Versão online: http://www.lneg.pt/iedt/unidades/16/paginas/26/30/185
Comunicações Geológicas (2014) 101, Especial I, 563-566
IX CNG/2º CoGePLiP, Porto 2014
ISSN: 0873-948X; e-ISSN: 1647-581X
Crocodylomorph eggs and eggshells from the Lourinhã Fm.
(Upper Jurassic), Portugal
Ovos e cascas de crocodilomorfos da Formação da Lourinhã
(Jurássico Superior), Portugal
J. Russo1,2,3*, O. Mateus1,2, A. Balbino1,3, M. Marzola1,2
Artigo Curto
Short Article
© 2014 LNEG – Laboratório Nacional de Geologia e Energia IP
Abstract: We here present fossil Crocodylomorpha eggshells from
the Upper Jurassic Lourinhã Formation of Portugal, recovered from
five sites: one nest from Cambelas with 13 eggs, and three partial
eggs and various fragments from, Paimogo N (I), Paimogo S (II),
Casal da Rola, and Peralta. All specimens but the nest were found
in association with dinosaur egg material. Our research reveals that
on a micro- and ultrastructural analysis, all samples present the
typical characters consistent with crocodiloid eggshell morphotype,
such as the shell unit shape, the organization of the eggshell layers,
and the triangular blocky extinction observed with crossed nicols.
We assign the material from the Lourinhã Formation to the
oofamily Krokolithidae, making it the oldest crocodylomorph eggs
known so far, as well as the best record for eggs of noncrocodylian crocodylomorphs. Furthermore, our study indicates
that the basic structure of crocodiloid eggshells has remained stable
since at least the Upper Jurassic.
Keywords: Crocodylomorpha,
Jurassic, Krokolithidae.
Crocodiloid,
Eggshells,
Upper
Resumo: Apresentamos aqui cascas de ovos fósseis de
Crocodylomorpha da Formação da Lourinhã do Jurássico Superior
de Portugal, recolhidas em cinco locais: um ninho de Cambelas
com 13 ovos, e três ovos parciais e vários fragmentos de Paimogo
N (I), Paimogo S (II), Casal da Rola, e Peralta. Todos os espécimes
excepto o ninho foram encontrados em associação com material de
ovos de dinossauro. A nossa investigação revela que, numa análise
micro- e ultraestrutural, todas as amostras apresentam caracteres
típicos consistentes com o morfótipo crocodilóide de casca de ovo,
como a forma das unidades de casca, a organização das camadas da
casca, e a extinção triangular em blocos observável com nicóis
cruzados. Atribuímos este material à oofamília Krokolithidae,
sendo os ovos de crocodilomorfos mais antigos conhecidos até
agora e também o melhor registo para ovos de crocodilomorfos não
crocodilianos. Além disso, o nosso estudo indica que a estrutura
básica da casca de ovos crocodilóides se mantém estável pelo
menos desde o Jurássico Superior.
Palavras-chave: Cascas de ovo, Crocodilóide, Crocodylomorpha;
Jurássico Superior, Krokolithidae.
1
GeoBioTec, Departamento de Ciências da Terra, Faculdade de Ciências e
Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516
Caparica, Portugal.
2
Museu da Lourinhã, Rua João Luís de Moura, 95, 2530-158 Lourinhã,
Portugal.
3
Departamento de Geociências, Universidade de Évora, Rua Romão Ramalho,
59, 7000-671 Évora.
*
Corresponding author / Autor correspondente:
[email protected]
1. Introduction
Despite the limited diversity of extant taxa, the extensive
fossil record of crocodylomorphs is estimated in over 200
taxa (Oliveira et al., 2011). Fossil eggs of
Crocodylomorpha are, compared to dinosaurs, scarcer and
still poorly understood, even though fossil crocodiloid
eggs and eggshells (Mikhailov, 1991, 1997; Mikhailov et
al., 1996; Carpenter, 1999; Marzola et al., 2014), have
been identified worldwide. We hereby identify crocodiloid
eggs from the Upper Jurassic (Upper KimmeridgianTithonian), from five sites in the fossil rich Lourinhã
Formation, making these findings the oldest known so far.
The Lourinhã Formation is a thick syn-rift siliciclastic
succession, ranging from 200 to 1100 meters, dated from
the Upper Kimmeridgian to Tithonian-earliest Berriasian,
of fluvial-deltaic origin with some shallow marine
incursions (Hill, 1988; Kullberg et al., 2013; Mateus et al.,
2014), providing not only a suitable environment for a
thriving and diverse fauna during the Late Jurassic, namely
dinosaurs and crocodylomorphs, but also the conditions for
the fossilization of extremely rare specimens, such as eggs
and embryos (Mateus et al., 1997, 1998; Antunes et al.,
1998; Martins et al., 2011; Araújo et al., 2012, 2013;
Ribeiro et al., 2013).
2. Material and methodology
Eggshells were recovered from five localities in the
Lourinhã Formation (Fig. 1): Paimogo N (ML760) and S
(ML1795), Casal da Rola (ML1194), Peralta (ML195),
and the nest from Cambelas (FCT-UNL706, replica
stored at Museu da Lourinhã with collection number
ML1582) (Fig. 2A-B). Stratigraphically, the highest
sample is specimen FCT-UNL706, which was found in
the Upper Tithonian Assenta Member, the uppermost unit
of Lourinhã Formation. The samples from Peralta and
Casal da Rola were collected in the Praia Azul Member,
dated from the Upper Kimmeridgian-earliest Tithonian.
The Paimogo samples are also from Upper Kimmeridgian
age, but stratigraphically lower, from the base of the
564
Praia Azul Member (Paimogo S) and from the top of the
Praia da Amoreira-Porto Novo Member (Paimogo N).
From each locality, samples were selected, cleaned, and
prepared for 30 µm thin sections as well as for SEM
imaging. Macrophotographs were taken of the outer and
inner surfaces of the eggshells, using both reflected and
transmitted light; observation under transmitted light
allowed for the observation of the pores (whenever
present), and distribution and organization of the shell
units (Fig. 2C). The observations under the petrographic
microscope were done at Museu da Lourinhã (ML) and
Faculdade de Ciências e Tecnologia da Universidade
Nova de Lisboa (FCT-UNL). The SEM imaging was
done at FCT-UNL and Universidade de Évora (UE).
Fig. 1. Regional geological map, with the location of the fossil sites. Sites
and specimens: Paimogo N: ML760; Paimogo S: ML1795; Casal da
Rola: ML1194; Peralta: ML159; Cambelas: FCT-UNL706. Modified
from Mateus, 2006.
Fig. 1. Mapa geológico regional, com a localização das jazidas fósseis.
Jazidas e espécimes: Paimogo N, ML760; Paimogo S, ML1795; Casal da
Rola, ML1194; Peralta, ML159; Cambelas, FCT-UNL706. Modificado
de Mateus, 2006.
3. Results
Three layers (four when considering the diagenetic layer)
can be differentiated in ML159, ML1194 and ML1795: an
inner layer (IL), characterized by the darker coloration of
the basal knobs of the mammilae, a medium layer (ML),
where the typical crocodiloid tabular ultrastructure is
identifiable, and an outer layer (OL), separated of the
medium layer by a slightly darker thin band, usually a result
of the uneven distribution of fibers that get packed closer
together from bottom to top. All the samples observed under
J. Russo et al. / Comunicações Geológicas (2014) 101, Especial I, 563-566
polarized light exhibit a wedge-shaped pattern for the shell
units, widening from the IL, where the basal plate groups
and nucleation centers are clearly distinguishable, to the OL.
These wedge shaped shell units are faint and not always
clearly defined. With crossed nicols, the samples exhibit a
blocky extinction (see Marzola et al., 2014), defined by
upside down triangles that alternately appear when rotating
the samples. The outermost or diagenetic layer (DL) is
marked by recrystallized and secondarily deposited calcite
that in the FCT-UNL706 sample is almost absent and in the
samples from Paimogo S is 144 µm thick on average. The
thin sections show a faint, but distinguishable tabular
ultrastructure, particularly in the ML of specimens from
Paimogo S (Fig. 2D), Peralta and Casal da Rola. Paimogo
N, however, displays strong sub-horizontal fractures,
precluding an exact description. The very low thickness
(163 µm) of FCT-UNL706 does not allow for identification
of a clear, discernible ultrastructure. The Paimogo S samples
are the thickest, measuring 323 µm, followed by Peralta
(253 µm), Paimogo N (243 µm) and Casal da Rola (220
µm).
Fig. 2. A) Specimen FCT-UNL706, during excavation; B) Specimen
FCT-UNL706, in detail; C) Inner surface of eggshell from FCT-UNL706
under binocular microscope and with transmitted light. No pores are
visible, but the nucleation centers at the tip of the mammillae can be
observed as the darker small dots on the eggshell, each marking a shell
unit; D) 30 µm thin section of Paimogo S eggshell, observed under
petrographic microscope (100x), with crossed nicols, where the
diagenetic layer (the top layer) and the typical blocky extinction stand
out. The tabular ultrastructure extends until the darker inner layer where
the basal plate groups forming the mammillae are clearly observable.
Faint wedge-shaped shell units widening from bottom to top are also
distinguishable.
Fig. 2. A) Espécime FCT-UNL706, durante a escavação; C) Espécime
FCT-UNL706, em detalhe; C) Superfície interna da casca de FCTUNL706 sob lupa binocular e com luz transmitida. Poros não são
visíveis, mas os centros de nucleação na ponta das mamilas podem ser
observados como os pontos pequenos mais escuros, cada um marcando
uma unidade de casca; D) Lâmina delgada de 30 µm de casca de Paimogo
S, observada em microscópio petrográfico (100x), com nicóis cruzados,
onde a camada diagenética (a camada de topo) e a típica extinção em
bloco sobressaem. A ultraestrutura tabular estende-se até à camada
interna, mais escura, onde os grupos de placas basais que formam as
mamilas são claramente observáveis. Unidades de casca ténues em forma
de cunha, alargando de baixo para o topo, são também distinguíveis.
Crocodylomorph eggs from the Jurassic of Portugal
The surface ornamentation is smooth, as expected in
fossil crocodilian eggs (i. e. Hirsch, 1985; Antunes et al.,
1998). When observed, as in the samples from Paimogo S
and Casal da Rola, pores appear as very simple semicircular
openings in the OL, crossing the entire shell in long, straight
canals. While all the other samples are from fragmented
eggshells, specimen FCT-UNL706 contains complete, well
preserved ellipsoidal eggs. Under the SEM, the diagnostic
features were not clearly observed, largely in part due to the
amount of alteration and external recrystallization in the DL.
4. Discussion and conclusions
The material studied presents diagnostic features that allow
us to identify it as crocodiloid morphotype (sensu
Mikhailov, 1991, 1997) and ascribe it to the Krokolithidae
oofamily (Kohring & Hirsch, 1996), and tentatively to the
oogenus Krokolithes. Yet, the oogenus is at this point still
uncertain, requiring a more detailed analysis, considering
there seems to be characters, namely in specimen FCTUNL706, such as thickness lower than 200 µm (167 µm in
this case) and shell units wider than taller that closely
resemble the oogenus Bauruoolithus (Oliveira et al., 2011).
Nonetheless, the shell thickness, micro- and ultrastructure (i.
e. the tabular lamination), ornamentation, and shape, clearly
suggest a crocodilian affiliation, thus being the oldest
crocodiloid eggshells known. The triangular shaped
extinction pattern observed in the samples is a typical
feature for crocodiloid eggshells (Hirsch, 1985; Antunes et
al., 1998; Marzola et al., 2014). In general, extinct
crocodylomorph eggs present the same basic structure and
shape than extant crocodile eggs, and synapomorphies for
eggs of Crocodylia are also valid for the broader clade
Crocodylomorpha (Marzola et al., 2014). The main
difference, however, is the smaller values of average
eggshell thickness in non-crocodylian crocodylomorph.
Because the eggshells date from the Upper Jurassic, a
crocodylomorph, not eusuchian, origin is suggested.
However, it is not possible to ascribe the egg material to a
specific taxa. The diversity of crocodylomorphs in the Late
Jurassic of Portugal is high: Machimosaurus hugii von
Meyer 1837, Lisboasaurus estesi Seiffert 1973,
Lusitanisuchus mitrocostatus Schwarz & Fechner 2004,
Theriosuchus guimarotae Schwarz & Salisbury 2005, cf.
Alligatorium, Goniopholis baryglyphaeus Schwarz, 2002
(see Mateus, 2013, and references therein). Considering the
ratio between adult size and egg size, Machimosaurus hugii,
over 9 meters long, seems an unlikely parent for this
material. Thorbjarnarsson (1996) underlines such body size
versus egg size relationships, although with a considerable
degree of uncertainty. This restricts the size interval for
possible egg layers, but still makes it impossible an exact
correlation. Additionally, the structure of crocodilian
eggshells is very conservative and its basic characteristics
have remained unchanged since at least the Upper Jurassic.
Previous studies have pointed out this morphological
stability in crocodilian eggshells (Schmidt & Schöenwetter,
1943; Hirsch, 1985; Marzola et al., 2014). This would also
explain why the diversity of ootaxa is low, since different
565
species may be represented by the same ootaxon. All the
specimens, excluding FCT-UNL706, were found associated
with dinosaur eggs, possibly suggesting a reproductive
strategy relationship between the two groups.
Acknowledgements
We thank the technicians of GEAL – Museu da Lourinhã
and Faculdade de Ciências e Tecnologia da Universidade
Nova de Lisboa (Portugal) where this research was
conducted. Special thanks to C. Tomás for the preparation
of Cambelas and eggshell sample removal for SEM. We
gratefully appreciate the work of former DinoEggs Project
fellows and colleagues, V. Ribeiro and F. Holwerda
(Bayerische Staatssammlung fur Paläontologie und
Geologie/LMU, Germany), for preliminary sample
selection and preparation. We thank J. Simão (FCT-UNL)
for allowing access to the petrographic microscope for the
thin section photographs and N. Leal (FCT-UNL) for the
metalizing of the SEM samples. Our thanks extend to L.
Dias (UE) for assisting with the SEM imaging at
Universidade de Évora. This research is part of Project
Dinoeggs – dinosaur eggs and embryos in Portugal:
paleobiological implications and paleoenvironmental
settings (PTDC/BIA-EVF/113222/2009) funded by the
Fundação para a Ciência e a Tecnologia (FCT), Portugal.
References
Antunes, M.T., Taquet, P., Ribeiro, V., 1998. Upper Jurassic dinosaur
and crocodile eggs from Paimogo nesting site (Lourinhã- Portugal).
Memórias da Academia de Ciências de Lisboa, 37, 83-100.
Araújo, R., Castanhinha, R., Mateus, O., Martins, R.M.S., 2012. Late
Jurassic theropod embryos from Porto das Barcas, Lourinhã
Formation, Portugal. Journal of Vertebrate Paleontology,
Program and Abstracts 2012 ISSN 1937-2809, 57 p.
Araújo, R., Castanhinha, R., Martins, R.M.S., Mateus, O., Hendrickx,
C., Beckmann, F., Schell, N., Alves, L.C., 2013. Filling the gaps of
dinosaur eggshell phylogeny: Late Jurassic Theropod clutch with
embryos from Portugal. Scientific Reports, 3(1924).
Carpenter, K., 1999. Eggs, Nests, and Baby Dinosaurs: A Look at
Dinosaur Reproduction. Indiana University Press, 336 p.
Hill, G., 1988. The sedimentology and lithostratigraphy of the Upper
Jurassic Lourinhã formation, Lusitanian Basin, Portugal. PhD
Thesis Open University (unpublished), 292 p.
Hirsch, K.F., 1985. Fossil crocodilian eggs from the Eocene of
Colorado. Journal of Paleontology, 59(3), 531-542.
Kohring, R., Hirsch, K.F., 1996. Crocodilian and avian eggshells
from the Middle Eocene of the Geiseltal, Eastern Germany.
Journal of Vertebrate Paleontology, 16(1), 67-80.
Kullberg, J.C., Rocha, R.B., Soares, A.F., Rey, J., Terrinha, P.,
Azerêdo, A.C., Callapez, P., Duarte, L.V., Kullberg, M.C., Martins,
L., Miranda, R., Alves, C., Mata, J., Madeira, J., Mateus, O.,
Moreira, M., Nogueira, C.R., 2013. A Bacia Lusitaniana:
Estratigrafia, Paleogeografia e Tectónica. In: R. Dias, A. Araújo, P.
Terrinha, J.C., Kullberg, (Eds). Geologia de Portugal, Vol. II –
Geologia Meso-cenozóica de Portugal, Escolar Editora, 195-350.
Martins, R.M.S., Beckmann, F., Castanhinha, R., Mateus, O.,
Pranzas, P.K., 2011. Dinosaur and crocodile fossils from the
Mesozoic of Portugal: neutron tomography and synchrotronradiation based micro-computed tomography. MRS Proceedings,
1319 (1), Cambridge University Press.
Marzola, M., Russo, J., Mateus, O., 2014. Identification and
comparison of modern and fossil crocodilian eggs and eggshell
structures. Historical Biology, (ahead-of-print), 1-19.
566
Mateus, O., 2006. Late Jurassic dinosaurs from the Morrison
Formation (USA), the Lourinhã and Alcobaça Formations
(Portugal), and the Tendaguru Beds (Tanzania): a comparison. In:
J.R. Foster, S.G. Lucas, (Eds). Paleontology and Geology of the
Upper Jurassic Morrison Formation. New Mexico Museum of
Natural History and Science Bulletin, 36, 223-231.
Mateus, O., 2013. Crocodylomorphs from the Mesozoic of Portugal
and a new skull of eusuchian from the Late Cretaceous. Abstract
Book of Hwaseong International Dinosaurs Expedition
Symposium, South Korea, 66-68.
Mateus, I., Mateus, H., Antunes, M.T., Mateus, O., Taquet, P.,
Ribeiro, V., Manuppella, G., 1997. Couvée, oeufs et embryons
d'un dinosaure théropode du Jurassique supérieur de Lourinhã
(Portugal). Comptes Rendus de l'Académie des Sciences-Series
IIA-Earth and Planetary Science, 325(1), 71-78.
Mateus, I., Mateus, H., Antunes, M. T., Mateus, O., Taquet, P.,
Ribeiro, V., Manuppella, G., 1998. Upper Jurassic theropod
dinosaur embryos from Lourinhã (Portugal). Memórias da
Academia de Ciências de Lisboa, 37, 101-109.
Mateus, O., Dinis, J., Cunha, P. P. 2014. Upper Jurassic to lowermost
Cretaceous of the Lusitanian Basin, Portugal – landscapes where
dinosaurs walked. Ciências da Terra, vol. esp. VIII (in press).
Meyer, H. von, 1837. Mittheilungen, an Professor Bronn gerichtet.
Neues Jahrbuch fr Mineralogie, Geognosie, Geologie und Petrefakten-Kunde, 557-562.
Mikhailov, K.E., 1991. Classification of fossil eggshells of amniotic
vertebrates. Acta Palaeontologica Polonica, 36(2), 193-238.
Mikhailov, K.E., 1997. Fossil and recent eggshell in amniotic
vertebrates: fine structure, comparative morphology and
J. Russo et al. / Comunicações Geológicas (2014) 101, Especial I, 563-566
classification. Special Papers in Palaeontology, 56, 1-80.
Mikhailov, K.E., Bray, E.S., Hirsch, K.F., 1996. Parataxonomy of
fossil egg remains (Veterovata): principles and applications.
Journal of Vertebrate Paleontology, 16(4), 763-769.
Oliveira, C.E., Santucci, R.M., Andrade, M.B., Fulfaro, V.J., Basílio,
J.A., Benton, M.J., 2011. Crocodylomorph eggs and eggshells
from the Adamantina Formation (Bauru Group), Upper
Cretaceous of Brazil. Palaeontology, 54(2), 309-321.
Ribeiro, V., Mateus, O., Holwerda, F., Araújo, R., Castanhinha, R.,
2013. Two new theropod egg sites from the Late Jurassic
Lourinhã Formation, Portugal. Historical Biology, (ahead-ofprint), 1-12.
Schmidt, W.J., Schönwetter, M., 1943. Beiträge zur kenntnis der
krokodileier, insbesondere ihrer kalkschale. Zeitschrift für
Morphologie und Ökologie der Tiere, 40(1-3), 17-36.
Schwarz, D., 2002. A new species of Goniopholis from the Upper
Jurassic of Portugal. Palaeontology, 45(1), 185-208.
Schwarz, D., Fechner, R., 2004. Lusitanisuchus, a new generic name
for
Lisboasaurus
mitracostatus
(Crocodylomorpha:
Mesoeucrocodylia), with a description of new remains from the
Upper Jurassic (Kimmeridgian) and Lower Cretaceous
(Berriasian) of Portugal. Canadian Journal of Earth Sciences,
41(10), 1259-1271.
Schwarz, D., Salisbury, S.W., 2005. A new species of Theriosuchus
(Atoposauridae, Crocodylomorpha) from the Late Jurassic
(Kimmeridgian) of Guimarota, Portugal. Géobios, 38, 779-802.
Thorbjarnarson, J.B. 1996. Reproductive characteristics of the order
Crocodylia. Herpetologica, 8-24.