colombia | ISSN: 1909-2814 interrelaciones, condiciones y limitaciones. Confusión entre modelos, teorías científicas y leyes científicas. Los modelos son absolutos, aislados de otros, y sin aplicación en otros contextos y situaciones. La multiplicidad de los modelos y de sus representaciones, es útil para abarcar detalles de un problema y remplazar modelos ineficaces. Su uso es explicativo como herramientas de descripción y explicación, pero no predictivas o investigativas. Mutan con los cambios en la ciencia y el pensamiento científico. Finalmente es importante decir que los estudiantes tienen muy pocas oportunidades para usar los modelos de forma cualitativa, interpretativa, razonada y predictiva (Stephens, 1999; Chittlebrough y Tapelo, 2002) Enfoques usados para incorporar los modelos y la modelización en el aula: La elaboración de modelos es decir la modelización permite construir el significado de los fenómenos científicos y por la tanto desarrollar el pensamiento científico y matemático (Jiménez y Perales, 2002; Treagust, Chittleborough y Mamiala, 2002). Es por esto, que tiene un papel central en el campo de la enseñanza de las ciencias. Por ejemplo para Hodson (1992) y Justi y Gilbert (2002) la modelización es central en el aprender ciencias, el aprender sobre las ciencias y en aprender a hacer la ciencia. Así, se aprende ciencia al reconocer y analizar la naturaleza de los modelos científicos de complejidad creciente, relacionándolos con los modelos propios, y usándolos para visualizar conceptos abstractos (Brown y Clement, 1989; Clement, 1993; Frederiksen, Whithe, y Gutwill, 1999; Barab, Hay, Barnett y Keating 2000; Jiménez y Perales, 2002; Treagust, Chittleborough y Mamiala, 2002). Igualmente, al estudiar la importancia de los modelos y su devenir histórico, sus representaciones, marcos filosóficos, propósitos investigativos, dinámicas de construcción, y su rol en la validación y expresión de resultados científicos se aprende sobre la ciencia (Hodson, 1992; Justi y Gilbert, 2002). Además, al estudiar su proceso de creación y desarrollo, expresión, simulación y prueba, chequeo, valoración y evaluación crítica de sus alcances y sus limitaciones, (uso, consistencia y validez predictiva), articulando intereses, pensamiento y creatividad, se aprende a hacer la ciencia. (Martinand, 1986, Carey, 1992; Nersessian,1992; Giere, 1997;1992; Gilbert, et al 1998; Crawford y Cullin, 2004; Harrison y Treagust, 2000). Los principales enfoques que hasta ahora se han propuesto para introducir la modelización y los modelos al aula son los siguientes: Enseñanza expositiva de modelos: en este enfoque los docentes exponen los modelos 6 Vol. 6 No. 11 | Julio - Diciembre de 2011 | Medellín - Colombia | ISSN: 1909-2814 especificando sus objetivos, identificando sus objetos, propiedades, interacciones y relaciones estructurales entre éste y el fenómeno y construyendo conclusiones (Felipe y Gallareta, 2005). Enseñar el uso de modelos: este enfoque usa los modelos en el aula para dar significado a los fenómenos, comprenderlos, explicarlos y predecir su comportamiento; probando dichos modelos experimentalmente y aplicándolos en contextos y objetivos diferentes a los utilizados cuando fueron enseñados inicialmente (Halloun, 1996; Duschl, 1997; Millar y Osborne, 1998; García Izquierdo, 2000; Justi y Gilbert, 2002). Aprender a revisar modelos: en este enfoque los estudiantes revisan modelos de diferente complejidad y abstracción para modificarlos (Stewart, Hafner, Johnson y Finkel, 1992), evaluando sus cualidades funcionales, eficacia descriptiva, poder explicativo y predictivo, límites y correspondencia con otros, además de estudiar los problemas que dichos modelos resolvieron a lo largo de la historia de las ciencias (Frederiksen, et al, 1999; Justi, 2000; Justi y Gilbert, 2002; Treagust, Chittleborough y Mamiala, 2002) Aprender a construir modelos: los estudiantes en este enfoque se enfrentan a la construcción de sus propios modelos, iniciando con modelos conocidos parcialmente y luego si construyendo progresivamente modelos más dinámicos y complejos sobre fenómenos desconocidos. Además, ellos proponen problemas para simular, experimentar, y contrastar las predicciones y explicaciones de dichos modelos (Raghavan, y Glaser, 1995; Jackson, et al.1995; Barnea y Dori, 1996; Boulter y Buckley, 2000; Justi y Gilbert, 2002; Felipe, Gallarreta y Merino, 2005). Por otra parte, para Felipe, Gallarreta y Merino (2005) la modelización en las aulas debe acompañarse de la argumentación empírica y teórica, el trabajo colaborativo, criterios objetivos, y, una actitud de indagación fiel a la información. Para los mismos autores, el aprendizaje puede ser evaluado teniendo en cuenta la calidad de los modelos elaborados y de sus representaciones, el nivel de interpretación de los mismos, la calidad de las descripciones, explicaciones y predicciones elaboradas a partir de dichos modelos, la destreza para revisarlos y evaluarlos, además de la comprensión de los procesos de modelización. La modelización y la resolución de problemas Muchos autores han propuesto la inclusión del proceso de la resolución de problemas ya sean estos presentados en forma de enunciados lingüísticos o planteados como situaciones reales, para que dicho proceso sirva como el elemento generador o iniciador de la introducción de la modelización en las aulas de ciencias (Palmer, Pilles, Lehrer y Schauble, 1997; Sánchez y García, 1999; Rodríguez y Fernández, 1995; Justi y Gilbert, 2002). En este estudio se entiende un problema como: “una situación que presenta una oportunidad de poner en juego los esquemas de conocimiento, que exige una solución que aún no se tiene y en la cual se deben hallar interrelaciones expresas y tacitas entre un grupo de factores o variables, búsqueda que implica la reflexión cualitativa, el cuestionamiento de la propias ideas, la construcción de nuevas relaciones, esquemas y modelos 7 Vol. 6 No. 11 | Julio - Diciembre de 2011 | Medellín - Colombia | ISSN: 1909-2814 mentales, es decir, y en suma, la elaboración de nuevas explicaciones que constituyen la solución al problema ….que significa reorganización cognitiva, involucramiento personal … y desarrollo de nuevos conceptos y relaciones” (García, 2003 p. 50) Así mismo, en este trabajo se concibe a las situaciones problemáticas para ser propuestas a los estudiantes en las aulas de clase de ciencias como “situaciones objetivas novedosas y reales con elementos desconocidos que generen un estado de dificultad y de necesidad intelectual con preguntas y deseos de responderlas…es decir, que provoquen… el transgredir los límites del conocimiento exigiendo su interpretación (García, 2003 p. 59) La relación entre los procesos de modelización y de resolución de problemas radica en que, la resolución de los problemas requiere de su comprensión y reformulación a través de la creación, modificación y adaptación de modelos físicos, semánticos y matemáticos útiles para seleccionar, organizar, transformar, interpretar, comprender y utilizar su información, y así, poder proponer estrategias de resolución (García, Rentería, Duque, Villa, y Gutiérrez, 2011). Esto es así porque la habilidad de modelización y el conocimiento sobre la naturaleza de los modelos, facilita establecer las relaciones necesarias entre los elementos del problema (datos, incógnitas, condiciones y contexto) para crear diversos modelos con significado sobre el mismo. Es importante decir que las situaciones problema propuestas a los estudiantes de ciencias, deben tener un nivel de dificultad adecuado a su desarrollo intelectual y a su grado académico. Por último es importante anotar que, la inclusión de los procesos de modelización en el marco de la resolución de problemas como procesos centrales en la enseñanza de las ciencias, atiende una transformación del viejo objetivo de la enseñanza de enseñar para aprender los contenidos propios de las disciplinas científicas, en el nuevo objetivo de enseñar para desarrollar las formas de pensamiento propias de cada una de las disciplinas, habilitando a los estudiantes para construir nuevos conocimientos en dichas disciplinas. Metodología Tipo de modelo investigativo Esta investigación es de tipo cuasi experimental con un grupo experimental, un grupo control y una posprueba aplicada simultáneamente a ambos grupos. En el grupo experimental se aplicó una estrategia didáctica experimental alternativa basada en la solución de problemas y la modelización experimental para la enseñanza de la termodinámica, mientras que, en el grupo control se utilizó una estrategia convencional fundamentada en métodos expositivos, conferencias magistrales y en memorización de contenidos. Esto se hizo durante dos meses. Para la recolección de la información se uso una prueba de 5 preguntas con un formato de selección múltiple, acerca de los conocimientos sobre la naturaleza de los modelos. Esta prueba hace parte de un test más amplio usado para medir la capacidad global básica de modelización en estudiantes de undécimo grado, que ha sido sometido a procesos de validación externa por examen ante pares, y que presenta un nivel de confiabilidad media aceptable con un alfa de 8 Vol. 6 No. 11 | Julio - Diciembre de 2011 | Medellín - Colombia | ISSN: 1909-2814 Crombach de 0,71. (Ver anexo 1). Muestra La muestra en este estudio estuvo representada por 58 estudiantes de undécimo grado distribuidos en 2 grupos de 29 estudiantes. Los estudiantes de ambos grupos pertenecen a la Institución Educativa San Luis Gonzaga, ubicada en el área metropolitana de la ciudad de Medellín del municipio de Copacabana en el departamento de Antioquia, en Colombia. Ambos grupos provienen de niveles socioeconómicos bajos. Los promedios de edad en los grupos control y experimenta son de 17,2 y 17,37 años, respectivamente. Los dos grupos reciben el mismo número de horas de clase de Física a la semana. Hipótesis de investigación La hipótesis propuesta en este estudio fue la siguiente: “Una estrategia didáctica basada en la metodología de enseñanza por resolución de problemas, prácticos contextualizados como pequeñas investigaciones, usando modelización experimental, influye positivamente en el conocimiento sobre los modelos de los estudiantes de undécimo grado” Variables a estudiar Variable manipulada:  Estrategia didáctica: Los valores de esta variable fueron dos. Un valor es la estrategia didáctica convencional basada en la generación de procesos de aprendizaje por transmisión expositiva y asimilación memorística de contenidos, que se le aplica al grupo control. El otro valor es la estrategia de enseñanza experimental fundamentada en la resolución de problemas prácticos a través de la construcción de modelos experimentales, que se le aplica al grupo experimental. Estrategia didáctica convencional: Esta estrategia didáctica tradicional está basada en el uso de conferencias cuyos contenidos deben ser memorizados luego por los el estudiante. Así el estudiante tiene en este tipo de estrategia un papel de receptor pasivo de los conocimientos que le va presentado el profesor, para ser evaluados luego a través de pruebas objetivas. La secuencia de una clase con este tipo de estrategia incluye las siguientes fases: Motivación: consiste en contextualizar los contenidos a enseñar, relacionándolos con los conocimientos y experiencias de los alumnos. Introducción de los nuevos conceptos: dicha introducción se hace a partir de definiciones 9 Vol. 6 No. 11 | Julio - Diciembre de 2011 | Medellín - Colombia | ISSN: 1909-2814 casi siempre de carecer operativo, clasificaciones, y uso de ejemplos o representaciones de tipo descriptivo. Articulación de los nuevos conceptos con otros ya conocidos: así se ubican en dichos conceptos en contextos teóricos para constituir ecuaciones, leyes, o teorías. Aplicación: esta fase propone la resolución ejercicios cuantitativos de lápiz y papel para aplicar los conceptos. Dicha resolución consiste en la aplicación de fórmulas, algoritmos y ecuaciones (modelos simbólicos matemáticos) con el fin de obtener la respuesta numérica al ejercicio. Además en esta fase se incluye la realización de experiencias de laboratorio demostrativas para comprobar en la práctica los conceptos enseñados. Estrategia didáctica experimental alternativa La estrategia didáctica alternativa propone problemas prácticos, abiertos y contextualizados, para ser resueltos en clase usando la modelización experimental. Los problemas propuestos en esta estrategia pueden ser abordadas, con una metodología cualitativa e investigativa y, siempre requieren de la construcción de un montaje experimental (modelo experimental) para su resolución. Es en la construcción de dicho modelo experimental y, de modelos matemáticos que formalizan las relaciones halladas luego de analizar los experimentales, donde la modelización tiene un papel central. Para la resolución de dichos problemas se plantea al estudiante la siguiente guía: Entender el problema, lo sabido y no, y sus condiciones de resolución. Establecimiento de lo relevante y lo necesario para solucionar el problema. Re-escritura y re-representación del problema usando esquemas. Determinación de parámetros o límites parta solucionar el problema Construir hipótesis usando marcos teóricos. Diseñar un plan de resolución usando un montaje físico experimental, para probar las hipótesis, usando los siguientes pasos: Establecer la información que se puede obtener desde el experimento. Identificar las variables experimentales a incluir en el modelo y sus unidades, además de determinar aquellas extrañas y como controlarlas. Representar las relaciones supuestas entre las variables. Construir el modelo físico experimental y chequear su idoneidad. Examinar si el modelo sirve para obtener la información requerida Experimentar con el modelo de acuerdo con el diseño realizado. Formular un modelo matemático o verbal sobre las relaciones encontradas entre las variables estudiadas, lo que requiere los siguientes pasos: Determinar su objetivo. Elaborar y ajustar un modelo gráfico que relacione los datos de las variables. Enunciar verbalmente las relaciones halladas entre las variables (elaborar un modelo verbal). Contrastar dichas relaciones con la hipótesis planteada. 10 Vol. 6 No. 11 | Julio - Diciembre de 2011 | Medellín - Colombia | ISSN: 1909-2814 Expresar matemáticamente dicha relación. Proponer una respuesta final al problema abordado. Examinar la eficacia para resolver el problema de la respuesta hallada. Variables observadas  Variable conocimientos acerca de la naturaleza de los modelos Desde la indagación científica un modelo puede ser definido como una representación concreta o abstracta de un fenómeno natural o de una teoría. De esta manera, un modelo se puede representar utilizando las palabras, expresiones matemáticas, graficas, o materiales concretos. Dicha representación se caracteriza porque no es una réplica exacta de la situación que se representa. Un buen modelo muestra, describe y establece relaciones de contenido o de forma con la situación que represente, pero nunca es igual a la situación representada. En el proceso de solución de problemas prácticos los modelos pueden ser utilizado para representar el fenómeno en estudio (Castro, 1992) y de esta manera permitir su manipulación. Así utilizando el modelo, el investigador puede describir, explicar o predecir el comportamiento de un fenómeno. En la solución de problemas los modelos también pueden ser utilizados como forma de comunicación, de esta manera por medio de ellos se pueden expresar los hallazgos de la ciencia. Las premisas enunciadas en el párrafo anterior, fueron tenidas en cuenta para establecer cada uno de los indicadores correspondientes a esta variable referida al conocimiento de la naturaleza de los modelos. De acuerdo con lo aquí expresado, para estudiar esta variable se tuvieron en cuenta los siguientes indicadores: Uso explicativo de los modelos (UE), Uso predictivo de los modelos (UP), Selección del mejor modelo (MM), Características de los modelos (CM), Uso general de los modelos (UM) (ver tabla 1). A continuación se describen cada uno de ellos: Indicadores Uso explicativo de los modelos Uso predictivo de los modelos Selección del mejor modelo Reconocimiento de las características de los modelos Reconocimiento del uso general de los modelos (UE) (UP) (MM) (CM) (UM) Tabla 1. Indicadores variable conocimientos sobre la naturaleza de los modelos Uso explicativo de los modelos (UE): un modelo que representa un fenómeno puede ser utilizado para explicar el comportamiento de un determinado fenómeno. Para evaluar esta indicador se representa un fenómeno mediante un modelo gráfico y el evaluado debe escoger la opción que mejor explique el comportamiento del fenómeno usando la información aportada 11 Vol. 6 No. 11 | Julio - Diciembre de 2011 | Medellín - Colombia | ISSN: 1909-2814 por el modelo. Uso predictivo de los fenómenos (UP): un modelo que representa un fenómeno puede ser utilizado para pronosticar el comportamiento que tendrá dicho fenómeno. Para evaluar este indicador se suministra al evaluado un modelo gráfico que relaciona dos variables. El estudiante debe determinar el comportamiento que adquiere la variable dependiente bajo nuevas condiciones de la variable independiente. Selección del mejor modelo (MM): un modelo no es una réplica en menor escala del fenómeno en estudio. Es decir, un modelo no incluye todos los aspectos del fenómeno modelado, pero si debe permitir establecer relaciones de contenido, y de forma (o según el propósito) con la situación representada. Para evaluar este indicador el evaluado debe seleccionar desde varios modelos analógicos aquel que mejor represente el fenómeno. Características de los modelos (CM): algunas de características esenciales de un modelo son las siguientes: los modelos no son una copia exacta del fenómeno que representan, la representación de un modelo puede ser concreta o abstracta, y pueden existir muchos tipos de modelos que representen la misma situación. Para evaluar este indicador se solicita al evaluado que escoja desde un grupo de opciones la que mejor describa las características de un modelo. Uso general de los modelos (UM): los modelos en la indagación científica son usados para muchos aspectos, entre ellos para representar una parte del fenómeno estudiado, lo que permite una mejor comprensión y explicación del mismo. Para evaluar este indicador se solicita al evaluado que escoja la opción que mejor represente el uso que se les da a los modelos en la indagación científica. Resultados de la aplicación experimental de la estrategia didáctica  Variable conocimiento a cerca de la naturaleza de los modelos. A continuación se presentan inicialmente los resultados obtenidos por los dos grupos (control y experimental) en cada uno de los indicadores utilizados para medir la variable “conocimiento sobre la naturaleza de los modelos”: Luego se presenta el resultado referido a la comparación global de los resultados obtenidos por el grupo control y el grupo experimental. en los conocimientos acerca de la naturaleza de los modelos. Uso explicativo de los modelos (UE) Los resultados indican que el 29% del grupo control pueden usar el modelo para explicar un fenómeno, y que el 71% de ellos no lo puede hacer (gráfico 1). Por otra parte, también muestran como el 46% del grupo experimental, es capaz de usar el modelo para dar explicaciones a un fenómeno (gráfico 2), pero que, el 54% de dicho grupo no lo hace. Las diferencias entre los dos grupos puede deberse a que el objetivo implícito de uso de los modelos era diferente en el grupo control y en el grupo experimental. Así, al resolver problemas cerrados y cuantitativos el grupo control usó los modelos matemáticos para conseguir datos y no para dar explicaciones al comportamiento de los fenómenos, mientras que al abordar problemas prácticos y abiertos, el grupo experimental usó modelos experimentales para recolectar información y 12 Vol. 6 No. 11 | Julio - Diciembre de 2011 | Medellín - Colombia | ISSN: 1909-2814 explicar los fenómenos. De otro lado, el alto porcentaje del grupo experimental que no usa los modelos para explicar los fenómenos, puede deberse a la dificultad de la tarea debido a la inexperiencia de los estudiantes en este tipo de tareas, es decir, a que el uso de los modelos con fines explicativos no es común en las aulas de ciencias (Justi, 2006). Desde una perspectiva auto crítica, igualmente es posible también atribuir estos resultados del grupo experimental al hecho de que en la estrategia didáctica alternativa no se contemple la construcción e interpretación de modelos que incluyan ilustraciones (como se propone en la prueba) si no solo de modelos físicos experimentales, semánticos de carácter lingüístico, o de tipo matemático simbólico. Uso predictivo de los modelos Los resultados muestran que el 21% del grupo control pudo usar un modelos para generar predicciones sobre el comportamiento de un fenómeno, pero que el 79% de dicho grupo no pudo hacerlo (gráfico 1). Así mismo, los resultados muestran como el 64% del grupo experimental estuvo en capacidad de usar un modelo para elaborar predicciones, pero que en el 36% de éste grupo no se presentó dicha capacidad (gráfico 2). Las diferencias entre los dos grupos pueden deberse a que mientras el grupo control usó los modelos matemáticos en la resolución de problemas cerrados, reemplazando mecánicamente los datos suministrados por éste en dichos modelos (ecuaciones) sin reflexionar sobre el comportamiento que tendría un fenómeno en ciertas condiciones, el grupo experimental al resolver problemas abiertos construyó modelos experimentales para recolectar información y hacer generalizaciones sobre el comportamiento del fenómeno, útiles para predecir su comportamiento bajo ciertas condiciones. Igualmente, estos resultados del grupo experimental pueden estar relacionados con la exigencia de la estrategia didáctica alternativa de construir una representación gráfica que represente las relaciones halladas entre las variables luego de llevar a cabo un proceso experimental, porque este indicador es evaluado a través de la interpretación de una representación gráfica que muestra una relación entre dos variables físicas, (presión y temperatura). Además, estos resultados pueden estar relacionados con la baja frecuencia con la cual las gráficas cartesianas son usadas en los libros de texto o en las aulas de clase (García y Perales, 2007), ya que el modelo utilizado en la prueba para solicitar la predicción es una gráfica de este tipo. Selección del mejor modelo (MM) Los datos indican que el 46% del grupo control identifican desde un grupo de modelos el mejor modelo para representar un enunciado de acuerdo a los parámetros establecidos en el, y que, el 54% de dicho grupo no lo hace (gráfico 1). Por otro lado, estos resultados muestran como el 64% del grupo experimental puede identificar el mejor modelo para representar un enunciado, pero que el 36% de éste grupo no logra hacerlo (gráfico 2). La diferencia entre los dos grupos puede ser debida de nuevo a que mientras el grupo control usó modelos matemáticos preestablecidos suministrados por el profesor o los textos para la solución de problemas cerrados, sin hacer necesaria la evaluación del modelo, por el contrario, el grupo experimental construyó modelos experimentales para la resolución de problemas prácticos, debiendo evaluar tanto su estructura como sus formas de representación. Es decir, el grupo 13 Vol. 6 No. 11 | Julio - Diciembre de 2011 | Medellín - Colombia | ISSN: 1909-2814 experimental tuvo que establecer relaciones de correspondencia entre los elementos de los modelos diseñados y las condiciones y elementos presentados por el problema, para determinar cuál sería el mejor modelo a utilizar. Por otra parte el amplio porcentaje de estudiantes que en los dos grupos no es capaz de realizar la tarea propuesta en este indicador, puede deberse a que los modelos ofrecidos en la prueba y desde los cuales debe ser seleccionado el que mejor represente un enunciado, son ilustraciones, ya que este tipo de modelo no es propuesto explícitamente para ser utilizado ni en la estrategia alternativa ni en la estrategia convencional, pues en la estrategia convencional se privilegia el uso de modelos de carácter simbólico como en el caso de las formalizaciones matemáticas, mientras que en la estrategia alternativa se propone explícitamente sólo el uso y la construcción de modelos físicos como montajes experimentales, de modelos semánticos como enunciados lingüísticos, de modelos gráficos analógicos y de los modelos matemáticos. 90 82 79 Porcentaje 80 70 71 71 54 60 Correcto 46 50 Incorrecto 40 29 29 30 21 18 20 10 0 UE UP MM CM UM Gráfico 1. Distribución porcentual del grupo de estudiantes control de acuerdo al uso de los conceptos básicos sobre naturaleza de los modelos. 14 Vol. 6 No. 11 | Julio - Diciembre de 2011 | Medellín - Colombia | ISSN: 1909-2814 80 71 Porcentaje 70 64 60 50 64 54 54 46 46 Correcto 36 40 36 29 Incorrecto 30 20 10 0 UE UP MM CM UM Gráfico 2. Distribución porcentual del grupo de estudiantes experimental de acuerdo al uso de los conceptos básicos sobre naturaleza de los modelos. Por otra parte, la selección del mejor modelo en la pregunta utilizada para examinar este indicador, exige de la conversión de una representación formulada en un registro de lengua natural (enunciado) en una representación que usa como como registro la ilustración, porque este tipo de conversiopnes entre reprentaciones semióticas científicas expresadas en registros diferentes no es común en las clases de ciencias ( García, 2005). Características generales de los modelos (CM). Los resultados muestran que el 18% del grupo control identifica las características generales de un modelo, y que, el 82% de dicho grupo no lo hace (gráfico 1). Igualmente, muestran que el 54% del grupo experimental reconoce las características generales de un modelo, pero que el 46% de este grupo no las reconoce (gráfico 2). Estas diferencias pueden explicarse porque el grupo control al usar sólo modelos matemáticos, o lingüísticos, lo hace como si estos fueran representaciones únicas invariantes del fenómeno; mientras que el grupo experimental, los considera como el fruto de diseñar y probar modelos experimentales y no como copias de lo modelado. Igualmente, el que un alto porcentaje de estudiantes en ambos grupos consideren que un modelo es una réplica exacta del fenómeno estudiado puede deberse a la ausencia de actividades propias del proceso de construcción de modelos en las aulas de clase. Aunque es importante tener en cuenta que dicho resultado que denota la persistencia de una epistemología realista ingenua también han sido reportado por otros investigadores ya citados en este texto Gilbert y Osborne, 1980; Martinand, 1986; Grossligt, 1991; Ingham y Gilbert, 1991). Igualmente, estos resultados pueden originarse en el hecho de que a los modelos la mayoría de las veces se les presente como realidades dogmáticas, definitivas y cerradas, directamente visibles sin usarlos en clase como construcciones hipotéticas y heurísticas (Martinand, 1986; Anderson y Mitchener, 1994). Este 15 Vol. 6 No. 11 | Julio - Diciembre de 2011 | Medellín - Colombia | ISSN: 1909-2814 último resultado concuerda con los obtenidos en otras investigaciones realizadas con estudiantes de secundaria (Treagust, Chittlebrough, y Mamiala, 2002). En términos generales, los resultados encontrados permiten evidenciar que la menor diferencia entre los grupos se encontró en el indicador selección del mejor modelo, que la mayor diferencia entre los dos grupos se presentó en los indicadores: características de un modelo, uso general de los modelos, y, usos explicativos y predictivos de los modelos, y que, el indicador con el menor porcentaje de respuestas correctas fue el de determinación de las características de un modelo. Dichos resultados pueden deberse a que la estrategia convencional tradicional de enseñanza sólo ofrece oportunidades para utilizar los modelos como herramientas auxiliares para describir estructuras y relaciones (como representaciones de ejemplo) o, para explicar expositivamente las teorías científicas (como demostraciones). Estos resultados coinciden con otras investigaciones en las cuales se afirma que los modelos no son usados en la mayoría de aulas de ciencias en las que se utiliza la enseñanza convencional, como herramientas de predicción y correlación con poder predictivo y de explicación acerca del fenómeno, (Bushan y Rosenfeld, 1995; Palmer, Pilles, Lehrer y Schauble, 1997). Así mismo, y por el contrario los mismos resultados pueden atribuirse al uso explicativo, predictivo y generalizador, dado a los modelos por el grupo experimental, que contrasta con el uso mecánico y formalista que hizo de ellos el grupo control. Conocimientos globales sobre la naturaleza de los modelos La comparación de los resultados globales obtenidos por los dos grupos, indica que el porcentaje de estudiantes con respuestas correctas acerca del conocimiento sobre los modelos es mucho mayor en el grupo experimental que en el grupo control (ver gráfico 3). Igualmente, al verificar que la media obtenida por el grupo experimental con relación con el conocimiento global sobre los modelos es mayor que la obtenida por el grupo control (3.00 y 1.42 respectivamente) se puede evidenciar que el grupo experimental al parecer aprende en mayor medida dichos conocimientos. Para determinar si dicha diferencia es significativa se utilizó el estadígrafo t de student. 16 Vol. 6 No. 11 | Julio - Diciembre de 2011 | Medellín - Colombia | ISSN: 1909-2814 Porcentaje 80 70 71 60 60 Correcto 50 40 40 Incorrecto 29 30 20 10 0 G.EXPE G.CONT Gráfico 3. Distribución porcentual de dos grupos de estudiantes experimental y control de acuerdo al conocimiento global de los conceptos básicos sobre naturaleza de los modelos. Diferencias relacionadas CONOCMODELOSEXP ER CONOCMODELCONT - Desviación Error típ. de Media típ. la media 3.0000 0,86066 0,16265 1.4286 0.99735 0,18848 Sig. t gl 7,318 27 (bilateral) 0,000 Tabla 2. t de Student por comparación de medias del grupo control y experimental de acuerdo a su conocimientos globales sobre los modelos. Los cálculos realizados indican que la t experimental obtenida de 7.318 es significativa al 99 % (p= 0,000) (Ver, tabla 2) Es decir, la hipótesis que propone que: la estrategia didáctica diseñada bajo los parámetros de la resolución de problemas prácticos orientada por procedimientos de modelización influye positivamente en la capacidad general de modelización de los estudiantes, es verdadera. A modo de conclusión Los resultados encontrados permiten concluir que el fin de uso de los modelos en la estrategia 17 Vol. 6 No. 11 | Julio - Diciembre de 2011 | Medellín - Colombia | ISSN: 1909-2814 didáctica tradicional no es el mismo del que se tiene para su uso en la estrategia didáctica alternativa basada en la resolución de problemas, y que es esto precisamente lo que ocasiona que los estudiantes del grupo control obtengan unos resultados mucho menos satisfactorios que los obtenidos por los estudiantes del grupo experimental. Es decir, el objetivo del uso de los modelos en la didáctica tradicional al parecer está relacionado más con el uso pasivo de los mismos, como representaciones descriptivas o como herramientas para construir demostraciones de principios científicos ya estudiados o ya expuestos a los estudiantes, es decir, que dicho uso no tiene que ver con un uso activo de los modelos, en la construcción de explicaciones nuevas sobre los fenómenos (por lo menos desconocidas para los estudiantes) o de predicciones acerca del comportamiento de dichos fenómenos. Igualmente y por el contrario, el uso activo de los modelos en el marco de la resolución de problemas prácticos de carácter experimental en las aulas de clase, más acorde a los procesos de producción de conocimientos científicos, puede permitir preparar a los estudiantes para incorporarse en un futuro a dicho proceso de generación de conocimientos científicos, en el que se involucran la construcción de explicaciones y de predicciones sobre los fenómenos. Además, los resultados al mostrar la persistencia en ambos grupos de una epistemología ingenua sobre los modelos, en la que se los iguala con lo modelado, es decir en la que se les da un estatus equivocado de copia fiel de la realidad, desconociendo su proceso de construcción y su naturaleza parcial y heurística, pueden suponer la existencia de una concepción epistemológica errónea sobre la naturaleza de los modelos que implica la no separación entre el fenómeno y el noúmeno, en el sentido de su resistencia a cambiar a pesar de la instrucción explícita y de la introducción en el aula de procedimientos y prácticas que ponen en tela de juicio dicha concepción. Es importante decir que esta concepción errónea en los estudiantes ha sido también reportada por muchos otros estudios como ya se ha expresado en este trabajo. Por otra parte, los resultados globales obtenidos, muestran como la aplicación de estrategias didácticas que combinan la modelización experimental y la resolución de problemas prácticos, abiertos y contextualizados, puede ser útil para desarrollar en los estudiantes concepciones adecuadas sobre la naturaleza y el uso de los modelos, y por lo tanto para habilitarlos para producir en un futuro conocimientos científicos. Recomendaciones Los resultados obtenidos y las conclusiones elaboradas hacen conveniente recomendar la reorientación de los currículos para la formación básica en ciencias, enfatizando en el tratamiento de los temas relacionados con la naturaleza de los modelos científicos, su uso en la ciencia, y en la introducción de los procedimientos propios de su proceso de diseño y construcción (modelización), como verdaderas oportunidades para “hacer ciencia” y desarrollar las habilidades y los procesos cognitivos necesarias para ello (Hodson, 1992), lo que se podría alcanzar articulando dichos procesos con los de resolución de problemas (Crawford y Cullin, 2004), identificando su papel de las preguntas, el de la creatividad y el del contexto social (Van Driel y Verloop, 2002). Además, dichos currículos deberían incluir actividades que propongan procesos de identificación de las características comunes 18 Vol. 6 No. 11 | Julio - Diciembre de 2011 | Medellín - Colombia | ISSN: 1909-2814 de los modelos científicos, y de, interpretación, análisis, crítica, comparación, revisión y modificación de los diversos modelos presentados en los textos y otras fuentes (como la historia de la ciencia) sobre un mismo fenómeno, determinando sus función (descriptiva, explicativa y predictiva), sus limitaciones y su validez. Igualmente, dichos currículos deberían incluir actividades que propongan el uso de los modelos para describir, explicar y predecir los fenómenos, articuladas preferentemente a la resolución de problemas y a la realización de trabajos prácticos de carácter experimental. Así mismo, muchos autores hablan de la necesidad de generar un cambio en la comunidad educativa sobre sus concepciones y prácticas acerca del uso de los modelos científicos, su lenguaje para articularlo con el lenguaje de la modelización, el objetivo que se proponen al enseñar y aprender los modelos científicos y, el aborde crítico de los modelos que se tratan de enseñar en las aulas de ciencias (Van Driel y Verloop, 1999; Justi y Gilbert, 2002). Bibliografía Barab, S., Hay, K., Barnett, M. y Keating, T. (2000). Virtual Solar System Project: Building Understanding Througt Model Building. En Journal of Research in science teaching. 7(37), 719 – 756. Barnea, N. y Dori, Y. (1996). Computerized Molecular Modeling as a Tool to Improve Chemistry Teaching. En Journal of Chemical Information and Computer Sciences, 36, 629636. Boulter, B. y Buckley, B. (2000) Investigating the role of representations and expressed models in building mental models. En: Gilbert, J. y Buolter, C. (Eds), Developing models in Science Education. Kluwer. Dordrecht, The Netherlands: 119-135 Brown, D. y Clement, J. (1989). Overcoming Misconceptions Via Analogical Reasoning: Abstract Transfer Versus Explanatory Model Construction. En Instructional science, 18, 237261. Carey, S. (1992) The origin and evolution of everyday concepts, a Giere, R (Ed). Cognitive Models of Science. Minneapolis: University of Minessota Press: 89-123 Castro, E. (1992). El empleo de modelos en la enseñanza de la química. En Revista Enseñanza de las ciencias, 10(1), 73-79. Clément, A. (1993). Componentes Disueltos Aportados por la Acuicultura Marina y su Relación con el Fitoplancton. Santiago. Chile. Fundación Chile Concari, S. (2001). Las teorías y los modelos en la explicación científica: implicancias para la enseñanza de la Ciencias. En Revista Ciencia Educação, 7 (1), 85 – 94. Crawford, B. y Cullin, M. (2004). Supporting prospective teachers' conceptions of modelling 19 Vol. 6 No. 11 | Julio - Diciembre de 2011 | Medellín - Colombia | ISSN: 1909-2814 in science. En International Journal of Science Education, 26(11), 1379-1401. Duschl, R. (1997). Renovar la enseñanza de las Ciencias. Importancia de las teorías y su desarrollo. Madrid: Narcea. Felipe, A., Gallarreta S. y Merino, G. (2005). La modelización en la enseñanza de la biología del desarrollo. En Revista Electrónica de Enseñanza de las Ciencias. 4(3), 1-33. Frederiksen, J., Whithe, B., Gutwill, J. (1999). Dynamic Mental Models in Learning Science: The importance of Constructing Derivational Linkajes among Models, 36 (7), 806 – 836. García Izquierdo, I. (2000). Análisis textual aplicado a la traducción, Valencia: Tirant lo Blanch. García, J. (2003). Didáctica de las Ciencias Resolución de Problemas y Desarrollo de la Creatividad. Bogotá Colombia Editorial: Magisterio. García, J., Duque, G., Villa, R. y Gutiérrez, M. (2000). Monografía de grado. Especialización en educación en ciencias. Departamento de educación Avanzada. Facultad de Educación. Universidad de Antioquia. Medellín-Colombia. GARCÍA J. (2005). La comprensión de las representaciones gráficas cartesianas presentes en los libros de texto de ciencias experimentales, sus características y el uso que se hace de ellas en el aula. Tesis Doctoral. Universidad de Granada. Departamento de Didáctica de las Ciencias Experimentales. García J. y Perales F. (2007) ¿Cómo usan los profesores de Química las representaciones gráficas cartesianas? En Revista Electrónica Interuniversitaria de Formación del Profesorado, 10(1), 1-15 Giere, R. (1992). La explicación de la ciencia. Un acercamiento cognoscitivo. México: Consejo Nacional de Ciencia y Tecnología. Giere, R. (1997) The feminist question in the philosophy of science. En: Hankinson, L. y Nelson, J.(Eds) Feminism, science, and the philosophy of science. Gran Bretaña: Kluwer academic publishers. Gilbert, J. (1991) Model building and a definition of Science. En Journal of Researching Science Teaching, 28(1), 73-79. Gilbert, J. (1993). Models and Modelling in Science Education. Hatfield, Herts: Association for Science Education. Gilbert, J. (1995). The role of model and modelling in some narratives in Science Learning. Presented at the annual meeting of the American Educational Research Association, San Francisco. Gilbert, J., Boulter, C. y Rutherford, M. (1998). Models in explanations Part 1: Horses for courses? En International Journal of Science Education, 20(1), 83-97. 20 Vol. 6 No. 11 | Julio - Diciembre de 2011 | Medellín - Colombia | ISSN: 1909-2814 Gravemeijer, K. (2004) Commentary Solving word problems: a case of Modelling. En Learning and Instruction, 7(4), 389–397. Halloun, I. (1996). Schematic Modeling for Meaningful Learning of Physics. En Journal of Research Learning of Physics. 9(33), 1019-1041. Harrison, A. y Treagust, D. (2000). A typology of school science models. En International Journal of Science Education, 22(9), 1011-1026. Hesse, M. (1966). Models and Analogies in Science. University of Notre Dame Press. Indiana. Hodson, D. (1992). In search of a meaningful relationship: an exploration of some issues relating to integration in science and science education. En International Journal of Science Education, 14(5), 541-566. Islas, S y Pesa, M. (2003) ¿Qué rol asignan los profesores de física de nivel medio a los modelos científicos y a las actividades de modelado? En Enseñanza de las ciencias, n.esp., 57-66. Jackson, S., Stratford, S., Krajcik, J. y Soloway, E. (1995) Model-It: A case study of learnercentered software for supporting model building. En Working Conference on Technology Applications in the Science. Classroom, Columbus, OH. Jiménez, J. y Perales, F. (2002). Modèlisation et réprentation graphique de concepts. En Buletin de l”union des physiciens, 96. Justi, R. (2000) Teaching with historical models. En J.K. Gilbert and C.J. Boulter (Eds) Developing Models in Science Education. London: Kluwer Academic Publishers, 209-226. Justi, R. (2002). Science teachers knowledge about and attitudes towards the use of models and modeling in learning science. En International Journal of Science Education, 12(24), 1273-1292. Justi, R. y Gilbert, J. (2002) Modelling, teachers views on the nature of modelling, implications for the education of modelers. En International Journal of Science Education, 24, 369–387. Martinand, J. (1986). Enseñanza y aprendizaje de la modelización. En Enseñanza de las ciencias, 4(1), 45 – 50. Millar, R. y Osborne, J. (1998). Science Education for the future. Kings College. London. Nersessian, N. (1992). How do scientists think? Capturing the dynamics of conceptual change in science. En Giere, R. (Ed.) Cognitive Models of Science. Minneapolis: University of Minnesota Press. Palmer, D., Pilles, N., Lehrer, R y Schauble, L. (1997) Building funcional models. Designing and Elbow. En Journal of Research in Science Teaching. 2 (34), 125 – 143. 21 Vol. 6 No. 11 | Julio - Diciembre de 2011 | Medellín - Colombia | ISSN: 1909-2814 Raghavan, K., Glaser, R. (1995). Model-based analysis and reasoning in science: the mars curriculum. En Science Education, 79, 37-61. Rodríguez, M. y Fernández, J. (1995). técnicas. México: Pax. Creatividad para resolver problemas principios y Rubinstein, M. y Fistenberg, I. (1996). Patterns of problem solving. New Jersey: Prentice Hall. Sánchez, E. y García, L. (1999). Introducción de las técnicas de modelización para el estudio de la física y de las matemáticas en los primeros cursos de las carreras técnicas En Enseñanza de las ciencias, 17(1), 119-129. Smith, J y Finegold, M. (1995). Models in physics: Perceptions held by final-year prospective physical science teachers studying at South African Universities. En International Journal of Science Education, 19, pp. 621-634. Stewart, J., Hafner, R., Johnson, S. y Finkel, E. (1992). Science as model-building: computers and high-school genetics. En Educational Psychologist, 27(3), 317-336. Treagust, D., Chittleborough, G. y Mamiala, T. (2002). Students' understanding of the role of scientific models in learning science. En International Journal of Science Education, 24(4), 357-368. Van Driel J. y Verloop, N (1999). Teachers’ knowledge of models and modeling in science. En International Journal of Science Education, 11(21), 1141-1153. Van Driel J. y Verloop, N. (2002). Experienced teachers’ knowledge of teaching and learning of models and modeling in science education. En International Journal of Science Education, 12, (24), 1255-1272. Weisberg, M. (2006). Three kinas of idealización. University of Pennsylvania. Cibergrafía Strevens, M. (2008). Philosophers Imprint. Physically Contingent Laws and Counterfactual Support, 8,(8) http://hdl.handle.net/2027/spo.3521354.0008.008. Revista Q Revista electrónica de divulgación académica y científica de las investigaciones sobre la relación entre Educación, Comunicación y Tecnología ISSN: 1909-2814 22 Vol. 6 No. 11 | Julio - Diciembre de 2011 | Medellín - Colombia | ISSN: 1909-2814 Volumen 06 - Número 11 Julio - Diciembre de 2011 Una publicación del Grupo de Investigación Educación en Ambientes Virtuales (EAV), adscrito a la Facultad de Educación de la Escuela de Educación y Pedagogía de la Universidad Pontificia Bolivariana, con el sello de la Editorial UPB. http://revistaq.upb.edu.co – www.upb.edu.co [email protected] Circular 1ª 70-01 (Bloque 9, Oficina 121G) Teléfono: (+57) (+4) 448 83 88 ext. 13252 Medellín-Colombia-Suramérica 23