Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2001, Comptes Rendus de l'Académie des Sciences - Series I - Mathematics
…
6 pages
1 file
One shows the existence of a smooth projective curve over F2 and of representations of the arithmetic fundamental group of X ⊗ k with values in SL2(k[[t]]), with k suitable finite field of characteristic 2, such that the image of the geometric fundamental group is infinite. This gives a negative answer to a question of A.J. de Jong. 2001 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS Une famille non triviale de fibrés fixés par le carré du Frobenius Résumé. On montre l'existence d'une courbe projective lisse X sur F2 et de représentations continues du groupe fondamental arithmétique de X ⊗ k à valeurs dans SL2(k[[t]]), avec k corps fini convenable de caractéristique 2, telles que l'image du groupe fondamental géométrique soit infinie. Cela répond par la négative à une question de A.J. de Jong. 2001 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS Version française abrégée On montre dans cette Note l'existence d'une courbe projective X, lisse de genre 2 définie sur le corps à 2 éléments et d'une famille paramétrée par une courbe lisse S de fibrés vectoriels de rang 2 sur X, à déterminant trivialisé, qui est isomorphe à son image inverse par le carré du Frobenius (corollaire 3.2). On associe alors à tout point fermé s de S une famille de représentations continues du groupe fondamental arithmétique π 1 (X ⊗ k) dans SL 2 (k[[t]]) (muni de la topologie t-adique), où k est une extension finie convenable du corps résiduel k(s), telles que l'image du groupe fondamental géométrique de X ne soit pas finie. Ceci répond négativement à une question posée par de Jong. Dans [2], il conjecture que tout F [[t]]faisceau lisse sur X, avec un nombre premier différent de p, a une monodromie géométrique finie. Ce résultat assure en particulier que l'hypothèse = p est indispensable, même si X est projective. On utilise la description du Verschiebung agissant sur l'espace des modules de fibrés de rang 2 et de déterminant trivial sur une courbe ordinaire de genre 2 obtenue par C. Pauly et l'auteur dans [4]. Note présentée par Pierre DELIGNE. S0764-4442(01)02109-7/FLA 2001 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés
Journal of Pure and Applied Algebra, 1990
Advances in Mathematics, 2012
We prove that sections of arithmetic fundamental groups of hyperbolic curves with cycle classes uniformly orthogonal to Pic ∧ can be lifted to sections of cuspidally abelian absolute Galois groups, under a certain condition on the base field (which is satisfied for instance by fields with finitely generated absolute Galois groups). We also observe the existence of sections of geometrically pro-Σ arithmetic fundamental groups of hyperbolic curves over p-adic local fields, p ̸ ∈ Σ , which do not arise from rational points. c
Inventiones mathematicae, 2011
We prove that for a hyperelliptic fibration on a surface of general type with irreducible fibers over a (possibly) non-complete curve, the image of the fundamental group of a general fiber in the fundamental group of the surface is finite. Examples show that the result is optimal. As a corollary of this result we prove two conjectures; the Shafarevich conjecture on holomorphic convexity for the universal cover of these surfaces, and a conjecture of Nori on the finiteness of the fundamental groups of some surfaces. We also prove a striking general result about the multiplicities of multiple fibers of a hyperelliptic fibration on a smooth, projective surface. Mathematics Subject Classification (2000) 14F35 • 14D06 1 Introduction Let us recall the following well-known question. Shafarevich Conjecture (SC) Let X be a smooth projective variety/C. Then the universal covering space X of X is holomorphically convex.
Bulletin des Sciences Mathématiques, 2010
Let X be a smooth projective variety defined over a perfect field k of positive characteristic, and let F X be the absolute Frobenius morphism of X. For any vector bundle E −→ X, and any polynomial g with non-negative integer coefficients, define the vector bundleg(E) using the powers of F X and the direct sum operation. We construct a neutral Tannakian category using the vector bundles with the property that there are two distinct polynomials f and g with non-negative integer coefficients such thatf (E) =g(E). We also investigate the group scheme defined by this neutral Tannakian category.
Progress in Mathematics
Journal für die reine und angewandte Mathematik (Crelles Journal), 2000
Geometriae Dedicata, 1993
2009
For a vector bundle E on a model of a smooth projective curve over a p-adic number field a p-adic representation of the geometric fundamental group of X has been defined in work with Annette Werner if the reduction of E is strongly semistable of degree zero. In the present note we calculate the reduction of this representation using the theory of Nori's fundamental group scheme.
Mathematische Zeitschrift, 1985
In this paper we show how to split the p-localisation of the space Y=X(IEP ~ x ... xGP ~176 into a bouquet of spaces whose cell structures are governed by the modular representations of the general linear group GL(n,p), where p is a prime and n the number of copies of 112P ~ in the above product. Our main interest is in the case n=2, where detailed information on the modular representation theory is available. To formulate the general result, let p run through the finite set of irreducible representations of GL(n,p) over the finite field IFp. Suppose d(p) denotes the dimension of the underlying vector space of a module V(p) affording the representation p, and n(p,r) the number of times that V(p) appears as a composition factor in the GL(n,p) module of homogeneous polynomials of degree r in lFp[x 1 .... ,x,]. In w we prove 2.13. Theorem. There are CW-complexes Y(p) of finite type such that Y and the bouquet ~/ d(p) Y(p) are homotopy equivalent after p-localisation. Moreover, Y(p) p has no cells in even positive dimensions, and n(p, r) cells in dimension 2r+ 1. The notation d(p)Y(p) indicates that the space Y(p) appears d(p) times. Motivation for this work arises in the problem of representing elements in the stable homotopy groups of spheres 7z s by framed manifolds of some specified nature. We recall for example that the image of the classical J homomorphism, determined by Adams [1] and Mahowald [13], consists of those elements representable via the Pontrjagin-Thom construction by framings on standard spheres. A natural extension is to investigate elements which 2 1 1 1 Cell dimension 35 53 55 59 61
2002
Sei V ein endlich-dimensionaler, komplexer Vektorraum. Eine Teilmenge X in V hat die Trennungseigenschaft, falls das Folgende gilt: Für je zwei linear unabhängige lineare Funktionen l, m auf V existiert ein Punkt x in X mit l(x) = 0 und m(x) = 0. Wir interessieren uns für den Fall V = C[x, y] n , d.h. V ist eine irreduzible Darstellung von SL 2 . Die Teilmengen, die wir untersuchen, sind Bahnabschlüsse von Elementen aus C[x, y] n . Wir beschreiben die Bahnen, die die Trennungseigenschaft erfüllen:
Vínculos de Historia, 2024
Premodern Jewish Books, their Makers and Readers in an Era of Media Change, 2024
Archaeological and Anthropological Sciences, 2023
Digital Object Identifier Number, 2024
Hyperfine Interactions, 2001
Gombe Journal of General Studies (GJGS), 2019
Труды Института русского языка им. В. В. Виноградова, 2020
MITA ARNIKA, 2021
Religion on the Edge: De-centering and Re-centering the Sociology of Religion, 2012
Miradas multidisciplinares del diseño sostenible, 2023
Current Nanomaterials, 2017
Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 2019
Journal of Clinical Microbiology, 2011
Geochimica et Cosmochimica Acta, 1998
American Journal of Respiratory Cell and Molecular Biology, 2013
IET Science, Measurement & Technology, 2018
Computers, Materials & Continua, 2022