drones
Article
UAV Forensics: DJI Mini 2 Case Study
Miloš Stanković 1,† , Mohammad Meraj Mirza 1,2, *,†
1
2
*
†
Citation: Stanković, M.; Mirza, M.M.;
Karabiyik, U. UAV Forensics: DJI
Mini 2 Case Study. Drones 2021, 5, 49.
https://doi.org/10.3390/drones5020049
Academic Editor:
and Umit Karabiyik 1
Department of Computer and Information Technology, Purdue University, West Lafayette, IN 47907, USA;
[email protected] (M.S.);
[email protected] (U.K.)
Department of Computer Science, College of Computers and Information Technology, Taif University,
Taif 21944, Saudi Arabia
Correspondence:
[email protected]
These authors contributed equally to this work.
Abstract: Rapid technology advancements, especially in the past decade, have allowed off-the-shelf
unmanned aerial vehicles (UAVs) that weigh less than 250 g to become available for recreational use by
the general population. Many well-known manufacturers (e.g., DJI) are now focusing on this segment
of UAVs, and the new DJI Mini 2 drone is one of many that falls under this category, which enables
easy access to be purchased and used without any Part 107 certification and Remote ID registration.
The versatility of drones and drone models is appealing for customers, but they pose many challenges
to forensic tools and digital forensics investigators due to numerous hardware and software variations.
In addition, different devices can be associated and used for controlling these drones (e.g., Android
and iOS smartphones). Moreover, according to the Federal Aviation Administration (FAA), the
adoption of Remote ID is not going to be required for people without the 107 certifications for this
segment at least until 2023, which creates finding personally identifiable information a necessity
in these types of investigations. In this research, we conducted a comprehensive investigation of
DJI Mini 2 and its data stored across multiple devices (e.g., SD cards and mobile devices) that are
associated with the drone. The aim of this paper is to (1) create several criminal-like scenarios,
(2) acquire and analyze the created scenarios using leading forensics software (e.g., Cellebrite and
Magnet Axiom) that are commonly used by law enforcement agencies, (3) and present findings
associated with potential criminal activities.
Keywords: DJI Mini 2; forensic case study; forensic practices; mobile forensics; UAV forensics;
UAV forensics challenges
Diego González-Aguilera
Received: 1 May 2021
Accepted: 22 May 2021
1. Introduction
Published: 1 June 2021
According to [1], there have been dramatic advancements in the drone industry, and
it is estimated that the market will reach nearly USD 60 billion by 2025. Moreover, it
is predicted that shipments of consumer drones will grow to USD 29 million by 2021.
Additionally, the increased demand for drones in the public and private sectors is predicted
to be worth around USD 100 billion in the future. To put it in perspective, in 2020, consumer
drones in the United Stated sales were over USD 1.25 billion [1].
On the other hand, 367 illegal activities were reported between October 2020 and
December 2020 in the USA alone by the Federal Aviation Administration (FAA) [2]. Considering that the reported number is only what was reported by the FAA, it is safe to assume
that the number is much greater than noted. As there are many types of drones that are
involved in many of the incidents, the FAA has reported that they are working closely with
law enforcement to investigate and identify these incidents [2].
Previous research has looked into multiple variations of DJI drones (e.g., DJI Phantom
series and Spark) as well as some other well known manufacturers. The studies were
comprehensive and provided a body of knowledge with an adequate amount of relevant
content, which contributed to the unmanned aerial vehicle (UAV) forensic community.
Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affiliations.
Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses/by/
4.0/).
Drones 2021, 5, 49. https://doi.org/10.3390/drones5020049
https://www.mdpi.com/journal/drones
Drones 2021, 5, 49
2 of 20
However, there was a lack of literature supporting drones weighing less than 250 g (e.g.,
DJI Mini 2).
Our research aims to address the lack of comprehensive forensics methods on the
DJI Mini 2 drone and its necessary operational software and controllers by performing
extensive experiments with multiple criminal-like scenarios. Additionally, our conducted
experiments consist of related mobile software (e.g., DJI Fly app) used to operate the drone,
which is populated and then forensically analyzed.
The contributions of this research are as follows:
•
•
•
Providing a comprehensive forensic investigation across multiple devices (e.g., drone
body, SD cards, and mobile devices) associated with the drone.
Analyze several criminal-like scenarios for the DJI Mini 2 drone in the real world,
utilizing multiple devices.
Testing the carrying capabilities of the DJI Mini 2 to evaluate its transporting performance for criminal activities, such as terrorist attacks and smuggling.
This paper is structured as follows: Section 2 discusses other researches and work that
have already been done in the field of UAV/drone forensics. Section 3 demonstrates our
methodology and the experiment design that was followed throughout the study. Section 4
highlights our findings, while Section 5 presents the discussion on the importance of our
results. Finally, Section 6 concludes this research and provides direction for future work.
2. Related Work
As highlighted in [3], an ever-growing concern regarding UAVs would be the easy
confiscation or loss of technology, as seen by drones being confiscated and thus privacy
violations occurring due to the extraction of data from the device. Drones have been used
as a mode of recreation, but there are many uses that companies and governments have
found. Just as UAVs have the capability for good, such as collecting information to be
used as evidence in lawsuits, they are easily used for malicious purposes, such as violating
no-fly zones, illegal usage by criminals, or launch of areal missiles [3]. At the conclusion,
the researchers were able to access the data on the Parrot AR Drone 2.0 used in their study
and access the file system via multiple connection methods. This resulted in retrieving
the controller’s phone ID [3]. Based on the results shown in the paper, it was proposed
to take the Parrot AR Drone 2.0 and other drones and analyze further to extrapolate the
differences in the accessibility of data.
Moreover, researchers in [4] experimented using a DJI Spark drone in a criminal-like
scenario while it is being controlled and linked to a mobile device. In this study, the
mobile device utilized by the researchers was Android OS-operated, and they used DJI
GO 4 application (app) v4.3.11, which was downloaded from the Android Play Store to
control the drone. They found that the mobile device kept the flight data files under two
recorded versions; the first is .DAT, and the other is in .txt files. Both formats along with
media files taken during the flight were preserved under the DJI GO 4 package folder
named DJI/dji.go.v4. They also were able to find a connection between all components they
used for the study, including the drone, SD card, and smartphone, using temporal rules to
determine their linkage [4].
Another recent study [5] has demonstrated a comprehensive forensic study on DJI
Mavic Air 2, utilizing multiple devices and case scenarios in which the last was a crash
landing. Researchers have dealt with the damaged drone and performed digital acquisition
from different components that were used in the case study (e.g., smartphone, laptop, and
drone body). In addition, the researchers took into consideration two possible acquisition
methodologies, the first being chip-off and the second being chip-on techniques. As a result,
they were able to discover a board serial number that is treated as Personal Identifiable
Information (PII), which can be linked to the drone owner/operator [5].
Security issues continue to rise with the popularity of UAVs, and it is ever necessary
for investigators to be able to forensically analyze devices used for malicious purposes [6].
As presented in [6], one of the primary obstacles comes from the complex and individual-
Drones 2021, 5, 49
3 of 20
ized structure of the drone when performing forensics analysis. One proposed solution to
the challenge was creating a framework that could aid forensics investigators by providing
twelve steps of systematic analysis [6]. During the creation of the framework, five different
models from multiple manufacturers were utilized. Once created, the researchers tested
their proposed framework and found that it could be used for each model in the study to
aid in an investigation.
In addition, researchers of [7] have highlighted some UAV forensic challenges that are
associated with the tools and guidelines/frameworks used by investigators. To tackle some
of the challenges they discussed, they have proposed a process that consists of 20 steps
while demonstrating it using DJI Phantom 3 as a case study. Moreover, the proposed
framework integrates the probability that the UAV is used in an illegal operation, whereas
researchers of [8] have a proposed drone technical forensic investigation process that can
be used in some cases. The authors have demonstrated the proposed investigation process
using a Yuneec Typhoon H drone.
A recent study [9] that further explains the analysis of drones is known as the Drone
Forensics discipline. This discipline is necessary due to the need for specialized tools and
analysis as drones have many enhancements that create barriers during digital forensic
analysis. Information can be lost if the examiners are not properly educated or equipped.
The study [9] focused only on one manufacturer (DJI) but utilized various models to test
and compare forensics tools. The methodology behind the approach was to discover
which standards and procedures are best used in an investigation with DJI drones [9].
Tools of analysis were limited to Autopsy, Paraben’s E3: Universal, and CsvView/Datcon.
Despite the paper utilizing two web tools for additional data extraction at the end, it was
not recommended due to the vulnerabilities and lack of reliability. It was found that file
systems in different models of DJI drones contain the same standards for media files, EXIF
data, spatial movement, metadata, and location [9].
Another very recent study [10] conducted on common drone models utilized in
criminal activities demonstrates what information could be gathered to better inform a law
enforcement investigation. From the six brands, investigators gathered such information
as media files in the form of pictures and videos, flight patterns, locations, and owner
identifications. This study continued to indicate the use of drones autonomously or by
an operator. This information can dictate the form of data gathered. Illegal activities via
drone use come in many forms, such as drug drops over foreign borders, contraband
drops over prison fences, and unsolicited surveillance. The scenario provided in the
study is based upon the before-mentioned instances of illegal use of drones and law
enforcement, engaging forensic analysis to determine such information as ownership and
link to crime [10]. The study maintains that state and federal legislation has not managed
to regulate drone technology and thus leaves most stakeholders vulnerable. In the end,
it was concluded that due to the lack of a universal drone structure or forensic tools,
continued research must be completed to determine the method of data extraction. Lastly,
the researchers left more invasive methods, such as chip-off, as a last resort due to the
possibility of damage.
Yousef and Iqbal [11] used the DJI Mavic Air drone and the iPhone 6 mobile device for
the basis of the experiment in pursuit of determining examiner procedures, extrapolating
files that could be used as court evidence. The researchers denoted limitations regarding
their process being applied to various kinds of drones and found a challenge in the duration
of time allotted for drone examination. Due to time constraints, they could not find the
DJI’s .DAT and .txt files that would have provided flight information.
Hamidi et al. [12] focused primarily on the DJI Phantom 4 Standard drone to determine
a specific procedure for analyzing the .DAT file and extracting data from storage sources
that could be used in a criminal case. The study resulted in the researchers finding
considerable relevant information, which accomplished this study’s goal, but in conclusion,
it was recommended to continue research on other drone types and a greater research
emphasis on .DAT and .txt file structures based on their complexity [12].
Drones 2021, 5, 49
4 of 20
On the other hand, researchers in [13] have developed Drone Open source Parser
(DROP), which is an open-source parser for DJI Phantom 3 flight logs that are encrypted
in the special format of .DAT files. It takes each of the unreadable .DAT files format,
which represents a flight log, and decrypts them into .CSV readable format. Moreover, to
validate their results, they have compared their tool with the outcome of the decrypted
and parsed .txt using http://healthydrones.com/ (accessed on 31 May 2021), which is now
https://airdata.com/ (accessed on 31 May 2021). As a result, they found that the decrypted
outcome of the DROP tool in a CSV file format is almost identical to the outcome of the
flight logs that are decoded and decrypted from the .txt format. In contrast, researchers
of [14] used DJI Phantom 3 Advanced as a case study to test the ability to recover GPS
data as digital evidence using DatCon tool v2.3.0, enabling them to decrypt the .DAT files
recovered from the digital forensic image of the Android smartphone used in the study.
Furthermore, in a recent case study [15], researchers have assessed and highlighted
important differences in the capabilities of widely used UAV forensic software and tools
(e.g., Autopsy, Cellebrite, and Datcon). Although they found that the DatCon tool was able
to decrypt the .DAT file and convert it to a readable CSV file format, other tools used in
the study have varied results regarding decryption of the .DAT files even though some
were using the DatCon module. The study highlights the importance of validation and
cross-checking results using multiple tools.
Many developments have been integrated into forensics software to detect and acquire
drone equipment. For instance, Cellebrite now supports the acquisition of many DJI types
(e.g., Inspire 2, Mavic Pro, Mavic Pro 2, Mavic Air, Phantom 3 and 4, and Spark) but not
the Mini 2. Despite the efforts and previous research, many questions remain unanswered
regarding drone forensics, particularly the new models, such as DJI Mini 2.
3. Methodology
Malicious drone usage can be conducted in many ways, and based on the given scenario, the investigation will differ. This is due to drones varying in manufacturer, technical
capabilities, version, and even size. In addition, when it comes to drone investigation
techniques during real-life crimes, the drone might not be the only place to look for evidence. Applications used to operate, set up, and even update the drones can supplement
and complement the existing evidence found on the device or used as primary evidence if
deemed appropriate. This is to aid in finding possible connections between the software
and the drone to help future investigations.
3.1. Experiment Design
During real-life crimes, when the digital evidence is involved and the devices are
ceased, very rarely, only information populated on those devices will be related to the crime.
Filtering through the information presents challenges, especially when it comes to large
storage capacities and unknown file structures. For this study, we decided to eliminate
unwanted information not related to the case study by controlling the environment as much
as our resources allowed us. This ensured that the data populated during the study would
be easier to filter through and unwanted cross-contamination from another unrelated action
was eliminated, providing comprehensive research from the beginning of the case to the
end without any additional steps.
The logic behind the selected devices for the study came from the extensive prior
research conducted. The research has shown that these devices are most commonly used,
available to the general public without any restrictions or prior requirements, and they
are reasonably inexpensive. An additional reason for particularly choosing the DJI Mini 2
drone was the lack of research in the literature and digital forensics investigations. A full
list of the devices utilized to create the case study scenarios and conduct the experiment
for the research is listed in Table 1. Moreover, to find valuable information, this study
and research followed best practices to acquire and examine the forensic images of the
associated devices. For the two smartphones used in this study, we followed the data
Drones 2021, 5, 49
5 of 20
population and examination guidelines suggested by the National Institute of Standards
and Technology (NIST) [16].
In addition, Figure 1 shows the complete methodology involving all the processes and
components utilized. Each of the phases will be discussed in detail to outline the steps that
were taken into consideration.
Table 1. Full device list used in the study.
Device Name
Model/Version
Device ID
DJI Mini 2
M: MT2PD
3Q4CHBN3A3B1FX
Remote Controller (Hardware)
M: RC231
396CHBR00194WJ
Drone Battery
M: BWX161-2250-7.7
3QFPHPCA50A1P
Flight Controller (Software)
3NZCHBS003C5MF
NA
Drone Camera
FC7303
1SFLH870AB0K6X
Drone Gimbal
NA
3QCCHC3P23EKJK
FlySafe Database
01.00.01.19
NA
SD card
C10 and U3
TBM5C4004DGE
iPhone 7
A1660/iOS 13.3.1
IMEI: 355343080118768
Samsung Galaxy s7
SM-G930U/Android 8.0.0 OS
IMEI: 358512071203717
Cellebrite UFED memory card reader
A-CRD-01-005
1025056
Figure 1. Methodology process followed in this research.
3.2. Application Installation and Preparation
Prior to working with the mobile phones and the drone, a brand-new WiFi Service
Set IDentifier (SSID) was created for the devices to use during the study. Setting up a new
wireless network further ensures control of the environment. The device used as a wireless
router was a TP-Link (TL-WR1043N v5) with OpenWRT (19.07.5 r11257-5090152ae3). To set
up the case study scenario and ensure no previous data were present, SD cards and
smartphones were wiped and restored to factory settings. DJI Mini 2 was not susceptible to
this process since the drone and its associated remote controller were new and never used
previously. Additionally, Google Inc. Gmail service was used as the email provider and a
primary account to set up iCloud, Apple Appstore, Google Play Store, and an associated
user account for DJI-related applications (apps). Next, the software necessary to operate
the drone during the flight (i.e., DJI Fly) was installed on both phones running Android
and iOS.
Various digital forensics software tools were used to acquire and analyze the data.
In this research, we used resources that included open-source tools (i.e., Autopsy [17]) that
were complemented with proprietary tools such as Magnet AXIOM, and Cellebrite UFED
Drones 2021, 5, 49
6 of 20
4PC, which are used worldwide by law enforcement agencies and practitioners [18,19].
These tools were also used for cross-validation. Table 2 lists all tools that are used in all
phases of the experiment (i.e., data population, acquisition, and analysis).
Table 2. Tools and applications used.
Software Name
Version
Usage
Availability
DJI Fly on Android
1.3.0
Flight Operation
Freeware
DJI Fly on iPhone
1.3.1
Flight Operation
Freeware
Autopsy
4.18.0
Examination and
Analysis
Open-source
Magnet AXIOM Process
4.11.0.24063
Acquisition
Proprietary
Magnet ACQUIRE
2.37.0.24776
Acquisition
Freeware
Magnet AXIOM Examine
4.11.0.24063
Examination and
Analysis
Proprietary
Cellebrite UFED
7.42.0.82
Acquisition
Proprietary
Cellebrite Physical Analyzer
7.42.0.50
Examination and
Analysis
Proprietary
Cellebrite Reader
7.42.0.50
Examination and
Analysis
Freeware
Binwalk
2.2.0
Entropy measurement
Open-source
ExifTool
12.25
Reading meta
information
Open-source
DatCon
4.2.0
Decryption of the .DAT
files
Freeware
3.2.1. iOS Setup
The iOS mobile device used for the study was an iPhone 7 with iOS version 13.3.1.
After connecting to the WiFi network we created, we logged into the App Store using
a previously activated Gmail account and downloaded the DJI Fly app (Version 1.3.1
(440)). Upon download, we opened the app and followed the default options. The DJI Fly
application initially presented a video and then asked for enabling Bluetooth, location, and
notification service. We selected “only while using the app”. The next prompt was if we
wanted to participate in the DJI product improvement, and we selected “not now”. Lastly,
upon logging into the DJI Fly application using the Gmail account, we were notified about
geo-zone restrictions and selected “agree”. After the previous process, the app was ready
for the connection with the drone.
3.2.2. Android Setup
The Android device used in this study was a rooted Samsung Galaxy s7 running
Android 8.0.0. The DJI Fly app had no official version available in the Android Play Store,
so v1.3.0 was downloaded as an APK file and then installed on the phone. As a connection
to the internet, the phone was connected to the WiFi access point created for this study,
acquiring the time and accurate GPS location. Upon opening the DJI Fly app, the prompted
messages asked for several permissions (e.g., notification and location services, and access
to photos), which were all agreed to. The app on the Samsung Galaxy S7, similarly to the
iPhone 7, asked us to either log in or create an account, where we chose to log in, since we
already had the account credentials used when we downloaded the iPhone’s app.
3.2.3. Laptops
Three laptops were used during the experiment, Lenovo G570 (Model 4334), HP
Pavilion dv6 (dv6-7003em), and MacBook Pro (15-inch, 2018 running 2.9 GHz 6-core Intel
Drones 2021, 5, 49
7 of 20
i9). The Lenovo laptop had a Windows 10 Home (10.0.19042) operating system, used to set
up the accounts, manage the WiFi network, and root the android phone. The HP Pavilion
laptop with Linux Kali (Release: 2020.4) was set up to look for any interaction between
the drone and the controller. For this, we utilized the monitor mode capability allowing
the wireless card (Intel AC7260) to see 802.11 management frames and Wireshark (v3.2.7)
capturing the frames on different channels. Although there was no need for the iPhone
7 to be jailbroken when acquiring the iPhone device using Cellebrite, there is a need for
the device to be jailbroken using Magnet ACQUIRE because it does not offer jailbreaking
for the investigator. Therefore, we needed the MacBook Pro laptop to jailbreak the iPhone
using the Checkra1n app (beta 0.12.2).
3.2.4. Drone
The DJI Mini 2 drone used for this study was a brand new unit. Therefore, we made
sure that it was fully charged and equipped with an empty external SD card. To simulate an
attacker opening the drone and testing it before the deployment, we logged on to the app
and operated once before the data population scenarios using the iPhone 7. All associated
applications to operate the drone were installed on the phone used in this study.
Devices used in this study are presented in Figure 2. Moreover, the figure includes
additional items, which will be explained in detail further in the paper.
Figure 2. Devices and other components used in the study.
3.2.5. Machines Used for Investigations
In this study, two forensic workstations equipped with the same tools were used
across all phases of the study to validate the results and eliminate any known software
limitations. Additionally, to prevent any software bias, all acquired data were examined
with at least two different software solutions if applicable. The first machine was equipped
with Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz, with 16 GB RAM, Windows 10 Education
20H2, while the second was equipped with Intel i9-10900K processor, NVIDIA GeForce
RTX™ 3070 graphics card, and 32GB of RAM memory running X version of Windows
10 Pro. Note that this study does not consider the performance of the forensic processes
performed on different workstations.
3.3. Data Population
Following the initial setup of the DJI Mini 2 and confirming the proper functionality
(i.e., operating and flying it once), the drone was taken out to a location for the data
Drones 2021, 5, 49
8 of 20
population. The data population consisted of flying the drone in various patterns and
altitudes while gathering images, videos, and other data. The process was completed on
both iPhone 7 and Samsung Galaxy s7 utilizing the DJI Fly application for drone controlling
and flying.
During travel from the setup location of the drone to the location of the data population, we left the drone powered on. In addition, two phones were utilized to navigate to the
location using native map apps (i.e., Google Maps for Android, Apple Maps for iPhone).
Upon reaching the location, we flew the drone in 4 different scenarios on the first
test day and additional flights for testing weight carrying capabilities on another day
(i.e., Scenario 5). We discuss these scenarios in detail in the following Sections 3.3.1–3.3.5.
Moreover, Table 3 illustrates the scenarios in detail. Note that all times used in this study
are based on Eastern Time.
Table 3. Scenario times and actions.
Scenario
Start Time
End Time
Actions Taken While Flying
1
26 March 2021 15:45
26 March 2021 15:51
Video and Photos
2
26 March 2021 15:55
26 March 2021 15:58
Video and changing mode to sport
3
26 March 2021 16:06
26 March 2021 16:12
Video
4
26 March 2021 16:17
26 March 2021 16:20
Video
5
9 April 2021
9 April 2021
Multiple Flights
3.3.1. Scenario 1
This scenario was designed to portray a criminal-like action where a malicious user
would purchase a drone that does not require any prior paperwork, and it is widely used.
The user sets up the drone using a personal mobile device (i.e., iPhone 7) to make it
operational. The user first tests the drone to make sure that it is working as expected for
the action. Once the test is completed, the user leaves for the location where the drone will
be flown from. Once arrived, the user prepares the drone and confirms the home location
before the flight. The user flies the drone to the desired location and flies it back. During
the flight, the user was able to take videos and photos of the flight.
This type of scenario can be applied to many different real-life situations where
malicious users utilize the drone to drop off payloads and perform reconnaissance, etc.
3.3.2. Scenario 2
In this scenario, the same device was used as in Scenario 1 but only to perform a
one-way flight. The reason behind designing a one-way flight is that we tried simulating
the drone being captured or destroyed, hence not returning back. While catching the drone
in this scenario, we tried shutting the drone by force clicking and holding the turn-off
button; however, we could not turn it off while flying. During the process of capturing, the
drone was turned off immediately by rotating it 180 degrees (i.e., top of the drone facing
the ground).
3.3.3. Scenario 3
The scenario follows a similar process and the idea behind the malicious use as in
Scenario 1 with few differences. First, instead of iPhone 7 as a mobile device connected to
the controller, the device used was Samsung Galaxy 7. Second, the timestamps of the flight
were different, as well as the flying path.
3.3.4. Scenario 4
This scenario follows the methodology of Scenario 2 except using Samsung Galaxy
S7 instead of iPhone 7 as a mobile device. Just like other scenarios, this one has different
timestamps of the flight and flying path.
Drones 2021, 5, 49
9 of 20
3.3.5. Scenario 5
In this last scenario, we decided to test the carrying capabilities of the DJI Mini 2 drone
using the iPhone 7 with multiple flights. This scenario was conducted at a separate location
and on a different day than the previous four scenarios. The reasoning behind the test was
to see the maximum carrying capacity and any difference between carrying payloads using
multiple methods. The exact times of this flight scenario were not recorded in Table 3 due
to multiple short flights; while trying to determine the maximum carrying capacity, only
the date of the flight was recorded.
This scenario shows the capabilities of the drone and what potential malicious items
that are similar to the size and weight the drone can carry. Maximum carrying capacity
can play a big role during the malicious act where dangerous items can be transported,
dropped, and deployed.
3.4. Acquisition
To ensure that we made the most out of the two smartphone devices and gain privileged status, we performed jailbreak and rooting operations for the iPhone and Samsung
devices, respectively, as previously discussed. This was required to create physical forensic
images using Cellebrite UFED, Magnet AXIOM Process, and Magnet Acquire. The SD card
used in the case scenario was acquired using Cellebrite’s Memory Card Reader with write
blocker capability (see Figure 3).
Figure 3. Cellebrite UFED memory card reader.
Additionally, Table 4 presents the devices and tools used, the version of the tools, and
image creation date and time in detail.
Table 4. Detailed acquisition process.
Device
Acquisition Tool
Image Time
Description
iPhone
Cellebrite UFED
03-31-2021 09:42
After Scenarios 1 and 2
iPhone
Magnet ACQUIRE
04-07-2021 15:03
After Scenarios 1 and 2
iPhone
Magnet ACQUIRE
04-10-2021 12:15
After Scenario 5
Samsung
Cellebrite UFED
03-31-2021 10:36
After Scenarios 3 and 4
Samsung
Magnet Process
04-05-2021 14:34
After Scenarios 3 and 4
SD card
Cellebrite UFED
03-31-2021 16:17
After Scenarios 1, 2, 3 and 4
Drones 2021, 5, 49
10 of 20
4. Analysis and Findings
In this phase of the experiment, we gathered, analyzed, and compared the previously
populated data. The comparison of the collected data was achieved by utilizing multiple
digital forensics tools. We started by analyzing the images created by the acquisition
tools. Table 5 explains the symbols used in Table 6, which illustrates the findings from our
analysis using the three initial forensics tools utilized for this study.
Table 5. Explanation of the symbols used in Table 6.
Symbol
Explanation
Y
Artifacts were found
N
Artifacts were not found
∗
Artifacts were partially recovered, and it is missing relevant data
E
Artifacts were found but encrypted
A
Recovered by Autopsy tool
C
Recovered by Cellebrite tool
M
Recovered by Magnet AXIOM tool
Table 6. Tool evaluation assessment.
Artifacts
PII
Tools
iPhone
Component
Flight Logs
Media Files
A
C
M
A
C
M
A
C
M
Y
Y
Y
E
E*
E
Y
Y
Y
Samsung
Y
Y
Y
E
E
E
Y
Y
Y
SD card
N
N
N
N
N
N
Y
Y
Y
4.1. iOS Analysis
Following the first acquisition that was done after the first day of our experiment,
we were able to find two .DAT and three .txt files; however, all the files discovered were
encrypted. The reason that there are only two .DAT files compared to three .txt files is
because it goes back to the difference in how these files were written. We believe that each
.txt file represents a complete flight from take-off to land operation, where each .DAT file
represents data when the drone is connected to a smartphone and is turned on to the drone
shot-off. For instance, the first .DAT file represents the initial flight conducted before the
scenarios, and the second .DAT file represents Scenario 1 and Scenario 2 where we did not
turn the drone off between these two scenarios, resulting in one .DAT file.
The encrypted .txt files were recovered from the DarArchive\root\private\var\mobile\
Containers\Data\Application/38FA31DB-9A11-4365-9083-8657C089F83D\Documents\Flight
Records\ folder on the iPhone, where the encrypted .DAT flight logs can be recovered from
the following path DarArchive\root\private\var\mobile\Containers\Data\Application\38FA31
DB-9A11-4365-9083-8657C089F83D\Documents\FlightRecords\MCDatFlightRecords\. Unfortunately, none of the digital forensics tools (i.e., Autopsy, Cellebrite, and Magnet Axiom)
were able to decrypt the .DAT or .txt files that store the flight records. One major difference
in the comparison of the tools is that Cellebrite was able to extract four .jpg images from
each of the .txt flight logs. These images represent what possibly could be high-quality
thumbnails or images showing the location at the beginning of the flight. Figure 4 illustrates
the screenshot taken from Cellebrite.
Drones 2021, 5, 49
11 of 20
Figure 4. Embedded .JPG images from each of the .txt flight records.
Moreover, we were able to recover significant PII that can help in investigations. First,
we were able to recover the location of the first time that the iPhone was used to connect to
the drone (i.e., in our study, it was the setup location) from Application\38FA31DB-9A114365-9083-8657C089F83D\Library\.space_db\flysafe_dji_flight_dynamic_areas.db database
inside a table named dynamic_geofence_amba_record. We believe that this location was
acquired from the phone and not the drone because the first time we operated the drone
was inside a building, and the drone was not able to detect GPS signals. Figure 5 illustrates
the user geolocation finding.
Figure 5. User setup location recovered using Magnet Axiom.
Other PIIs, such as the email that is used for app login, activation timestamp, DJI model
name, last connected time, uptime, and aircraft camera serial number were recovered from
Application\38FA31DB-9A11-4365-9083-8657C089F83D\Library\Preferences\com.dji.golite.plist.
Figure 6 shows flight controller serial number, camera serial number, product name, last
connect time, and the drone serial number. Moreover, Figure 7 displays the last connected
email used to fly a drone, and Figure 8 shows the first time the iPhone was connected to
the drone after the user finished with the activation process.
Another finding worth mentioning, in the scenario where the drone was captured, is
that the camera on the drone kept recording for another 20 s even though it was flipped
upside down, and the propellers were not spinning.
Although we compared the acquisition after the first day that consisted of the first two
scenarios for the iPhone (see Sections 3.3.1 and 3.3.2) and the acquisition after Scenario 5
(see Section 3.3.5), the uptime did not change. On the other hand, the last connection
recorded has changed and updated following the second acquisition that was performed
after Scenario 5 to when the drone was last connected to the application using this iPhone.
In addition, in \private\var\mobile\Containers\Data\Application\38FA31DB-9A11-43659083-8657C089F83D\Documents\Tmp\DJISyncLog_2021-03-26_[13-36-13].txt file, we found
records stored that convey the DJI drone sync with the phone/server, and the timestamps
are similar to the scenarios.
Drones 2021, 5, 49
12 of 20
Figure 6. PII recovered using the Autopsy tool.
Figure 7. Email recovered using the Magnet Axiom tool.
Figure 8. User activation timestamp recovered using the Autopsy tool.
4.2. Android Analysis
Similar to iOS analysis, we were able to discover both .txt and .DAT file types in an
encrypted form. The .txt files containing flight logs were recovered from \data\media\0\DJI
\dji.go.v5\FlightRecord folder, and the .DAT files were recovered from the \data\media\0\DJI
\dji.go.v5\FlightRecord\MCDatFlightRecords\ folder.
Regarding PII, the location of the first time that the phone connected to the drone
was recovered from the table named dynamic_geofence_amba_record inside the following
database \data\data\dji.go.v5\databases\flysafe_dji_flight_dynamic_areas.db. Other similar
PII to the ones recovered from iPhone (e.g., DJI model name, and aircraft camera serial number) can be recovered from the \data\data\dji.go.v5\databases\dji.db database.
Figure 9 demonstrates the geolocation values (longtitute and latitute) recovered from the
dynamic_geofence_amba_record table, where Figure 10 shows the drone serial number along
with other valuable information.
Moreover, we were able to recover a thumbnail image showing an image captured
from when the iPhone was controlling the drone; the image recovered from the following
path \data\media\0\DJI\dji.go.v5\CACHE_IMAGE\ImageCaches\. On the other hand, the
video captured during Scenario 4 (see Section 3.3.4) was cut off and not complete, whereas
for the iPhone (see Section 3.3.2), it was complete. Additionally, it appears that Cellebrite
was not able to extract any images embedded inside the .txt flight logs on Android.
Drones 2021, 5, 49
13 of 20
Figure 9. User location recovered for the first time connected to the drone using the Autopsy tool.
Figure 10. Drone identification information and the activation timestamp recovered using the
Autopsy tool.
4.3. SD Card Analysis
Analyzing and examining the external SD card revealed that the SD card is storing
media files taken during the flight and some encrypted logs. Although these logs are not
the flight path logs, we were unable to decrypt them despite our efforts. On the other hand,
all recovered videos have locations associated with them (see Figure 11). In addition, we
were able to access media files from both phones and all four scenarios where the SD card
was used. Even the video recorded during Scenario 4 (see Section 3.3.4) is found to be
complete. Both the pictures and videos stored in the SD card can be recovered from the
\img_Dump_001.bin\vol_vol2\DCIM\100MEDIA folder.
Figure 11. GPS location of the video frame displayed on top of the video using the Autopsy tool.
In addition, we were able to use ExifTool to recover the camera serial number from
the pictures taken. Figure 12 demonstrates the recovered camera serial number and plenty
of other information.
Figure 12. Recovered camera serial number using ExifTool.
Drones 2021, 5, 49
14 of 20
4.4. Carrying Capacity Analysis
The first step of the carrying capacity drone analysis was to determine the overall
weight of the drone. The drone was placed on the scale (Perfect Portion) and measured at
240 g (±3 g) compared to the 249 g of marketed weight. Next, the fishing line measuring
60 cm was tied to the bottom of the drone with an attached plastic box where the weights
were added. The weight of the plastic box with the fishing line added up to 36 g, making
the overall weight of the drone and box 276 g. Weights were added between each flight
until the drone was not able to take off. The maximum capacity that the drone was able to
lift was around 300 g (including the plastic box, weight, and the line). Although the drone
was able to lift that amount of weight during the take-off and flight, it could not maneuver
easily. Therefore, the next step was to determine the optimal capacity that the drone could
carry and maneuver without any problems.
For this experiment, we started removing weights (starting at 300 g) until we were
satisfied that the drone operations were restored to normal. The weight we determined in
which the drone can restore its normal flight was around 250 g. It is important to note that
during the flight, we were experiencing high winds and that it is quite possible that the
carrying capacity can vary during different flying conditions.
As our last experiment, we decided to place the weights and the box on top of the
drone. The drone was able to carry and fly with 250 g attached to it. Moreover, we observed
more responsiveness from the drone when the weights were attached on top of the drone
compared to hanging and swinging below it. Figure 13 depicts the setup used during
this analysis.
Figure 13. Items used during carrying capacity analysis.
4.5. Data Analysis
As discussed earlier, .DAT and .txt flight logs/records were not recognized by the
forensics tools used in this study because they were encrypted. Therefore, we ran an
entropy analysis using the Binwalk tool (v2.2.0) [20] to calculate each file’s entropy score.
Figure 14 illustrates the outcome of the tool after running it on both files for Scenario 1
(see Section 3.3.1). As shown in Figure 14, the results showed very high entropy scores
throughout both files.
Following the literature review, many resources suggested using different tools in an
attempt to decrypt the .DAT files generated during the scenarios. The most used freeware
tool to decrypt .DAT files is the DatCon [21]. Even though the website stated the model of
our drone was not supported, we tested it regardless. It turned out to be true, and the .DAT
files could not be decrypted. As an alternative solution to examine the contents of the .DAT
Drones 2021, 5, 49
15 of 20
files, we found the website airdata.com. Airdata helps pilots and others (e.g., researchers)
by providing fleet drone management, as well as crash-prevention information [22]. After
the registration of a free account, we were able to upload our .DAT files and decrypt
them successfully.
Figure 14. Scenario 1 entropy analysis for .txt and .DAT files.
Despite the ability of airdata.com to decrypt the .DAT files, we also tried to decrypt
.txt files; however, the process was not successful. Moreover, airdata.com allows the user
to download the decrypted .DAT files in KML, GPX, CSV, and original formats. Therefore,
to ensure data integrity, we compared the outcome of the downloaded CSV file once
after the decryption, the second time after deleting the file and enabling the web tool
to decrypt it again. Interestingly, we found that the checksum values using the MD5
hashing algorithm of the two downloaded CSV files match, meaning that the tool provides
consistent decryption results.
While the main motive behind the website (airdata.com) was not to provide digital
forensic services to the end-users but to give pilots crash-prevention information and
manage large fleets of drones, we found this website very beneficial during our study [22].
Its intuitive user interface and detailed analysis of the log files allowed us to visualize flight
patterns, altitudes, battery levels, controls sent to the drone, error codes, and many more.
A screenshot in Figure 15 shows the user interface of the airdata.com web tool during the
analysis process of Scenario 1 and Scenario 2. Moreover, Figure 16 illustrates the weather
tab that contains wind speed faced during one of the flights in Scenario 5.
Figure 15. User interface of app.airdata.com (accessed on 31 May 2021).
Drones 2021, 5, 49
16 of 20
One important finding is we could not have a matching location (i.e., drone flight
location and iPhone cached location) from the cached locations recovered from the iPhone
in the first acquisition using Magnet Acquire. However, we were able to find matching
locations for the drone and the iPhone after the second acquisition using Magnet Acquire.
This is due to the fact that the iPhone keeps the cached locations for a certain time (approximately one week), and our first Magnet acquisition was more than seven days apart from
the day we flew the drone. However, we were able to find the matching location in the
second acquisition because it was performed within seven days. In addition, in the first
Cellebrite acquisition for Scenarios 1 and 2, we were able to match the user location with
the cached locations on the drone flight records because it was less than a week from the
scenario. We recovered the iPhone cached locations from the ZRTCLLOCATIONMO table
located in the \private\var\mobile\Library\Caches\com.apple.routined\Cache.sqlite database.
Figure 16. Weather section at app.airdata.com (accessed on 31 May 2021) after analyzing one of the
.DAT files in Scenario 5.
Moreover, we wanted to confirm that the drone or the controller was not beaconing
any management frames during the flight. We matched the channels by setting the same
channel and frequency on the app and the wireless card on the laptop. We then opened
Wireshark (v3.2.7) and filtered DJI’s Media Access Control (MAC) address. Since we did
not want the filter for a specific MAC address, we created a byte-offset capture filter for
the first three octets unique to each manufacturer, such as DJI. The filters did not show
any MAC addresses related to the DJI. The probable reason for this is because the drone is
using OcuSync 2.0, which is a wireless transmission protocol used in these newer types of
drones when transmitting video feeds over long distances.
Although the user interface on both iOS and Android devices looked similar, one
major difference we spotted was the password character limitation when accessing the
accounts before the flight.
Drones 2021, 5, 49
17 of 20
Lastly, during the capturing scenarios of the drone operations on both iOS and Android
mobile devices, we tried shutting off the drone first while in flight by pressing and then
holding the power button. However, this method did not work. When we flipped the drone
upside down, the propellers stopped, and we were able to suspend the drone operations.
This illustrated how this drone can be best captured without causing damage to the drone.
5. Discussion
During the course of this study, we experienced several difficulties with the digital
forensic tools when it came to decrypting the flight records. Therefore, we can safely
conclude that there is no one tool that would be superior in drone forensics, as discussed
in Section 4 in detail. It is important to note that during these types of investigations, the
investigators need to utilize multiple techniques and sources to find and examine data. As
we have shown, the tool that was able to decrypt the .DAT files was not intended for digital
forensics investigations; however, it was able to decrypt and then analyze the flight logs.
Moreover, current digital forensics tools could not recognize the drone when connected
directly to the forensics machine. This is because this model of the drone is new, and it is
found that this model is not equipped with storing data internally. However, that does not
imply that the internal memory of some sort does not exist. This leaves the door open for
further analysis, such as chip-off analysis, which is out of the scope of this research.
As it was discussed in Section 4.4, the carrying capability of the DJI Mini 2 drone
was more than we expected. The ability to carry more than its weight should be very
concerning when thinking about malicious activities that can be performed easily without
being detected. Furthermore, another consideration is that this type of drone does not
require any previous paperwork or registration, which leaves law enforcement agencies
with no ability to track back to the owner or a malicious actor. At the time of this writing,
there are no major changes expected in FAA rules regarding micro drones (e.g., DJI Mini 2)
at least until 2023 [23], leaving room for malicious activities.
Security concerns arose when the DJI Fly app was not in the official Android Play
Store, and it had to be downloaded as an APK file and then installed on the mobile device.
This presents great security concerns since the owner of the device does not always have
the latest version (i.e., updated version) of the app. In addition, the app can contain
malicious code placed by accident or on purpose. It is also possible that malicious code can
be introduced or hard-coded into the APK file, which leads to vulnerable mobile devices
used by the end-users.
During the initial setup of the drone, we were able to fly the drone without a GPS
signal successfully, further indicating anti-forensic challenges to hide any PII related to the
location. As a result, these challenges will make the investigation challenging, even if they
consist only of the phone and the drone with the controller.
The error codes were found during the examination of the .DAT files via the airdata.com website. These errors showed a possibility to discover if the drone was carrying a
load while operating. The error code: “Not Enough Force/ESC Error” was repeated continuously during the weight testing flights. Figure 17 shows the definition of this error code
according to the airdata.com wiki page for notification [24]. Moreover, Figure 18 demonstrates the error code while the drone is being captured in Scenario 2 (see Section 3.3.2).
Drones 2021, 5, 49
18 of 20
Figure 17. ESC error description [24].
Figure 18. ESC error message in Scenario 2 from app.airdata.com (accessed on 31 May 2021).
Drones 2021, 5, 49
19 of 20
6. Conclusions and Future Work
Drone usage over the last few years, especially in recreational uses, has dramatically
increased in production. This increase greatly affects law enforcement agencies that are
trying to battle malicious drone usage. In this case study, we had complete control over all
stages of the conducted comprehensive experiment on the DJI Mini 2 drone to utilize it in
creating criminal-like scenarios. Similar scenarios are likely to be committed for nefarious
activities in the real world by malicious users. While the findings of this study are limited
to only one UAV (i.e., DJI Mini 2), it is important to note that the availability, price, and lack
of regulations for the drone make it easy to conduct criminal-like activities. That is why
having a comprehensive study on the drone can help forensic investigators when faced
with similar scenarios. As discovered in our analysis, the carrying capacity of the DJI Mini
2 is more than the weight of the drone itself, which might be used by malicious actors in
different scenarios such as dropping contraband materials on prisons or smuggling drugs
over borders, etc.
For future work, we plan to perform chip-off data extracting and analysis. This may
be very useful due to the ability to acquire data from the drone body, which would reveal
insightful information, as seen from previous research. Moreover, a further experiment can
be performed to check how battery usage is affected when carrying various weights. Finally,
an examination of OcuSync 2.0 transmission technology can be performed to experiment
on communication methods between the devices by applying a UAV kill chain to identify
possible intrusion vulnerabilities.
Author Contributions: The authors of this paper have contributed to this work in the following
ways. Conceptualization, M.S. and M.M.M.; methodology, M.S. and M.M.M. and U.K.; validation,
M.S. and M.M.M. and U.K.; formal Analysis, M.S. and M.M.M.; resources, M.S. and M.M.M. and U.K.;
investigation, M.S. and M.M.M.; writing—original draft preparation, M.S. and M.M.M.; writing—
review and editing, M.S. and M.M.M. and U.K.; visualization, M.S. and M.M.M.; supervision, U.K.;
project administration, M.S. and M.M.M. All authors have read and agreed to the published version
of the manuscript.
Funding: This research received no external funding.
Conflicts of Interest: The authors declare no conflict of interest.
References
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
Intelligence, I. Drone Industry Analysis 2021: Market Trends & Growth Forecasts. 2021. Available online: https://www.
businessinsider.com/drone-industry-analysis-market-trends-growth-forecasts (accessed on 10 March 2021).
FAA. UAS Sightings Report. Available online: https://www.faa.gov/uas/resources/public_records/uas_sightings_report/
(accessed on 10 March 2021).
Bouafif, H.; Kamoun, F.; Iqbal, F.; Marrington, A. Drone forensics: Challenges and new insights. In Proceedings of the 2018 9th
IFIP International Conference on New Technologies, Mobility and Security (NTMS), Paris, France, 26–28 February 2018; pp. 1–6.
Kao, D.Y.; Chen, M.C.; Wu, W.Y.; Lin, J.S.; Chen, C.H.; Tsai, F. Drone Forensic Investigation: DJI Spark Drone as A Case Study.
Procedia Comput. Sci. 2019, 159, 1890–1899. [CrossRef]
Lan, J.K.W.; Lee, F.K.W. Drone Forensics: A Case Study on DJI Mavic Air 2. In Proceedings of the 2021 23rd International
Conference on Advanced Communication Technology (ICACT), Pyeongchang, Korea, 7–10 February 2021; pp. 291–296.
Jain, U. A Drone Forensics Investigation Framework. Ph.D. Thesis, Purdue University, West Lafayette, IN, USA, 2017.
Roder, A.; Choo, K.K.R.; Le-Khac, N.A. Unmanned aerial vehicle forensic investigation process: Dji phantom 3 drone as a case
study. arXiv 2018, arXiv:1804.08649.
Salamh, F.E.; Karabiyik, U.; Rogers, M.K. RPAS forensic validation analysis towards a technical investigation process: A case
study of yuneec typhoon H. Sensors 2019, 19, 3246. [CrossRef] [PubMed]
Yousef, M.; Iqbal, F.; Hussain, M. Drone Forensics: A Detailed Analysis of Emerging DJI Models. In Proceedings of the 2020 11th
International Conference on Information and Communication Systems (ICICS), Irbid, Jordan, 7–9 April 2020; pp. 066–071.
Al-Room, K.; Iqbal, F.; Baker, T.; Shah, B.; Yankson, B.; MacDermott, A.; Hung, P.C. Drone Forensics: A Case Study of Digital
Forensic Investigations Conducted on Common Drone Models. Int. J. Digit. Crime Forensics 2021, 13, 1–25. [CrossRef]
Yousef, M.; Iqbal, F. Drone forensics: A case study on a DJI Mavic Air. In Proceedings of the 2019 IEEE/ACS 16th International
Conference on Computer Systems and Applications (AICCSA), Abu Dhabi, UAE, 3–7 November 2019, pp. 1–3.
Drones 2021, 5, 49
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
20 of 20
Iqbal, F.; Alam, S.; Kazim, A.; MacDermott, Á.; Hamdi, D.A. Drone forensics: A case study on DJI phantom 4. In Proceedings of
the 2019 IEEE/ACS 16th International Conference on Computer Systems and Applications (AICCSA), Abu Dhabi, UAE, 3–7
November 2019; pp. 1–6.
Clark, D.R.; Meffert, C.; Baggili, I.; Breitinger, F. DROP (DRone Open source Parser) your drone: Forensic analysis of the DJI
Phantom III. Digit. Investig. 2017, 22, S3–S14. [CrossRef]
Prastya, S.E.; Riadi, I.; Luthfi, A. Forensic analysis of unmanned aerial vehicle to obtain gps log data as digital evidence. IJCSIS
2017, 15, 279–285.
Salamh, F.E.; Mirza, M.M.; Karabiyik, U. UAV Forensic Analysis and Software Tools Assessment: DJI Phantom 4 and Matrice 210
as Case Studies. Electronics 2021, 10, 733. [CrossRef]
Mobile Devices. 2017. Available online:
[email protected] (accessed on 17 March 2020).
Technology, B. Autopsy. Available online: https://www.basistech.com/autopsy (accessed on 6 March 2021).
Forensic, M. Magnet AXIOM—Digital Investigation Platform. Available online: https://www.magnetforensics.com/products/
magnet-axiom (accessed on 6 March 2021).
Cellebrite. Home—Cellebrite|Digital Intelligence for a Safer World. Available online: https://www.cellebrite.com/en/home/
(accessed on 7 March 2021).
ReFirmLabs. GitHub—ReFirmLabs/binwalk: Firmware Analysis Tool. Available online: https://github.com/ReFirmLabs/
binwalk (accessed on 26 April 2021).
DatCon. CsvView/DatCon. Available online: https://datfile.net/ (accessed on 15 April 2021).
UAV, A. Drone Data Management and Flight Analysis|Airdata UAV. Available online: https://airdata.com/ (accessed on 23
April 2021).
DroneDJ. The Rules for Sub-250 g Drones Might Just Surprise You—DroneDJ. Available online: https://dronedj.com/2021/04/
29/what-are-the-rules-for-sub-250-gram-drones/amp/ (accessed on 30 April 2021).
Airdata UAV. Not Enough Force/ESC Error | Drone Notifications WIKI|Airdata UAV. Available online: https://app.airdata.
com/wiki/Notifications/Not+Enough+Force/ESC+Error (accessed on 26 April 2021).