Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
…
9 pages
1 file
In this research, I have tried to summarize the cuts of Dedekind in the most concise way possible. I begin with a historical instruction with which I intend to place Dedekind's works in the history of mathematics. To introduce the concept of cutting, which is the central concept of my research, I begin by stating how the cuts are incomplete for rational numbers and once these concepts are settled I try to move towards the completeness of the cuts in real numbers and how they are intimately linked to the concept of continuity. I also explain as an introduction how we can operate with the cuts. En este trabajo de investigación he intentado resumir las cortaduras de Dedekind de la manera mas concisa posible. Comienzo con una intruduc-cion historica con la que pretendo situar los trabajos de Dedekind en la historia de las matematicas. Para introducir el concepto de cortadura, que es el concepto central de mi investigación, comienzo exponiendo como las cortaduras son incompletas para los números racionales y una vez asentado estos conceptos intento avanzar hacia la completitud de las cortaduras en los números reales y como estan intimamente ligadas al concepto de con-tinuidad. Además expongo a modo de introducción como podemos operar con las cortaduras.
In the training of mathematics teachers in Brazil we can not disregard the historical and epistemological component aiming the transmission of mathematics through a real understanding of the nature of classic concepts and foundamental definitions to Mathematics, whether in the school context or in the academic context. In this sense, the present work addresses a discussion about the introduction and formulation of Dedekind's cut. Such terminology became popular from the work and pioneering research developed by Richard Dedekind (1831 – 1916), although in the set of his contemporaries, as in the case of A. L. Cauchy (1789 – 1857), the proposition of the construction of the real numbers through other notions and others mathematical methods became known. Thus, a historical and epistemological way for the definition of cut is observed and considered. However, Dedekind did not formally answered mainly some of the questions about this notion. The understanding of this epistemological and mathematical process, on the part of the teacher, in which the mathematical intuition and heuristics has an essencial place and requires more attention.
2014
En 1882, Richard Dedekind et Heinrich Weber proposent une re-définition algébraico-arithmétique de la notion de surface de Riemann utilisant les concepts et méthodes introduits par Dedekind en théorie des nombres algébriques. Dans un effort pour regarder au-delà de l’idée d’une “approche conceptuelle”, ce travail se propose d’identifier les éléments de pratique propres à Dedekind, en partant de l’article co-écrit avec Weber. Nous mettons en avant l’idée selon laquelle, dans les travaux de Dedekind, l’arithmétique peut jouer un rôle actif et essentiel pour l’élaboration de connaissances mathématiques. Pour cela, nous proposons l’étude, dans la pratique mathématique, de la conception de l’arithmétique chez Dedekind, de la place donnée à et du rôle joué par les notions arithmétiques, et des possibles évolutions de ces idées dans les travaux de Dedekind. Cette étude est faite par l’examen serré d’une sélection de textes. Dans un premier temps, sont étudiés les premiers travaux de Dedekind, son Habilitationsvortrag en 1854 et ses premières recherches en théorie des nombres. Suite à cela, nous proposons une comparaison des deux premières versions de la théorie des nombres algébriques publiée par Dedekind en 1871 et 1877. Enfin, ayant mis en évidence le rôle central de l’arithmétique, pour les mathématiques dedekindiennes, nous nous tournons vers les travaux fondationnels de Dedekind, afin d’expliciter la spécificité de sa conception en élucidant, à travers ses travaux sur la définition des nombres, ce qui donne à l’arithmétique cette place de choix et les liens avec la définition des entiers naturels donnée dans le fameux Was sind und was sollen die Zahlen? en 1888.
Philosophia Mathematica, 2017
2016
Richard Dedekind (1831–1916) was one of the greatest mathematicians of the nineteenth-century, as well as one of the most important contributors to algebra and number theory of all time. Any comprehensive history of mathematics will mention him for his investigation of the notions of algebraic number, field, group, module, lattice, etc., and especially for the invention of his theory of ideals (see, e.g., Dieudonné 1985, Boyer & Merzbach 1991, Stillwell 2000, Kolmogorov & Yushkevich 2001, Wussing 2012). Dedekind’s more foundational work in mathematics is also widely known. Often acknowledged in that connection are: his analysis of the notion of continuity, his introduction of the real numbers by means of Dedekind cuts, his formulation of the Dedekind-Peano axioms for the natural numbers, his proof of the categoricity of these axioms, and his contributions to the early development of set theory (Grattan-Guinness 1980, Ferreirós 1996, 1999, 2016b, Jahnke 2003, Corry 2015). While many ...
2021
Click here to let us know how access to this document benefits you. Click here to let us know how access to this document benefits you. Recommended Citation Recommended Citation Saclolo, Michael P., "Stitching Dedekind Cuts to Construct the Real Numbers" (2021). Analysis. 15. https://digitalcommons.ursinus.edu/triumphs_analysis/15 This Course Materials is brought to you for free and open access by the Transforming Instruction in Undergraduate Mathematics via Primary Historical Sources (TRIUMPHS) at Digital Commons @ Ursinus College. It has been accepted for inclusion in Analysis by an authorized administrator of Digital Commons @ Ursinus College. For more information, please contact
2014
In 1882, Richard Dedekind and HeinrichWeber offer an arithmetico-algebraic re-definition of the Riemann surface, using concepts and methods introduced by Dedekind in algebraic number theory. In an attempt to investigate Dedekind’s works beyond the mere idea of a “conceptual approach”, this works proposes to identify the elements of practice specific to Dedekind, starting from the paper co-written with Weber. I put forward the idea thatin Dedekind’s works, arithmetic can play an essential and active role in the elaboration of mathematical knowledge. For this, I propose to study, inDedekind’s mathematical practice, the conception of arithmetic, the place and role of arithmetical notions and the possible evolutions in Dedekind’sideas about arithmetic. This study is based on a careful analysis of a selection of Dedekind’s texts. For this, I study Dedekind’s early works, his 1854Habilitationsvortrag and his first works in number theory. Then, I propose a comparison between the first two ...
Logicism in the philosophy of mathematics is usually seen as one of the main reactions against Kant's claim that mathematical knowledge is synthetic a priori, since based on pure intuition. Typically Frege and Russell are taken to be its main representatives, especially early on. At the core of the present essay will be Richard Dedekind, however.
Synthese, 2005
I hope you often walk on the paths of Dedekind, but avoid the too abstract corners, which he now likes so much to visit. His newest edition contains so many beauties, §173 is highly ingenious, but his permutations are too disembodied, and it is also unnecessary to push abstraction so far. 2 This remark was made by someone who refers to Dedekind as ''our admired friend and master''. The use of permutations, i.e., isomorphisms, in Dedekind's algebraic investigations is systematically related to the use of similar mappings in Was sind und was sollen die Zahlen? (The introduction of the general concept of mapping and its structure-preserving variety for mathematical investigations is perhaps the methodologically most distinctive and most radical step in Dedekind's work.
Studi di Estetica, 2024
Corruption in Pre-Modern Societies, 2024
Greek, Roman, and Byzantine Studies (GRBS), 2018
PMLA, 2012
Lancet Oncology, 2024
Bulletin of Sumy National Agrarian University
The Role of Community-Mindedness in the Self-Regulation of Drug Cultures, 2012
Acta Crystallographica Section E Structure Reports Online, 2012
Folio Revista De Letras, 2011
Journal of Internal Medicine, 2008
International Journal of Knowledge Management, 2011