[RnniocwxaoN, VOL 28, No. 2B, 1986, P 839-862]
HIGH-PRECISION CALIBRATION OF THE RADIOCARBON TIME SCALE, 500-2500 ac
GORDON W PEARSON
Palaeoecology Centre, The Queen's University of Belfast, Belfast, Northern Ireland
and
MINZE STUIVER
Center, University of Washington, Seattle, Washington 98195
of
Geological
Sciences
and
Quaternary
Research
Department
The treatment of oak wood samples at Belfast was to first plane the
20-year blocks of wood some 180g into thin shavings. These were then
bleached using sodium chlorite in 0.018N HC1 raised to a tempertaure of
ca 0°C. This treatment left the samples free from tannins and lignins and
close to pure cellulose. Following cellulose reparation samples were charred at 500°C to leave a carbon-rich residue ready for combustion to CO2.
The treatment of the Seattle samples (mainly Pine followed one of two
different methods detailed in Stuiver and Pearson 1986 twin paper).
INTRODUCTION
This paper is a twin paper to that of Stuiver and Pearson 1986 which
covers the time period AD 1950-500 BC. The combined radiocarbon ages of
dendrochronologicallY dated wood presented in this paper covers the time
period 500-2500
BC.
Specific discussion of detail effecting only one of the two laboratories
is given in the paper which has, as the premier author, the person responsible for the particular laboratory's measurement. Factors effecting both
laboratories can be in either paper, but are carefully referenced to the
other; outline details are given in both papers.
The construction of a calibration curve from 14C ages with statistically
limited precision is not a simple matter. Not only should the standard error
in the determination be as small as possible, but the calculation of this error
also has to be realistic in that it should account for all variability encountered in the laboratory procedures. Independent dendrochronoloc calibration of the samples is also a must. Proof of accuracy has to come from a
comparison of the results obtained in two or more facilities. It will be shown
that the results obtained in Seattle and in Belfast on wood of the same age,
but from different regions, give consistent replication within the quoted
error over the entire interval. The aspects of replication are first discussed
and are followed by the details of calibration Fig 1 Tables 1 2).
The problems of quoted errors and the use and limitations of error
multipliers are discussed, and recommendations are given for the inclusion
of such errors in the reported 14C age.
TECHNIQUE AND LABORATORY REPRODUCIBILITY
Two different techniques were employed at the Belfast and Seattle
laboratories. In Belfast the oak wood samples were converted to CO b
combustion and sub-sampled for mass spectrometric measurement of the
stable carbon isotope ratio. Benzene was then synthesized from sample CO2
following the conversion path CO2-LiC--C2H2-C6H6 using the method
of Barker 1953. The benzene was then measured using a Philips PW4510
automatic liquid scintillation counter set up as previously described in
Pearson 1979 1983. Various corrections were applied to the observed
2y
count-rates based on the careful monitoring of internal and external
parameters. The application of these corrections simulate a constant
counting efficiency such that only one reference standard count-rate was
used for the calculation of all the 14C ages reported herein although measured over a period of 10 Years. The system did not allow a constant background to be used over this period but corrections applied to the observed
background count-rate gave an inaccuracy of < ± 0.5° when used to evaluate a 4C age of about one half-life.
The method used in Seattle was the proportional counting of CO2 and
is described more fully in Stuiver and Pearson 1986 twin paper).
The reproducibility of Belfast data is proven by a set of 55 replicate
analyses measured over a period of 10 years some replicates being done
within months others repeated years later. The actual standard deviation
in a single measurement assumed to be all of equal weight based on 55
replicate analyses was calculated using the relationship &= VSS/2(n-^ 1
where SS = Sum of the difference between duplicates 2, n = 55, and & is
the derived single measurement standard deviation which can then be comquoted on the 110 individual
pared to the mean standard deviation
measurements. The actual calculated standard deviation value was & = 19.0
-r. The illCaii quoted
error on the individual measurements was evaluated
1
_
from a = -1 r n and gave a value of & = 15.4 Yr, thus suggesting that the
>
1
DENDROCHRONOLOGY AND SAMPLE TREATMENT
The wood samples used for the Belfast radiocarbon calibration came
from deciduous oaks uercus etraea and uercus robur growing at altitudes <200m in Ireland Scotland and England Pilcher et al 1984. The
7272-Year Belfast chronology consists of the ring patterns of 1035 trees.
Replication was the keystone to the production of the absolute dates for the
les no year is spanned by <6 trees; most years are spanradiocarbon samples;
ned b 20-30 trees. External cross-dating between the Irish chronology
and those from England and Germany provided independent checks on its
validity Brown et al, 1986. The samples measured by the Seattle Laboratory were either Douglas Fir from the northwestern United States, Sequoia
from California or German Oakk Table 2) 'Stuiver & Pearson 1986 twin
paper).
Y
839
Gordon W Pearson and Minze Stuiver
840
quoted error is underestimated by ca 23% or an error multiplier of 1.23 is
required.
The error multiplier of the Seattle laboratory was also determined
experimentally in two ways: 1 from the comparison of 30 Pairs of wood
samples from different trees giving an error multiplier of 1.53 and 2
repeated measurement on outlying samples yielded an error multiplication
of 1.62. Both of these values were demonstrated to be maximum values ,
and a value of 1.60 was taken to be a reasonable estimate and perhaps still
rather generous. Additional details are given in Stuiver and Pearson
(1986).
SYSTEMATIC DIFFERENCES BETWEEN LABORATORIES AND
COMPARISON OF VARIANCE
14C
The systematic
age differences between the Belfast and Seattle
laboratories have a maximum difference of only a few years Stuiver &
Pearson 1986 twin paper). The weighted mean 14C age difference of the
Belfast and Seattle bi-decadal data set is 0.6 ± 1.6 Yr number of comparisons n = 214. For the AD interval the difference is 2.6 ± 2.3 Yr n = 90 and
for the BC portion it is 3.4 ± 2.1 n = 124).
The 14C ages of wood of the same age for Ireland, south Germany and
northwestern United States differ on average by only a few years Stuiver &
Pearson twin paper).
It is shown Stuiver & Pearson, 1986 twin paper that the quoted labo
ratory standard deviations account for almost all the differences found
between the two data sets.
CONSTRUCTION OF RADIOCARBON AGE CALIBRATION CURVES
The calibration curves were constructed from the set of 14C ages
obtained for samples each spanning a 20-Yr interval with some exceptions
as noted in the Table 1 heading. The cal AD BC or cal BP ages follow the
mid-Points of the Belfast bi-decadal series whenever possible, starting in AD
1840. The AD 1940-AD 1860 data set is based on the Seattle data alone' all
other 4C ages are based on the weighted Belfast Seattle averages except
when Belfast skipped a decade. Here the gaps were filled by averaging 30-yr
blocks of Seattle data see Table 1).
As discussed previously, the standard deviations in the 14C age determinations of each laboratory are based on the reproducibility of the measurements within each laboratory and are larger than the errors usually quoted
by both laboratories. For Belfast where additional factors are used to calculate the routinely reported standard deviation beyond the counting statistics the reproducibility tests indicate an error multiplier of 1.23. For
Seattle where the routinely reported standard deviations include only the
error derived from counting statistics, the error multiplier is 1.6.
The standard deviation assigned to the curve the vertical difference
between center and outer curve accounts for nearly 90% of the demonstrated standard deviation in the 14C age differences of both laboratories.
The mean standard deviation reported with the curves is 12.1 Yr and is
solely based on the Belfast and Seattle measuring reproducibility. The var i1
ance in the differences in 14C ages of contemporaneous samples measured
independently in Belfast and Seattle indicate a measure of uncertainty that
is equivalent with an average standard deviation of 13.4 Yr.
The wood used for the 14C measurements came from the western
United States Ireland and southern Germany Table 2. Oak wood was
used for the European chronologies Becker, 1983 Pilcher et al 1984 and
Douglas Fir and Sequoia for the US portion. In the preceding sections it
was shown that contemporaneous wood from these trees differed on average, by only a few 14C Years. Thus, although the curves are based on wood
from different trees identical results would have been obtained if all measurements had been made on a single tree from one locality.
THE AGE ERROR REPORTED WITH THE RADIOCARBON DATE
The international 14C community follows strict calculation procedures
when determining a conventional 14C age Stuiver 8c Polach 1977). Unfor tunatelY, age error calculations are much less bound by rules.
The error in any laboratory determination is a composite of 1 The
Poisson statistical error based on the number of counts observed for sample and standards, assuming constant counting conditions and 2 the
errors associated with factors that cause deviation from the above constant
counting conditions and other non-systematic errors which affect the
reproducibility of the laboratory results. The latter can be derived from
replicate sample measurements. Attempts to determine systematic errors
are rarely made by the 14C community. The reported sample age error one
standard deviation is often based solely on Poisson statistics in the number
of registered sample and standard counts. Such a substitute for a repeatmeasurement derived standard deviation leads to an underestimate because it neglects other factors that add to the variance Pearson, 1979,
1983).
When identical tree-ring samples with approximate ages of ca 5000
14
C Yr were measured by 20 laboratories International Study Group,
1982 it was found that the reproducibility standard deviations in the submitted data set were substantially higher than the age errors reported by
the laboratories. Systematic errors ranged from <20 Yr 3 laboratories to
200 Yr 1 laboratory).
When comparing the reproducibility standard deviation obtained
after removal of off-sets from the data set with the laboratory reported
error it was found that Q has to be multiplied with 1.3 for a < 20 Yr, with
ca 2.0 for o in the 20- to 80-Yr range, and with 1.0 for > 80 Yr (International Study Group. These multipliers are strictly laboratory-related and in
principle independent of the magnitude of o. Additional information on
systematic errors is available for a set of samples in the 000 to 8000 14C Yr
range measured in Seattle La olla Heidelber and Tucson Stuiver et al
1986). Off-sets of 29 ± 1 0 27 ± 1 2 and 52 ± 8 y r were found respectively,
for Seattle-La olla, Seattle-Heidelberg, and Seattle-Tucson comparisons.
The above studies indicate that systematic errors may exist and that
the reported standard deviation of a 14C age measurement is usually too
low. The degree of under-reporting has only been determined so far for 20
High-Precision Calibration
o
odd laboratories for samples ca 5000 14C Yr old. Unfortunately, the error
multipliers determined in the above international group study cannot be
applied to all age ranges because the multiplier values are age dependent
Stuiver et al 1986. Error multipliers also may change from year to year or
even day to daY at a specific laboratory with improving or deteriorating)
experimental conditions. It is recommended that the user of a 14C date
obtain additional information on reproducibility and systematic error
determinations from the reporting laboratory. This information should
lead to a realistic standard deviation in the age based on repeat measurements of test samples although care must be taken in its use particularly
when determining 2 and 3 probabilities. Limitations on systematic error
size also should be provided. A systematic error, of course> should not be
art of the regular ± reported with the date.
In the absence of the above information the user can only take as the
14
C age error the actual reported a, with the understanding that this error is
usually too small. In case the user would take twice the reported standard
deviation it should be realized that 1 for some laboratories the actual error
may be smaller than 2a and 2 statistical rules such as stating that only 1
event out of 20 would be outside 2a bounds are not valid because after all
the original a is not a properly defined standard deviation in many
instances.
CALIBRATION INSTRUCTIONS
The Figure 1 calibration curves consist of three lines. The center line is
the actual calibration curve whereas the outer lines indicate the one sigma
standard deviation uncertainty in the calibration curve. The calibration
curve depicts the non-linear transformation of 14C ages to calibrated AD
BC or BP ages. The nomenclature adopted for the dendro calendar Year
time scale is cal AD BC or cal BP. The cal AD BC ages are plotted along the
lower horizontal axis and the cal BP ages along the upper one.
Cal BP ages are relative to the year AD 1950, with 0 cal BP equal to AD
1950. The relationship between cal AD BC and cal BP ages is simple: cal BP =
1950 cal AD and cal BP = 1949 cal BC. The switch from 1950 to 1949
when converting BC ages is caused by the absence of the zero year in the
AD BC chronology when progressing from 1 BC to 1 AD, the cal BP ages
should be without a gap).
The conversion of a 14C age to a cal age is straightforward: 1 Draw a
horizontal parallel to the bottom axis line A through the 14C age to be
converted and 2 draw vertical lines through the intercept(s) of line A and
the calibration curve center line). The cal AD BC ages can be read at the
bottom axis the cal BP ages at the top. A single 14C age can correspond with
multiple cal ages due to past changes in atmospheric 14C levels see Stuiver ,
1982 for illustration).
The user has to determine the calibrated ages from the Figure 1 graphs
wing lines. An alternate approach is the use of Table 2 where the cal
b drawing
by
ages are listed for 14C ages that increase by 20-Yr steps. Obviously, the user
has to interpolate between the 20-Yr steps of i4C ages and sigmas if further
fine tuning is desired.
-
the JqG Time Scale
500-2500 BC
841
14C
age into a range of cal
The conversion of the standard error in the
BP ages is more complicated. The user should first determine
whether he/she wants to use 1 the laboratory quoted error see previous
section for a discussion or 2 increase the quoted error by a known ' error
multiplier. ' ' Once the sample a has been targeted the curve a one standard
deviation should be read from the calibration curve by taking the difference in radiocarbon years between center curve and outer curves in Figure 1 The curve a and sample a should then be used to calculate total a =
(sample a 2 + curve a 2 Stuiver, 1982).
Horizontal lines should now be drawn through the 14C age + total a,
14C
and
age total a value. The vertical lines drawn through the intercepts
with the CENTRAL curve Yield the outer limits of possible cal AD BC or
BP ages that are compatible with the sample standard deviation.
The above procedure was used to derive the "ranges" of cal AD BC BP
ages listed in Table 2.
The conversion procedure yields 1 single or multiple cal AD BC BP
ages that are compatible with a certain 14C age and 2 the range(s) of cal
ages that corresponds to the standard deviation in the 14C age. The probability that a certain cal age is the actual sample age may be quite variable
within the cal age range. Higher probabilities are encountered around the
intercept ages. Low, or near zero probabilities are encountered when part
of the calibration curve `snakes' outside the total a boundaries. The nonlinear transform of a Gaussian standard deviation around a 14C age into cal
AD BC BP ages leads to a very complex probability distribution that can
only be calculated with the aid of computers. We are currently developing
suitable programs for these probability calculations and plan to make these
programs available in the near future.
The calibration data presented in this paper are to be used for samples
formed in isotop is 14C equilibrium with atmospheric CO2 Although the
wood samples were collected from specific regions Ireland, Germany, and
western USA) the calibration data can be used for a large part of the Northern Hemisphere Stuiver> 1982). However, ssystematic age differences are
possible for Southern Hemispheric samples where 14C ages of wood samples tend to be ca 30 Yr older Lerman Mook & Vogel 1970; Vo el Fuls &
Visser, 11986). Thus 14C ages of Southern Hemispheric samples should be
reduced bY 30 years before being converted into a cal AD BC BPage.
AD BC
-
.
SMOOTHING OF THE CALIBRATION CURVE
The Figure 1 points have a 20 -Yr time separation ie the calibration
ofwood samples spanning 20 Years. Samples subpoints are the
mitted for dating may cover shorter egseed samples) or longer intervals
matted
eg, lake sediment samples). The decadal calibration results of the Seattle
laboratory are available when better time resolution is needed Stuiver &
Becker, 11986). If less resolution is desfired , the Figure 2 curves can be used.
Here, a 5 -point moving average (usually identical with a 1 00-Yr moving
average of the Figure 1 data set was used to construct the curves. A single
line is given in Figure 2 because the uncertainty in the 5 point moving average is only a few radiocarbon years. The instructions for determining the
842
Gordon W Pearson and Minze Stuiver
'
cal AD BC 1w ages are listed in the preceding section. Samples falling outside the ranges covered
the
he twin
win papers Stuiver &Pearson, 1986,
son & Stuiver, 1986 can be provisionally converted using the curves provided by Pearson et al 1986 employing the same method outlined above.
surements of the Seattle Laboratory were supported through the National
Science Foundation ants ATM-8318665 of the Climate Dynamics Program, and EAR-8115994 of the Environmental Geosciences program.
MARINE SAMPLE AGES
Barker, H, 1953, Radiocarbon dating: Large scale preparation of acetylene from organic
material: Nature, v 172, p 631-632.
Becker, B, 1983, The long-term radiocarbon trend of the absolute oak tree-ring chronology,
2800-800 Be in Stuiver M and Kra R S eds Internatl 14C conf, 11 th Proc: Radiocarbon, v 25, no. 2, p 197-203.
Brown, D M, Munro, M A R, Baillie, M G L and Pilcher, R, 1986, DendrochronologY-the
absolute Irish standard in Stuiver M and Kra R S eds Internatl 14C conf, 12th Proc:
Radiocarbon, v 28, no. 2A.
International Study Group, 1982, An inter-laboratory comparison of radiocarbon measurements in tree rings: Nature, v 298, 619-623.
Lerman C Mook W G and Vo el C 1970, C14 in tree rings from different localities in
Olsson, IU, ed, Radiocarbon variations and absolute chronology, Nobel symposium,
12th, Proc: New York, John WileY & Sons, p 275-299.
Pearson G W 1979, Precise 14C measurement by liquid scintillation counting: Radiocarbon, v
21, no. 1, p 1-21.
1980, High precision radiocarbon dating by liquid scintillation counting
applied to radiocarbon timescale calibration, in Stuiver, M and Kra, R S, eds, Internatl
'
C conf, 10th Proc: Radiocarbon v 22, no. 2, p 337-345.
ms 1983 The development of high precision 14C measurement and its application to archaeological time-scale problems: PhD dissert, The Queen's Univ Belfast.
Pearson G W Pilcher R Baillie M G L Corbett D M and Qua, F 1986, High-precision 14C
measurement of Irish oaks to show the natural 14C variations from AD 1840-5210 BC, in
Stuiver, M and Kra, R S, eds, Internatl 14C conf, 12th, Proc: Radiocarbon, this issue.
Pilcher, R, Baillie, M G L, Schmidt, B and Becker, B, 1984, A 7,272-Year tree-ring chrono
logy for western Europe: Nature, v 312, p 150-152.
Stuiver, M, 1982, A high-Precision calibration of the AD radiocarbon time scale: Radiocarbon,
v 24, no. 1, p 1-26.
Stuiver, M and Becker, B,1986, A decadal high-Precision calibration curve, in Stuiver, M and
Kra' R S' eds' Internatl 14C conf' 12th' Proc: Radiocarbon' this issue.
Stuiver, M, Kromer, B, Becker, B and Ferguson, C W, 1986, 14C age calibration back to 13,300
14C
age matching of the German oak and US bristlecone pine chronologies,
Yr BP and the
in Stuiver M and Kra R S eds Internatl 14C conf, 12th Proc: Radiocarbon this issue.
Stuiver, M and Pearson, G W, 1986, High-Precision calibration of the radiocarbon time scale,
14C
conf, 12th Proc: RadiocarAD 1950-500 BC in Stuiver M and Kra R S eds Internatl
bon, this issue.
Stuiver, M, Pearson, G W and Braziunas, T, 1986, Radiocarbon age calibration of marine samples, in Stuiver M and Kra R S eds Internatl 14C conf, 12th Proc: Radiocarbon this
issue.
Stuiver M and Polach H A 1977 Discussion: Reporting of 14C data: Radiocarbon v 19 no.
3, p 355-363.
Vogel, C, Fuls, A and Visser, E, 1986, Radiocarbon fluctuations during the 3rd millennium
14C
conf, 12th Proc: Radiocarbon this
Be in Stuiver M and Kra R S eds Internatl
issue.
PearY
The calibraton curves should be applied only for age conversion of
samples that were formed in equilibrium with atmospheric CO2. Conventional 14C ages of materials not in equilibrium with atmospheric reservoirs
do not take into account the off-set in 14C age that may occur Stuiver &
Polach 1977). This off-set or reservoir deficiency, has to be deducted from
the reported 14C age before any attempt can be made to convert to cal AD
BC BP ages. The reservoir deficiency is time dependent for the mixed layer
of the ocean. Model calculated calibration curves for marine samples are
listed separately in this volume Stuiver, Pearson & Braziunas, 1986).
ACKNOWLEDGMENTS
G W Pearson would like to thank all members past and present of the
'4C laboratory who
participated in this research. Particular thanks are given
to S HoPer who has been responsible for the routine analysis of samples
over the last two years and to D Brown who has been responsible for the
selection and isolation of dendrochronolo 'callY dated wood samples supplied
lied by R Pilcher and M G L Baillie. Thanks are also given to D Corbett
and F Qua for their conscientious assistance in this project.
Thanks are due SERC for a ant to G W Pearson to carry out this
research.
P Wilkinson dedicated much time and care to the Seattle high-precision measurements. P Reimer's computer virtuosity was of critical importance for producing the graphs, tables and statistical analysis.
Nearly all BC determinations at Seattle were on German Oak generously supplied and dendro-dated by Bernd Becker University of Hohenheim (Stuttgart), West Germany. Dendrochronolo c determinations were
also made b M Parker Vancouver BC Canada D Eckstein University of
Hamburg, West Germany, and H Garfinkel University of Washington.
The manuscript benefitted substantially from the scientific advice
given by P M Grootes University of Washington. The radiocarbon mea-
REFERENCES
---------
cal BP
3050
3100
2950
2850
2750
2650
2550
2450
2350
1000
900
800
700
600
500
400
3000
2900
2700
2600
2500
2400
2300
2200
1100
cal BC
Fig
1A
cal BP
3550
3500
3450
3350
I
3250
3150
I
i
3050
I
2950
2850
I
3400
3300
3200
3100
3000
2900
2800
2700
2600
1600
IIII..IiiiI.iiIii,
1500
1400
1300
1200
cal BC
Fig 16
Iii.iIiiii
1100
1000
900
cal BP
4550
4200
4450
4350
4250
4150
4050
3950
3850
2500
2400
2300
2200
2100
2000
1900
4100
4000
3900
3800
3700
3600
3500
3400
3300
2600
cal BC
Fig 10
cal BP
3050
3100
2950
I
I
I
2850
I
I
I
I
2750
I
2650
I
2550
'
2450
2350
'
i
I
_
r
3000
r
r
r
rr
2900
r
r
2800
r
r
r
2700
r
r
2600
r
r
r
2500
r
r
r
r
2300
r
PEARSON AND STUIVER
2200
1100
i
1000
i
900
i
i
800
700
cal BC
Fig 2A
f
600
i.
S00
400
cal BP
3550
3500
3450
3350
3250
3150
3050
2950
2850
1500
1400
1300
1200
1100
1000
900
3400
3300
°m
3200
U)
w
3100
z
m
3000
0
U
O
2900
2800
2700
2600
1600
cal BC
Fig 2B
cal BP
4050
3900
3950
3850
3750
3650
3550
3450
3350
2000
1900
1800
1700
1600
1500
1400
3800
3700
3600
3500
3400
3300
3200
3100
3000
2100
cal BC
Fig
2C
cal BP
4550
4200
4450
4350
4250
4150
4050
3950
3850
r
r
r
4100
r
r
4000
r
3900
r
r
3800
r
r
3700
r
r
rr
r
3600
r
3500
r
r
r
3400
r
PEARSON AND STUIVER
3300
2600
2500
2400
2300
2200
cal BC
Fig 20
2100
2000
1900
High-Precision Calibration
o the
14C
Time Scalea
500-2500 BC
851
TABLE 1-B
TABLE 1-A
The radiocarbon ages are the averages of age determinations made at the Uni
versity of Belfast and the University of Washington (Seattle). The cal AD/BC or cal
BP ages represent the mid-Points of bi-decadal wood sections. Belfast data only
were used for 670 BC 690 Bc 2390 BC and 2450 BC because Seattle decade measurements were incomplete for these ages.
The cal AD/BC ages follow the mid-Points of the Belfast bi-decadal series whenever possible, starting at 510 BC. The actual midpoints of the averages were occasionally slightly different. The differences have been neglected because the midPoints of the Seattle sample were always within 1.5 Years of the mid-Point of the
corresponding Belfast sample. The standard deviation in the ages and values
include lab error multipliers of 1.23 for Belfast and 1.6 for Seattle. The trees used
and sample treatments are listed in Table 2 Stuiver & Pearson 1986).
cal AD/BC
cal BP
BC
EP
BC
BP
BC
BP
BC
BP
BC
BP
BC
BP
BC
BP
BC
BP
BC
BP
BC
BP
BC
BP
BC
BP
BC
BP
BC
BP
BC
BP
BC
BP
BC
BP
BC
BP
510
2459
530
2479
550
2499
570
2579
590
2539
610
2559
630
2579
650
2599
670
2619
690
2639
710
2659
730
2679
750
2699
770
2719
790
2739
10
2759
830
2779
50
2799
'"C
Radiocarbon
age BP
cal AD/BC
cal BP
BC
BP
BC
BP
BC
BP
BC
BP
HC
BP
BC
BP
BC
BP
BC
BP
BC
-4.1
± 1.2
2422 t 10
-5.0
± 1.1
2450 ±
-6.3 ± 1.0
2480 ±
9
8
-5.1
± 1.3
2489 ± 10
-1.14
± 1.3
2478 t
11
-1.9 ± 1.2
2502 ± 10
2.3 ± 1.2
2488 ± 10
7.3 ± 1.2
2468 ± 10
5.0±1.8
2505
± 15
BP
± 1,8
2468 ± 15
16.9±1.9
2449 t 15
20.4 ± 1,5
2442 ± 12
22.8 t 1.7
2442 t to
15.3 t 1.9
2521
14.6 t 1.2
2545 t 10
4.6 t 1.6
2644 t 13
2.2 t 1.4
2683 t 12
-.6±1.6
2725 t 13
12.1
t 16
BC
BP
BC
BP
BC
BP
BC
BP
BC
BP
BC
BP
BC
Bp
BC
BP
BC
BP
870
2819
890
2839
910
2859
930
2879
950
2899
970
2919
990
2939
1010
2959
1030
2979
1050
2999
1070
3019
1090
3039
1110
3059
1120
3069
1140
3089
1150
3099
1170
119
1190
3139
i'"C
age BP
cal AD/BC
cal BP
BC
BP
BC
BP
BC
BP
BC
BP
BC
BP
BC
BP
BC
BP
BC
Bp
1.6
12
BC
BP
1.6
12
BC
1.5
12
BP
BC
BP
1.6
13
BC
1.5
12
1.3
10
1.4
11
1.1
9
BP
BC
BP
12
t
t 1.3
10
1.3
10
t
1.4
11
t
.4
3
t 12
t
.u
t
3
t 13
t 13
1210
3159
1230
3179
1250
3199
1270
3219
1290
3239
1310
3259
1330
3279
1350
3299
1370
3319
1390
3339
1410
3359
1430
3379
1450
3399
BC 11470
HP 3419
BC 1490
BP 3439
BC 1510
BP 3459
BC 1530
BP 379
BC 1550
BP 3499
BC 1570
BP 3519
BC 1590
BP 3539
BC 1610
BP 3559
BC 1630
BP 3579
BC 1650
BP 3599
BC 1670
BP 3679
BC 1690
BP 3639
'"C
Radiocarbon
age BP
cal AD/BC
cal BP
BC
BP
BC
BP
BC
BP
BC
BP
BC
BP
15.3
1.5
2948 t
12
12.5
1.6
2989 ±
13
19.8
1.5
2951
t
12
13.1
1.7
3024 t
14
17.1
1.8
3011 t
14
17.3 ± 1.8
3030 ±
14
13.0 t 1.6
3083 f
13
20.8 ± 1.7
3041 t
14
23.2 t 1.7
3041 t
14
21.6 ± 1.4
3073 ±
12
19.8 t 1.5
3107 t
12
16.2 t 1.5
3155 t
12
14.3 t 1.1
3189 t
9
14.8 ± 1.3
3204 t
it
19.3 ± 1.6
3189 ±
13
20.0 ± 1.7
3203 t
14
11.5 ± 1.6
3289 ±
13
11.9 ± 1.8
335
t
14
17.5 ± 2.0
3280 t
16
20.1
± 1,5
3280 ±
12
19.4 ± 1,4
3304 ±
11
18.3 ± 7.6
3333 ±
13
19.2 ± 1.2
3344 ±
to
22.1
3341
±
13
3393 t
13
± 1.6
18.0 f 1.6
BC
1710
3659
1730
3679
1750
3699
1770
3719
1790
3739
1810
3759
1830
3779
1850
3799
1870
3819
1890
3$39
1910
3859
1930
3879
1950
3899
1970
3919
1990
3939
2010
3959
2030
3979
2050
3999
2070
4019
2090
4039
2110
4059
2130
4079
2750
4099
2170
aP
BC
BP
BC
Bp
BC
BP
BC
BP
BC
BP
BC
BP
BC
BP
BC
BP
BC
Bp
BC
BP
BC
Bp
BC
BP
BC
BP
BC
BP
BC
BP
BC
BP
BC
BP
BC
BP
14119
BC 2190
4139
BP
61"C
Radiocarbon
age BP
1.8
t
15
1.5
t
12
1.5
t
1.4
t
11
1.4
t
11
1.4
t
11
1.8
t
15
1.6
t
13
1.5
t
12
1.5
t
12
1.8
t
t
1.4
t
12
7.5
t
12
1.7
t
14
1.9
15
1.6
13
1.5
t
1.5
1.6
12
12
t
13
1.6
13
1.6
13
1.8
14
1.3
t
t 1.6
t 1.1
10
13
t
9
Gordon W Pearson and Minze Stuiver
852
TABLE 1-C
cal AD/BC
cal BP
BC
BP
BC
BP
BC
BP
BC
BP
BC
2210
D14C
TABLE 2
Radiocarbon
age BP
30.1
± 1.4
3803 ±
11
4159
2230
32.7 ± 1.6
3803 ± 13
± 7.3
3786 ± 10
40.2 ± 1.8
3784 ± 14
37.6 ± 1.5
3823 ± 12
38.2 ± 1.8
3838 ± 14
39.6
38+6
4179
2250
37.14
The conversion of the radiocarbon ages to a series of ranges of cal AD/BC and
BP dates is determined by the AD/BC intercepts of the sample radiocarbon age ±
(sample
samP a 2 + curve Q 2 and the calibration curve. Intercepts of the radiocarbon
age with the calibration curve are listed to the right. Sample is the standard error
in the radiocarbon age.
For sample sigmas and ranges larger or equal to 100 Years the data were
rounded to the nearest decade. When the gap between two successive ranges was
less than 10 Years, the two ranges were combined to a single one.
Illustrations of the above are given below.
x+199
2270
4219
2290
RADIOCARBON AGE 2580±100 YR BP
a total= 1002 -F (curve a)2= 101 YR
2800
BC INTERCEPT:
BP 14239
BC 2310
BP 4259
BC
BP
233
4279
BC 2350
BP 14299
797
± 1.14
39.4 ± 1.6
140.7
BP 439
BC 2390
BP x+339
44.5 ± 2.4
2410
BP
4359
BC 2430
2450
4399
2470
4419
BC 2490
BP 141439
I
± 12
- 2580
3867 ± 13
43.0
±
1.14
3877
± 12
-a total
3867 ± 20
±
1.3
3898
± 11
49.0 ±
.9
3871
±
Cal BC
2400 900
Cal BC range 829
soo
3865 ± 12
42.5 ± 1.4
3960 ±
1+3.0
± 1.5
11
3976 ± 12
ti
700
760
684
I
52.4 ± 1.5
I
-1
i
8
BP x+379
BC
BP
BC
BP
a tots
ti
sc 2370
BC
-+
656
639
I
I
591
588
550
i
Contracted to one range
High-Precision Calibration
TABLE 2
o the
14C
Time Scale
TABLE 2-A
RADIOCARBON AGE BP 2460
v total= 202+(curvea)2=21 YR
Sample
40
o
AD INTERCEPTS
o
o
1696 1726
I
W
1921 1955
1818 1859
I
I
o
11861
o
a
C3
Q
Z
O
m
Q
U
O
0
Q
a
AD
60
80
- 100
= 120
160
= 200
-
CALIBRATED AGES:
cal BC
755, 699,
537
cal BP 2704, 2648, 2486
and cal BC(cal BP) ranges:
761-682(2710-2631)
659-6314(2608-2583)
559-520(2508-2469)
442-420(2391-2369)
765-478(2714-2427)
771-408(2720-2357)
787-405(2736-2354)
790-400(2740-2350)
800-400(2750-2350)
810-390(2760-2340)
820-380(2770-2334)
200
RADIOCARBON AGE BP
21480
CALIBRATED AGES:
-Q total
Sample
o
o
1600
o
ti
a
1700
1900
1800
_
2000
o
o
o
Cal AD ranges 1686
1736
1807
1886
1911
1930
1955
o
o
20
40
=
60
=
80
=
= 100
= 120
= 160
= 200
=
o
o
o
o
o
o
o
o
o
20
40
=
60
=
80
=
= 100
= 120
= 160
= 200
=
CALIBRATED AGES:
667,
cal BC 765,
673,
cal BP 2714, 2622, 2616,
and cal BC(cal BP) ranges:
685-655(263-2604)
772-759(2721-2708)
700-536(2649-2485)
787-754(2736-2703)
793-522(2742-2471)
440-422(2389-2371)
797-481(2746-2430)
800-410(2750-2360)
8t0-400(2760-2350)
820-400(2770-2350)
840-390(2790-2340)
0
o
=
o
=
o
=
o
=
o
=
o
=
a
=
20
40
60
t60
200
o
,
2587
,
2540
BC(cal BP) ranges:
766-754(2715-2703)
771-522(2720-2471)
787-481(2736-2430)
793-408(2742-2357)
800-400(2750-2350)
800-400(2750-2350)
810-400(2760-2350)
RADIOCARBON AGE BP 2520
Sample
,
a nd cal
RADIOCARBON AGE BP 2500
Sample
684,
551
58 7,
BP 270 9 26 33, 2606
2536, 2500
cal BC
ca l
-120
100
0
Cal
o
20
o
300
853
continued
RADIOCARBON AGE 120±20 YR BP
}
500-2500 BC
CALIBRATED AGE:
cal BC 770
cal BP 2719
and cal BC(cal BP) ranges:
790-764(2739-2713)
793-759(2742-2708)
830-400(2780-2350)
892-881(2841-2830)
850-400(2800-2350)
608
613,
2562, 2557
,
Gordon W Pearson and Minze Stuiver
854
RADIOCARBON AGE BP 2540
Sample
o
20
40
60
80
= 100
= 120
= 160
o
=
o
o
o
o
o
o
o
=
200
CALIBRATED AGE:
cal BC 786
cal BP 2735
and cal BC(cal BP) ranges:
794-769(2743-2718)
674-666(2623-2615)
797-764(2746-2713)
684-656(2633-2605)
801-759(2750-2708)
805-754(2754-2703)
700-536(2649-2485)
810-520(2760-2470)
820-480(2770-2430)
439-422(2388-2371)
840-400(2790-2350)
900-400(2850-2350)
2-C
TABLE
TABLE 2-B
RADIOCARBON AGE BP 2620
Sample
639-549(2588-2498)
o
-
o
-
o
-
o
-
o
-
o
o
-
o
20
40
60
80
100
120
160
200
CALIBRATED AGE:
cal BC 805
cal BP 2754
and cal BC(cal BP) ranges:
810-800(2759-2749)
819-797(2768-2716)
829-793(2778-2742)
838-785(2787-2734)
848-770(2797-2719)
892-881(2841-2830)
900-760(2850-2710)
673-667(2622-2616)
700-540(2650-2490)
920-750(2870-2700)
990-480(2940-2430)
439-423(2388-2372)
614-608(2563-2557)
0
RADIOCARBON AGE BP 2560
Sample
o
=
20
o
=
110
o
=
a
o
o
o
o
a
60
80
=
100
= 120
160
= 200
20
40
60
80
=
= 100
120
160
200
o
=
o
=
o
o
o
o
o
o
o
o
20
40
=' 60
80
= 700
120
o
- 160
a
a
o
o
o
0
-
o
cal BC
cal BP
and cal BC(cal BP) ranges:
802-792(2751-2741)
805-784(2754-2733)
809-770(2758-2719)
819-765(2768-2714)
673-667(2622-2616)
829-760(2778-2709)
684-656(2633-2605)
838-755(2787-2704)
700-540(2650-2490)
900-480(2850-2430)
439-423(2388-2372)
920-400(2870-2350)
RADIOCARBON AGE BP 2600
Sample
CALIBRATED AGE:
CALIBRATED AGE:
AGE BP 2640
cal BC 793
cal BP 2 7 42
and cal BC(cal BP) ranges:
798-783(2747-2732)
801-769(2750-2718)
805-765(2754-2714)
673-667(2622-2616)
684-656(2633-2605)
809-760(2758-2709)
818-754(2767-2703)
700-540(2650-2490)
830-520(2780-2470)
892-882(2841-2831)
850-410(2800-2360)
910-400(2860-2350)
RADIOCARBON AGE BP 2580
Sample
CALIBRATED AGE:
Sample
o
=
o
615-607(2564-2556)
639-550(2588-2499)
o
o
o
o
o
200
809
cal BC
l BP 2758
and cal BC(cal BP) ranges:
820-804(2769-2753)
829-801(2778-2750)
839-797(2788-2746)
848-793(2797-2742)
893-881(2842-2830)
900-790(2850-2740)
910-770(2860-2720)
976-964(2925-2913)
930-760(2880-2710)
638-550(2587-2499)
1000-520(2950-2470)
684-656(2633-2605)
797
2776
RADIOCARBON AGE BP 2660
Sample
o
614-608(2563-2557)
639-550(2588-2499)
cal BC 801
cal BP 2750
and cal BC(cal BP) ranges:
806-796(2755-2745)
809-793(2758-2742)
819-785(2768-2734)
829-770(2778-2719)
838-765(2787-2714)
673-667(2622-2616)
892-881(2841-2830)
848-760(2797-2709)
638-550(2587-2499)
910-520(2860-2470)
o
20
40
60
=
80
- 100
= 120
160
CALIBRATED AGE:
o
=
o
=
o
=
o
=
o
=
o
=
o
=
o
20
40
60
80
100
120
160
200
CALIBRATED AGE:
818
cal BC
cal BP 2 7 6 7
and cal BC(cal BP) ranges:
830-808(2779-2757)
839-805(2788-2754)
848-801(2797-2750)
893-880(2842-2829)
901-797(2850-2746)
910-790(2860-2740)
920-790(2870-2740)
990-760(2940-2710)
673-667(2622-2616)
700-540(2650-2490)
1020-750(2970-2700)
614-608(2563-2557)
0
RADIOCARBON AGE BP
Sample
o
2 68 0
CALI B R ATE D A G E
:
828
cal
cal BP 2 777
and cal BC(cal BP) ranges:
o
o
o
o
80
o
o
o
0
120
760
200
1040-760(2990-2710)
684-656(2633-2605)
638-550(2587-2499)
uoasadaad'y?H uotjvtgzjv fo aye
auczL `a1vds OOSZ-OOS
g
aa8
miv,I, Q-g
N08dtl30IatlkI 30tl
aTdmeg
o
o
o
0
0
o
o
o
o
OZ
Oh
09
OB
- OOl
OZl
091
- OOZ
dfl
OOLZ
43,Ltl88I1tl3
o
o
OZ
Oh
09
08
OOl
= ozt
= 091
= 00Z
=
o
0
o
o
o
o
TO
TO
pas iso TEO)3H
a.tva9r :s30e
(dfl
iEO 3e
ee T de
atdmas
o
-
0
-
o
-
o
-
o
o
-
o
19
'z66
'
(LSSZ-£952)809-h
9h8
'z88
SZ `t£ Z L6L
o
o
OZ
Oh
09
08
OOt
OZl
091
00Z
02in9iIn3 :a0v
ZED 39 0a6
TO d9 6982
pus iE° TE°)3H (d8 :sa8ue,1
(0l6Z-8Z6Z)196-6L6
(LS9Z-9882)806-L£6
(6h8Z-Zh6Z)006-£66
(96LZ-£56Z)Lh8-h0of
(L9LZ-ZL6z)8£9-£ZOt
(09LZ-000£)0£8-OSOI
(0GLZ-0h0£)OZ8-0601
(09GZ-011£)0l9-0911
(OSLZ-0tZ£)009-0921
N0821tl30IQtl21 fl`Jtl d9 00$Z
QLtliI6I'Itl3
TES 38 `9L6 '596 ££6
TES
Z 6 Z 'S Z 6 ht
Z88Z
'
aTdmEs o pue Zeo Te°)39 (dg :sa8us
o
OZ
=
Oh
(8582-£562)606-h001
o
09
(6h8Z-ZL6Z)006-£ZOL
08
(96LZ-h66Z)Lh8-Sh0I
0
OOt
(06LZ-0h0£)0h8-0601
=
o
ozL
(09L2-0L0£)0£9-0z1L
=
o
091
l£-LOZ£)ShZI-ZSZt (h6 (09LZ-OLl£)0l8-0ZZI
OOZ
o
(0SLZ-0lZ£)009-09Zl
:sa8ae,.z
l6
(9LLZ-659Z)LZ8-O
(99LZ-0L9Z)L18-lZ6
(£l6Z-0Z6Z)h96-9L6
(OSLZ-Oh6Z)009-066
(oSLZ-0562)008-0001
(OhLZ-000£)06L-OSOI
N09tl30i0na 39v as ogtz
39 8£8
d8 LBLZ
pae TE° TE°)JH :sa8u(d8
(9Z8Z-£h8Z)LL8-h68
(9LLZ-86LZ)GZ9-6h8
(99LZ-158Z)Ll8-206
(9SLZ-659Z)608-016
(hSLZ-0L9Z)508-126
(£t6Z-SZ6Z)h96-9L6
(0SLZ-0882)008-0£6
(OSLZ-Oh6Z)008-066
(OhLZ-0L6Z)06L-0ZOI
(OLLZ-Oh0£)09L-0601
(9L9Z-ZZ9Z)L99-£L9
H09av30iava acv as ozLZ
aldwes
:30tl
(85LZ-£882)608-h£6
0
H08av30rava acv as ohLZ
aaiva9i1u3 :30n
TO
O T
aldmas
o =
o
=
o
=
o
o
=
o
=
o
o
o
OZ
Oh
09
08
OOt
OZt
091
00Z
o
=
OZ
106
50
pus Teo TeO)39 (dg :sa8ue.
(56L
(99LZ-0L9Z)L£8-126
(£162-9Z6Z)h96-LL6
(L9LZ-Zh6Z)9l8-£66
(09LZ-056Z)0t9-000t
(OSLZ-0L6Z)008-0Z0I
(0SLZ-0h0£)o09-0601
N0921tl30Iatl8 30tl
aZdweg
o
o
=
(LLLZ-£882)828-hE6
o
=
0
=
o
o
o
aainaar'IvO :aou
rE
TO
39 606
d9 8582
pua teo Ta°)3g (dg :sa8usl
(8h8Z-1L8Z)668-ZZ6
6 £ (96L?-h88Z)Lh8-5
ajdWE$
OZ
o
=
o
=
o
o
o
o
hO
09
08
001
= OZl
091
= OOZ
43StlN8I'IV3
BDV
TES 38 Z66
TES d8 6Z h l
:sov
tE° 39 £OOL
iEO d9 z56z
pus Tao Zao)g (dg
N098tlD0I0tlk 8Dtl d8 OhBZ
=
l£-lOZ£)ShZI-ZSZL
d8 OZ$Z
(0882-£56Z)1£6-hoof
(6982-ZL6z)0Z6-£z01
(8582-h66Z)606-Sh0I
(0582-Zh0£)106-£60l
(0082-OLO£)058-0ZtI
(06L?-Oll£)Oh8-0911
(OLLZ-0IZE)0Z8-0921
(09LZ-00Z£)0l9-00£t
09
08
= OOl
OZl
= 091
= 00Z
0
o
o
OZ
Oh
o
N09av30raaa acv as 09LZ
aTdwas
39
d9
0
0azvaerzv3
pUE jEo jPO)39 (d8 :S28UE1
(Oh6z-hL6Z)166-SZ0I
(1882-5662)2£6-9hOl
(6982-Zh0£)0Z6-£6o1
(gS9Z-hGOE)606-SZII
(059Z-Ott£)006-0911
l£-lOZ£)ShZI-ZSZI (h6 (00$2-0Ll£)05$-OZZI
(08LZ-0lZ£)0£9-0921
(09LZ-09Z£)O18-Ot£l
.
uoptoD M uoSJvad pull azuaW tarzzn1S
958
I1Vj
N0921tlD0Iatl2i 30tl dfl 0982
aTdweg
o
4LtlNfiI1tlD :3Jtl
TES DO Lzo
TO d8 OL6Z
L
o
(1882-hL0£)Z£6-SZIt
(6982-601£)0Z6-0911
l£-ZOZ£)ShZI-£SZt
(0S9Z-otz£)oo6-0921
(06LZ-OSZ£)Oh8-00£l
o
o
o
(0982-OLl£)0l6-0ZZI
N09atlD0I0tla 3Jtl d9 OBQZ
o
Q3Stla8I'ItlD :3Dtl
TO
D6
TES d8
atdwes o pue jEa jE0)Da :sa8ve(dg
o =
OZ
(5962-hh0£)9l01-5601
=
Oh
(1562-hL0£)Z00I-SZII
=
09
(1h6z-601£)Z66-0911
=
08
°
l£-ZOZ£)ShZI-£SZl (h6 (1882-591£)Z£6-9lZl
= OOl
(0L9Z-0lZ£)0Z6-0921
o
OZl
(0982-0lZ£)Ot6-0921
=
o
09l
(0082-09Z£)058-0t£l
o
OOZ
N09NtlD0I0tlF1 30tl dH
atdmag
o
PISE
0062
o
o
(OLGZ-OLZ£)OZg-OZ£l
o
N09atlD0Iatl8
aTdweg
(t56Z-966Z)z001-Lh0
I
o
ivi ri 9-g
pus teo t00)00 (d8 :sa8us.a
o
o
I-
43Stl88I'ItlD :3Dtl
TES D8 E601
iE° d9 Zh0£
o
atdwag
o
o
o
o
o
=
o
o
=
o
o
=
o
o
=
o
=
OOZ
N099tlD0IQtl2I 3Dtl d8 0Z6Z
atdmeg
o
=
o
4Ltl219I'IVD :93Dtl
pUE teo Tao)Dg (dg
OZ
(0h0£-0ll£)1601-1911
09
08
(6962-L0Z£)0Z0I-8521
(Z56Z-£lZ£)£00L-h9zL
o
o
o
o
o
o
atdmeg
o
o
0
OZl
09l
(0£6Z-09Z£)086-OL£l
(0982-Oh££)016-06£l
=
o
o
o
=
=
OZ
Oh
=
09
08
= o0t
= OZl
= 09t
OOZ
`ZhLI $£ll
'l60£ L80£
TES D9 l ZSZ
iEO d8
l
`5hZ
6l£ h
'
L
Lz 9
£
9l 5
L
9??
pus iEO iP°)3E (d9 :sa8uej
(h80£-£60£)S£ll-hhll
(£66Z-£9Z£)hhOt-hlEl
(0L6Z-0LZE)0Z0t-0Z£t
(0982-08E£)0l6-0EhL
o
8
43J.tlk38I`ItlO :939tl
(9t£-£lZ£)hlZl-h9Zl
(LOt-t5Z£)85t1-Z0£l
(66Z£-LtE£)05E1-89E1
(68Z£-l£££)0h£l-Z9£l
(0662-0h££)0h0I-06£l
(0L6z-09££)0Z0I-0thl
(0h6z-0L££)066-0ZhI
(0L9Z-00h£)0Z6-05h1
o
dfl
L
$SZ '
L
'O?
'LOZ£ l£ 'h8
£L LO
pue Tee Teo)og (dg :sa8ue,a
N089tl0IQV2i 90tl d8 000£
(£66Z-591£)hh0l-9lZl
o
o
TES D9 l L `hZ l l l
TO d8 '£LO£ `Z90£ L50£
43,Ltl2I8I'ItlD :S3Jtl
TES
=
DO '6511
d9 '80l£
pus T20 tao)Dg (dg :s08uea
l5-ZOZ£)hhzl-£SZt (£6
(S50£-99L£)90tt-LIZI
(lh0£-L0Z£)Z60t-8521
(£66Z-£lZ£)hh0l-h9Zl
(6962-6hZ£)0Z0I-00£t
(056Z-09Z£)000l-0l£t
(06Z£-l££E)lh£t-ZS£t (0h6Z-0LZ£)066-0ZEI
(0L9Z-09£E)0Z6-0lhl
(0582-0LE£)006-0ZhI
N0921tlO0Idtla 30tl d9 0$6Z
=
(06LZ-09££)0h8-0thl
To
TO
(088z-0L)0£6-0ZhI
OOZ
0
o
Q3,Ltl98I'ltlD :SBJtl
(90l£-90Z£)L0II-6521
(950£-ELZ)L0It-h4Zl
(lh0£-00Z£)Z601-t0EI
(66Z£-90££)OS£l-LSEI
(68Z£-l£££)0h£t-z81
(0562-0h££)000t-06£l
OZ
Oh
=
09
=
08
= 00l
= OZl
= 09l
=
OZ
Oh
09
OS
00l
OZl
091
(Z56Z-59t)£00l-9lzl
o
o =
o
o
d9 Oh6Z
N090tlD0IdtlU 30tl d9 0962
ajdwes
jE0 jeo)Dg (dg :S28UE.I
o
o
OZ
=
Oh
09
=
Og
= o0t
- Ozt
= 09l
= OOZ
30tl
(9ll-tZl£)69t1-ZGII
(580£-Z60£)9£ll-Eh<<
(950£-E9Z)L0tt-hlEl
(lh0£-ILZE)Z601-?ZEI
43,LtlF38I'ItlO
:3Jtl
TES 38 E9Zl
TES d9 £ ZlZ
pue iPo iE0)8 (d9 :sa8us,a
(90Z£-£SZ£)L0Zt-n0£l l£-981£)hZZL-L£Zl (EL
(96Z£-6tE£)6hEl-0L£1 (h9l£-h9Z£)Slzl-SIEI
l£-tLZ£)6511-ZZ£l (80
(68Z£-Z££E)Oh£t-£8£l
(950£-hh££)LOtI-56£l
(Oh0£-09£E)060t-Olhl
(0662-OL££)OhOI-OZtr1
(o56z-08££)0001-o£rrl
(hZh£-95h£)SLhI-LOSL (0£6Z-OZh£)086-OLhL
(980£-L60£)LEII-Zhll
(Z88z-hl6Z)£6-596
uoas2da2d-yaH uoazvcg21v fo ayy
ThIVJ,
N09kItlD0I0tl8 80tl
BZaWEs
0
d8 OZO£
b
auczj `alDds OOSZ-OOS
liIv1 I-;
4Ltl88I1tlO :S90tl
TO
09 `00£l `9LZl 6921
TES dH '6hZ£ 'SZZ£ 81Z£
pUE jEA TEO)Og (d8 :68EUE.I
N09Htl0I4tlH
aTdwas
o
o
0
0
o
o
o
N09NtlD0IQtl1 30tl
=
d9 OOl£
TES O9 90hL
ZP de SS££
43.Ltlfl9I'Itlo :BDtl
pue ieo teo)Dg (dg :sa8us.a
(lh££-99££)Z6£l-L1hl (LLZ£-Z8Z£)8Z£l-£££l
(0£££-hL££)lBEI-SZht (0LZ£-l6Z£)lZ£1-Zh£1
OZ
Oh
=
OS
OOl
(9hz£-h6££)66Z1-Shhl
(01Z£-09h)09Z1-0ISI
(9tz£-GZZ£)69Z1-9LZI
=
=
091
OOZ
(0l1£-0Lh£)0911-0ZS1
(£0S-955£)hS0I-L09L
(980£-160£)L£1l-Zh1l
(0h0£-06h£)0601-0h0I
t£-hh££)StZI-56£l (h9
09
o
o
o
30tl
=
l£-Sgl£)hZZI-9£Zl
o
aldmes
L8
Hg
o
o
g
o
OZ
dfl
43Ztl219
0h0£
:3Jtl
iEa O9 hlEl
TES dH £ ? 9 £
N0flUY00IQdd
aTdwes
pus TEO iE0)O9 (dfl :sa8usa
(B8Z£-£££E)6££l-h8£l (hhZ£-ZLZ£)56Z1-£z£t
=
0
(hLl£-58t£)SZZI-9£ZL
o
o
=
=
l£-59££)SIZI-9lht (h9
o
=
o
o
o
o
=
o
=
o
0Y
dfl
0?L
put TES TEO)3g
QZVUSIZVO :0y
(dfl
Ofl
O T
dH
9lhl
09
:sa8ue.a
(Zh££-£8££)E6£t-h£ht
(0££E-56££)19El-9hhl
(£9Z£-L0h£)h1£1-8051
(0SZ£-09h£)00EI-0ISt
(0lZ£-0Lh£)09zL-0ZSI
(6l5£-0h5£)0LSI-1651
(0L0E-0LS£)0Zt1-0Z9L
Oh
09
08
OOt
OZl
091
OOZ
TAO
(LGZ£-l8Z£)9Z£1-Z££t
(0LZ£-06Z£)lZ£t-lh£1
(9lz£-9ZZ£)69Z1-LLZ1
(0Lt£-08h£)0ZZ1-0£S1
(L50£-Z90£)8011-£ll1
0
N0921dO0IQtlE 30tl dfi 090£
atdwas
o
pua jEO
jE°)B
QLtl88I1tlO :S3Jtl
OH
iE
d9 `l£££
l
l lh£ ' t LZ£
'062£ OLZ£
N092ItlO0Iatl2i 30tl d8 OhIE
0
0
0
o
o
a
o
o
o
o
atdweg
o
Dtl d9 060£
Q3,Ltli[6I1tlD :S30tl
a
TES
`h6£t `1£gL 6zEL
IEO de '£h££ 'OSZE 8LZ£
(Z9z£-09££)£t£l-9lhl
o
o
o
a
o
09
08
= OOl
OZl
= 091
OOZ
pue TEO TE°)DH
(dfl
TO
8
hZhl
:sa8us.a
(zh££-L5h£)£6£1-8051
(0£££-£9h£)18£L-hl51
(09Z£-0LhE)0l£t-0ZS1
(05Z£-0lh£)00£l-0ZSI
(0lZ£-095£)09Zt-0l9l
(0lt£-065E)0911-0h9l
=
N0flF3tl0IQtl21
atdwas
pus Tao Tao)og (dg
(69Z£-Z6Z£)OZ£l-£hEl
o
:3Jtl
(Llz£-6ZZ£)89Z1-08Z1
0
N08NtlO0Idtlil
Q
ES T dH ££ L £
atdmas
(dg
(9hZ£-95££)L6Zl-LOhI
Oh
TO
=
OZ
=
Oh
o =
09
=
08
001
o
OZt
o
091
o
=
OOZ
o
30tl d9 £ 091
(8LZ£-18Z£)6Z£1-Z£E1
(0LZ£-06Z£)lZ£l-1h£t
(9lZ£-9ZZ£)69z1-LLZI
(hLl£-h8l£)SZZt-5£Zl
(L80£-160£)8£1t-Zhll
Q3.LtlL19I'Itl 3Jtl
:
3H l ££h
ZED dH Z$££
pue Teo tao)g (dg :s08us1
(ZL££-56££)£Zht-9hht
(h9££-LSh£)01hl-8051
(h5££-£9h£)5ohl-hlSl
(£h££-89h£)h6£1-61S1 (8LZ£-l8Z£)GZ£t-Z££l
(0£££-OLh£)08£l-OZSI (0LZ£-06Z£)lZ£l-th£l
(6l5£-0h5£)OLSI-1651 (09Z£-06h£)O1£1-0£Sl
(olZ£-0LS£)09Zt-OZ91
(0Lt£-0£9£)OZZI-0891
88
uop20D M vad uoc puv azuiyll
Jaainls
j, vmy -i;
N082TtlD0I0tl 30tl d9
08l£
Q3Stlk19I'Itl :BDtl
jEO 39 ShhL
N088d30IQtl2i 30tl d6 £ 09?
08Ztl19I1tlD :8tl
LEA d8 h6££
aTdmeg
o
-
OZ
0
Oh
o
09
0
08
o
OOt
o
OZl
o
09l
o - OOZ
(l8£-65h£)Z£hl-OlSI
(ZL££-£9h£)£Zht-htSt
(h9££-Q9h£)Slht-6151
(55££-ZLtr£)90h1-£ZSl
(615£-0h5£)0LSI-165t
(0£££-095£)08£t-0l9l
(05Z£-065£)00£l-0h9l
(OlZ£-Oh9£)09ZL-0691
N09Ntl30I0tl2I 30tl dfl
aTdmeg
o
OZ
Oh
09
OQ
OOl
OZL
09l
o
OOZ
o
o
o
o
o
atdmeg
pue TES iE°)38 (cm :sa8us,a
o
OOZ£
o
OZ
Oh
o 09
o
08
OOL
o
o
OZt
o
(0h££-08h£)06£t-0£Sl
(0LZ£-06Z£)lZ£l-lh£L
(8lZ£-9ZZ£)69Z1-LLZI
(hLl£-h8L£)SZZI-S£Zl
03ivaei'1d3
s30u
TES 39
TES d9
(9LZ£-18Z£)6Z£l-Z£El
'90L
'SShE
pas TO TE0)39 (dg :sa8uea
(Z6££-h9h£)£hhl-SISI
(lQ££-89h£)Z£hl-6lSl
(ZL££-£Lh£)£Zhl-hZSI
(6l5£-0h5£)0LSI-1651 (fi9££-LLh£)SlhL-8Z5t
(09££-095£)Olhl-019l
(0h£-0LS£)06£l-0Z9l (9LZE-l8Z£)6Z£l-Z££l
(09Z£-0£9£)0l£1-0891
(0L9£-£89£)IZLt-h£Ll
(0lZ£-059£)09Zl-00ll
'9LhL h9h
`SZh£ £lh£
(09££-0£9£)0£h1-0891
(0L££-0h9£)0Zht-0691
(66L£-108£)0S9I-ZS9I
N091tl30IQtl!! 30tl d8 0$Z£
aTdmas
o
=
0
=
o
o
OZ
Oh
09
Q3,LtlN9I'Itl3
:Dtl
atdmes
o
=
o
=
o
=
o
0
=
TES 3e hl5l
TO de £9h£
o
=
0
=
o
o
=
(0L£E-0LS£)0ZhI-0Z9l
(09££-065£)0lht-0h9t
(0£££-0h9E)08£1-0691
(0SZ£-069£)00£l-0hLt
09l
OOZ
N0621tlD0I4tlN 3Dtl d8 OhZ£
o
OZ
Oh
09
08
00l
Ozt
09l
00Z
aTdmes
o
o
=
atdmes
o
o
o
o
o
o
0
OZ
Oh
=
09
08
= OOl
09l
= OOZ
o
9
o
49Stl219I'1tlD :S39tl
o
=
o
=
o
pus
iE°)iEO
8
'06L
L
l 6L5 ' l QZS
d8 '6£S£ '8Z5£ LLh£
(0h££-0£L£)06£l-09Lt
iEO 38 'L091
'h551 £h5l
d6 '955£ '£OS£ Z6h£
(L9h£-LZ9£)9ISI-8L91
(£9h£-h£9£)hlSt-5891
(OL9£-£89£)IZLI-h£Ll
(06££-069£)0hhl-0hLI
(86L£-t08£)6h81-ZS9I
(09EE-0£8£)0lht-0881
(zGh£-565£)£zSl-9h91
(OSh£-059E)OOSI-OOLt
(Zlh£-9Zh£)£9hl-LLhI
(0L££-0l)£)0ZhI-09Lt
0
N09atl30IQtl8 30tl
dfl
OZ££
QLV19I1tl3
:3Dtl
iEo
lZ9L
TES d8 OLS£
atdmas
(lth£-LZh£)Z9hl-8Lht
(ZQ£-lL5£)££hl-ZZ9l
(0L££-065£)0ZhI-0h9l
(0h££-059£)06£l-00LI
TES
(0LZ£-06Z£)lZ£l-lh£l
(d9 :sa8ue.
(9Lh£-£L5£)LZSI-hZ9
)5991-OL9l (ht9-619
OZ
Oh
09
08
00L
OZl
09t
00Z
6151
d9 89h£
pu2 iEO i°)D9 (d8 :sa8vel
(Z9h£-£Lh£)£l5l-hZSI
l5£-lh5£)6951-Z65t (g
(ZSh£-LLhE)£OSl-BZSI
(£6££-L55£)hhhl-8091
(0L9£-£99£)tZLt-h£Ll
(09Z£-00L£)0t£l-0SLt
=
o
(OLZ£-06Z£)lZ£t-lh£l
(9lZ£-9ZZ£)69Z1-LLZt
tea
TO
:530y
pue jED jEo)Dg (dg :sa8us,z
(1Lh£-655£)ZZSI-0l9l
(L9h£-zL5£)9lSl-£Z91
(£9h£-h65£)hlSl-Sh9l
(hSh£-LZ9£)5051-gL9l (Zlh£-9zh£)£9hl-LLhI
(06££-Oh9£)Ohhl-0691
(0L9£-E89£)IZLI-h£L1 (08££-059E)0£ht-00LI
(OL££-OOL£)OZhL-OSLI
(l6L£-lZ8£)Zh8l-zLBI (SSG£-z9L£)9081-£l8l
(8LZ£-08Z£)6Z£l-l££L
N082ItlO0IQtl2i 30tl dfl 00££
0
Q3.Ltl89I'Itla :30tl
48.Ltl238I1tl3
TO
pUe iEO ieO)3H (d6 :sa8ve.a
(6hhE-69h£)00SL-0ZSt (80h£-0£h£)65h-8h
(E6££-£Lh£)hhhl-hZSI
(9t5£-0h5£)6951-1651 (lg££-LLh£)Z£hl-BZSI
=
= OOl
= OZl
o
(0£££-01L£)0S£t-09Lt
iE
0
N09atl0I4V2i 8Dtl d9 OZZ£
puE TEO TE°)38 (d8 :sa8us,a
(9L5£-Zh5£)L951-£65t (L9h£-9Lh£)8151-6ZSl
(£9h£-L5S£)hlSl-8091
(£Sh£-tL5£)h0SI-ZZ9l (Zlh£-9Zh£)£9hl-LLhI
(£6££-£65£)hhh-hh9
OOZ
o
ieO 39 £ZSl
i° dg ZLh£
(9LZ£-l8Z£)6Z£t-Z££t
OZ
o
Oh
o
09
o
Og
o = OOl
o
OZl
o = 09l
=
o
OOZ
o
o
pus tao teo)38 (dg :s08usJ
(£SS£-0Z9£)h091-1L9t (68h£-905£)0hSI-LSSI
(LLh£-LZ9£)8ZSI-8L9L
(ZLh£-h£9£)£ZSl-5891
(OL9£-£89£)IZLI-h£Gl
(09h£-069£)OlSI-OhLI
(09hE-OOL£)OISI-OSGt
(l6L£-lZ8£)Zh8-ZLBI
(OL££-0£8£)OZhI-0881
(L9h£-Lh9£)8151-8691
(£lh£-SZh£)h9h-9Lhl
(SSL£-Z9L£)908t-£l8l
(O8££-0£L£)0£hL-08L1
High-Precision Calibration
o the
14C
Time Scale
500-2500 BC
859
TABLE 2-M
RADIOCARBON AGE BP 3340
Sample
o
=
o
=
o
o
=
o
=
o
=
o
=
o
o
20
AO
60
80
100
120
160
200
CALIBRATED AGE:
AGE BP 3420
cal BC 1643
ca l BP 3 592
Sample
and cal BC(cal BP) ranges:
1678-1619(3627-3568)
1686-1605(3635-3554)
1734-1721(3683-3670)
1740-7523(3689-3472)
o
CALIBRATED AGE:
and cal BC(cal BP) ranges:
20
40
60
80
100
120
160
1750-1520(3700-370)
1852-1850(3801-3799)
7880-1440(3830-3390)
1890-1420(3840-3370)
200
0
0
RADIOCARBON AGE BP 3360
Sample
o
=
o
o
=
o
=
o
=
o
-
o
=
o
o
20
40
60
80
100
120
160
200
cal BC 170
ca l BP 3689
CALIBRATED AGE:
AGE BP 3440
cal BC 1677
cal BP 3 626
and cal BC(cal BP) ranges:
1686-1636(3635-3585)
173-1720(3683-3669) 1699-1620(3648-3569)
1740-1605(3689-3554)
1555-1542(3504-3491)
1747-1528(3696-3477)
1852-18119(3801-3798)
1760-1520(3710-3470)
1872-1842(3821-3791)
1813-1806(3762-3755)
1880-1510(3830-3460)
1476-1464(3425-3413)
1910-1430(3860-3380)
Sample
o
o
o
o
1780-1520(3730-31470)
o
o
o
20
40
60
=
80
too
120
- 160
200
CALIBRATED AGE:
cal BC 1746
ca l BP 3 695
and cal BC(cal BP) ranges:
1856-1848(3805-3797) 1766-1739(3715-3688)
1872-1841(3821-3790) 1814-1805(3763-3754)
1878-1685(3827-3634)
1883-1677(3832-3626)
1890-1640(3840-3590)
1910-1620(3860-3570)
1778-1695(3727-3644)
1960-153(3910-3480)
2030-1520(3980-3470)
0
RADIOCARBON AGE BP 3380
Sample
o
=
o
o
=
o
a
=
o
=
o
o
=
o
20
40
60
80
700
120
160
200
CALIBRATED AGE:
AGE BP 3460
cal BC 1685
cal BP 3 6 3 4
and cal BC(cal BP) ranges:
1700-1676(3649-3625)
1735-1718(3684-3667)
1741-1639(3690-3588)
1747-1620(3696-3569)
1853-1849(382-3798) 1763-1606(3712-3555)
1872-1842(3821-3791)
1813-1806(3762-3755)
1880-1520(3830-31470)
1890-1510(3840-3460)
1940-1440(3890-3390)
CALIBRATED AGES:
,
o
a
a
o
1555-1542(3504-3491)
1780-1530(3730-31480)
o
o
o
o
o
20
40
60
80
- 100
= 120
160
200
-
and cal BC(cal BP) ranges:
X873-1841(3822-3790) 1815-1804(37 64-3753)
1878-1739(3827-3688)
1883-1733(3832-3682) 1722-1696(36 71-3645)
Sample
o
=
o
o
=
o
=
o
=
o
o
o
=
20
40
60
80
100
120
160
200
o
CALIBRATED AGES:
and cal BC(cal BP) ranges:
1741-1683(3690-3632)
1747-1676(3696-3625)
1853-1849(3802-3798)
1872-1842(3821-3791)
1880-1610(3830-3560)
1880-1530(3830-3480)
1910-1520(3860-3470)
1960-1510(3910-3460)
,
1761
3 710
1779-1745(3728-3694)
1889-1685(3838-36314)
1910-1680(3860-3630)
1940-1640(3890-3590)
2019-2002(3968-3951)
2040-1520(3990-31470)
1980-7610(39 3-3560)
1555-7543(3504-392)
0
0
RADIOCARBON AGE BP 3400
cal BC 1851, 1850,
ca l BP 3 800 37 99
cal BC 1733,
cal BP 3 68 2,
AGE BP 3480
1721, 1697
3 6 70, 3 646
CALIBRATED AGES:
cal BC 1872, 1842, 1813, 1807, 1777
cal BP 3 82 1, 379 1
37 62 375 6 37 26
,
Sample
o
o
o
o
o
o
o
o
200
o
and cal BC(cal BP) ranges:
,
,
860
Gordon W Pearson and Minze Stuiver
TABLE
RADIOCARBON AGE BP 3500
2-N
CALIBRATED AGES:
TABLE
cal BC 1877,
ca l BP 3 826
,
Sample
o =
o =
o =
o =
o =
o =
o
=
o
20
40
60
SO
100
120
160
200
o
=
o
=
o
=
o
=
o
=
o
=
o
=
o
=
o
20
40
60
80
100
120
160
200
o
=
o
=
o
=
o
=
o
=
o
=
o
=
o
=
o
35140
and cal BC(cal
Sample
o
=
o
=
o
=
o
=
o
o
o
o
20
40
60
80
= 100
= 120
= 160
200
o
o
and cal BC(cal BP) ranges:
o
o
o
o
o
cal BC 1883
cal BP 3832
RADIOCARBON AGE BP 3600
Sample
1795-1786(37144-3735)
CALIBRATED AGE:
cal BC 1888
cal BP 3837
o
20
40
60
80
o
=
o
=
o
=
o
=
o
=100
o
= 120
o
=
o
=
160
200
CALIBRATED AGE:
1794-1787(3743-3736)
RADIOCARBON AGE BP 3620
o
20
40
=
60
=
80
=
= 100
= 120
o
=
o
=
o
o
o
o
o
2050-1680(4000-3630)
o
=
CALIBRATED AGES:
2183-2166(4132-4115)
1794-1787(3743-3736)
2200-1760(4150-3710)
2290-1740(4240-3690)
160
200
2140-1880(4090-3830)
1834-1824(3783-3773)
0
RADIOCARBON AGE BP 3640
Sample
1842-1777(3791-3726)
cal BC 2018, 2002, 1980
cal BP 3967, 3951, 3929
and cal BC(cal BP) ranges:
2033-1954(3982-3903)
2037-1934(3986-3883)
2124-2079(4073-4028)
2042-1906(3991-3855)
2133-2065(4082-4014) 2047-1888(3996-3837)
cal BC 1908
cal BP 3857
and cal BC(cal BP) ranges:
1722-1696(3671-3645)
2140-1880(4090-3830
21140-16140(14090-3590)
CALIBRATED AGE:
1834-1824(3783-3773)
0
Sample
1835-1823(3784-3772)
1842-1776(3791-3725)
1980-1760(3929-3709)
cal BC 1961
cal BP 3910
and cal BC(cal BP) ranges:
1982-1932(3931-3881)
2022-1999(3971-3948)
2032-1905(3981-3854)
2037-1888(3986-3837)
2124-2079(4073-4028)
2042-1883(3991-3832)
2050-1880(4000-3830)
2133-2065(4082-4014)
1794-1787(3743-3736)
1842-1777(3791-3726)
2140-1870(4090-3820)
2200-1750(4150-3700)
2278-2233(4227-4182) 2210-1730(4160-3680)
BP) ranges:
1941-1887(3890-3836)
7964-1882(3913-3831)
2019-2001(3968-3950)
1794-1787(373-3736)
2032-1872(3981-3821)
2040-1760(3990-3710)
2123-2080(4072-4029)
2140-1730(4090-3680)
2190-1680(4140-3630)
cal BC 1936
l BP 3885
a
4
RADIOCARBON AGE BP 3560
CALIBRATED AGE:
3737
20
CALIBRATED AGE:
1913-1882(3862-3830
1938-1877(3887-3826)
1963-1872(3912-3821)
2019-2001(3968-3950)
2030-1750(3980-3700)
2040-1740(3990-3690)
2133-2066(4082-4015)
2182-2166(4131-4115)
20
40
60
80
100
120
160
200
AGE BP 3580
1788
Sample
and cal BC(cal BP) ranges:
1889-1876(3838-3825)
1910-1871(3859-3820)
1938-1760(3887-3709)
1962-1746(3911-3695)
2019-2002(3968-3951)
2030-1730(3980-3680)
2123-2080(4072-4029)
2140-1620(4090-3570)
RADIOCARBON AGE BP
Sample
,
and cal BC(cal BP) ranges:
1884-1871(3833-3820)
1889-1759(3838-3708)
1909-1746(3858-3695)
1937-1740(3886-3689)
1960-1730(3910-3680)
2019-2002(3968-3951)
2040-1640(3990-3590)
2133-2066(4082-4015)
RADIOCARBON AGE BP 3520
Sample
1834, 1824, 1793,
37 8 3, 37 7 3> 3 742
2-0
o
=
o
=
o
=
o
=
o
=
o
=
o
=
0
20
40
60
80
100
120
160
200
o
CALIBRATED AGE:
and cal BC(cal BP) ranges:
2096-2089(4045-4038)
2125-2079(140714-14028)
2133-2065(4082-4014)
2138-1907(4087-3856)
2182-2166(4131-4115)
2200-1880(4150-3830)
2278-2233(4227-1+182)
2320-1750(4270-3700)
cal BC 2032
ca l BP 3981
High-Precision Calibration
o
the 14C Time Scale,
500-2500
861
BC
TABLE 2-
TABLE 2-P
RADIOCARBON AGE BP 3660
Sample
o
=
o
=
o
=
a
=
o
p
=
o
=
a
=
o
=
o
=
o
=
a
=
2183-2166(41324115)
o
20
40
60
80
Sample
o
=
a
o
o
=
a
=
o
=
o
=
Sample
o
=
o
=
a
=
o
=
o
=
o
=
o
=
1834-1824(3783-3773)
17914-1787(371433736)
o
BC 2123, 2080, 20142
al BP 4072, 4029, 3991
2003-X979(3952-3928)
2400-1870(4350-3820)
1842-1777(3791-3726)
BC 2133,
al BP 4082,
ccal
2290-1940(4240-3890)
2340-1890(4290-3840)
o
20
40
60
80
100
120
160
200
1834-1824(3783-3773)
CALIBRATED AGE:
BC 2181 ,
al BP X130, 4165, 4091
ccal
2081-2042(4030-3991)
2003-1979(3952-3928)
CALIBRATED AGES:
Sample
o
=
o
=
o
=
o
=
o
=
2067, 20147
4016, 3996
1793-1787(371423736)
BC 2138
al BP 4087
o
=
o
=
RADIOCARBON AGE BP 3780
Sample
o
=
o
=
o
=
o
=
o
=
o
=
o
=
20
40
60
80
100
120
160
o
=
200
2071-2046(4020-3995)
o
CALIBRATED AGE:
o
=
o
=
o
=
o
=
o
=
o
=
o
o
=
cal BC 2202
cal BP 4151
and cal BC(cal BP) ranges:
2279-2231(4228-4180) 2210-2194(4159-4143)
2289-2180(4238-429) 2167-2142(4116-4091)
2318-2137(4267-4086)
2344-2133(4293-4082) 2068-2047(4017-3996)
2453-2423(4402-4372) 2400-2120(4350-4070)
2460-2040(4410-3990)
2470-2020(4420-3970) 2002-1980(3951-3929)
>2490-19140(>4440-3890)
RADIOCARBON AGE BP 3800
Sample
BC 2195,
cal BP 4144, 4105, 4096
and cal BC(cal BP) ranges:
2203-z142(4152-4091)
2279-2232(4228-4181)
2289-2133(4238-4082)
2317-2122(4266-4071)
2340-2040(4290-3990)
2453-2423(4402-4372)
2460-1960(4410-3910)
2470-1910(4420-3860)
o
20
40
60
So
100
120
160
200
CALIBRATED AGES:
ccal
and cal BC(cal BP) ranges:
2186-2164(4135-4113) 2143-2132(4092-408t)
2195-2121(4144-4070) 2081-2041(403-3990)
2202-2036(4151-3985)
2279-2232(4228-4181) 2209-2031(4158-3980)
2290-2020(4240-3970) 2003-1979(3952-3928)
2320-1960(4270-3910)
2453-2423(4402-4372) 2400-1910(4350-3860)
2460-1880(4410-3830
RADIOCARBON AGE BP 3760
o =
2210-1910(4160-3860)
CALIBRATED ACES
2460-1880(4410-3830
2289-2037(4238-3986)
2320-2030(4270-3980)
2340-2020(4290-3970)
2460-1940(4410-3890)
2470-1890(4420-3840)
ccal
and cal BC(cal BP) ranges:
2082-2041(403-3990)
2138-2119(4087-4068)
2184-2165(4133-14>>14) 2143-2036(4092-3985)
2195-2031(y114u3980)
2202-2017(4151-3966) 2003-1979(3952-3928)
2210-1960(4160-3910)
2279-2232(4228-4181)
o
CALIBRATED AGES
0
CALIBRATED AGES
2453-2423(4402-4372)
RADIOCARBON AGE BP 372
o
v"
2279-2233(42284182)
2320-1880(4270-3830
60
80
100
120
160
200
o
o
nn-iOllf1(p15(1-890)
20
qp
o
2142-1935(4091-3$84)
22UU-1oyV17v -
RADIOCARBON AGE BP 3700
o
o
2195-1959(4144-3908)
,..
o
o
and cal BC(cal BP) ranges:
213u-2061(4o83-u010) 2048-2036(3997-3985)
2138-2031(4087-3980)
2183-2165(4132-utt4) 2143-2017(4092-3966)
o
=
o
2004-1978(3953-3927)
37140
and cal 8C(cal BP) ranges:
2196-2137(4145-4086)
2069-2047(4018-3996)
2202-2132(1415114081)
2279-2232(4228-4181) 2209-2122(4158-4071)
o
20
40
60
80
100
120
160
200
o
2200-1910(4150-3860)
2290-1880(14240-3830
2340-1760(4290-3710)
120
160
= 200
o
Sample
2138-1959(4087-3908)
RADIOCARBON AGE BP 3680
Sample
RADIOCARBON AGE BP
cal BC 2037
cal BP 3986
and cal BC(cal BP) ranges:
2126-2078(4075-u027) 2043-2031(3992-3980)
2133-2064(4082-4013) 2048-2017(3997-3966)
o
20
40
60
80
100
120
160
200
=
CALIBRATED AGE:
o
20
40
60
80
100
120
160
200
and cal BC(cal BP) ranges:
2290-2201(4239-4150)
2320-2194(4269-4143)
2344-2180(U293-41z9)
2453-ZU23(4u02-4372)
2460-2130(4410-4080)
2460-2120(4410-4070)
2470-2030(4420-3980)
>2490-1960(>4440-3910)
2158-2146(4107-4095)
2080-2042(4029-3991)
cal BC 2278.
cal BP 4227, 4182, 4158
862
Gordon W Pearson and Mznze Stuzver
TABLE 2-R
TABLE
RADIOCARBON AGE BP 3820
CALIBRATED AGE:
cal BC 2288
cal BP 4237
RADIOCARBON AGE BP 3900
Sample o and cal BC(cal BP ranges:
o =
20
2325-2276(4274-4225) 2238-2207(14187-14156)
o =
40
2345-2201(4294-4150)
a
60
2453-2422(4A02-4371) 2399-2794(4348-4143)
2157-2147(4706-4096)
o =
80
2458-2180(4407-u129) 2167-2142(4116-4097)
o = 100
2460-2740(4410-4090)
o
120
2470-2130(4420-4080) 2068-2047(4017-3996)
o = 160
>2490-2040(>4440-3990)
o
200
>2490-2020(>4440-3970) 2003-1979(3952-3928)
RADIOCARBON AGE BP 3840
Sample
o
'
o
=
o
o
o
=
o =
a
o
=
a
20
40
60
80
100
120
760
200
CALIBRATED AGE:
Sample
o
=
o
o
=
o
=
o
o
cal BC 2316
cal BP 4265
o
=
a
=
a
20
40
60
80
100
720
160
200
and cal BC ( cal BP ) ranges:
Sample
237-2286(4296-4235)
o
2454-2422(4403-4371) 2400-2277(4349-4226)
2236-2208(4185-14157)
2458-2201(L407-4150)
2462-2794(4411-4743) 2157-2147(1I106-096)
2470-2780(4420-4130) 2166-2742(4115-4091)
2470-2140(4420-4090)
>2490-2120(>4440-4070) 2080-2042(4029-3991)
>2490-2030(>4440-3980)
=
o
o
=
o
=
o
-
o
=
o
=
a
o
20
40
60
80
100
120
160
200
cal BC 2457
cal BP 41406
2462-2452(4411-4401) 2426-2396(4375-345)
2466-2342(4415-4297)
2471-2313(4420-4262)
>2490-2288(>4439-4237)
>2490-2280(>4440-4230) 2234-2209(4783-4158)
>2490-2200(>4440-4150)
>2490-2180(>4440-4130)
2166-2142(4115-4091)
>2490-2730(>4440-4080)
2067-2047(4016-3996)
RADIOCARBON AGE BP 3920
and cal BC(cal BP) ranges:
CALIBRATED AGE:
2-$
CALIBRATED AGE:
cal BC 2462
cal BP 4411
and cal BC(cal BP) ranges:
2466-2457(4415-4406) 2411-2409(4360-4358)
2472-2453(4421-4402) 2425-2397(4374-4346)
>2490-2342(>4439-4291)
>2490-2374(>4439-4263)
>2490-2290(>4440-4240)
>2490-2280(>4440-4230) 2234-2209(4183-4158)
>2490-2190(>4440-740)
2157-2147(4106-4096)
>2490-2140(>4440-4090)
a
RADIOCARBON AGE BP 3860
Sample
o
o
o
o
o
o
o
o
20
AO
=
60
80
= 100
120
160
- 200
=
o
CALIBRATED AGE:
cal BC 233
cal BP 4292
RADIOCARBON AGE BP 3940
and cal BC(cal BP
ranges:
2454-2421(4403-370) 2401-2309(4350-4258)
2458-2287(14407-4236)
2462-2278(4411-4227) 2235-2208(4184-4157)
2466-2201(1415-4150)
2470-2190(4420-4140) 2157-2147(4706-4096)
>2490-2180(>4A40-4130) 2166-2742(4115-4091)
>2490-2130(>4440-4080) 2067-2047(4016-3996)
>2490-2040(>4440-3990)
RADIOCARBON AGE BP 3880
CALIBRATED AGES:
cal BC 2453, 2423, 2398
cal BP 4402, 432, 4347
Sample o and cal BC(cal BP) ranges:
o
20
2458-2340(4407-4289)
0= UO 2462-2311(4417-4260)
a= 60 2466-2288(4415-4237)
o= 80 2471-2278(4420-4227) 2234-2208(4183-4157)
100
>2490-2200(>4440-4150)
120
>2490-2190(>4440-4140) 2157-2147(4106-4096)
160
>2490-2140(>4440-4090)
>2490-2720(>4440-4070) 2080-2042(4029-3997)
= 200
Sample
o
20
40
60
80
= 700
= 120
= 160
o
=
o
o
o
o
a
o
=
200
o
CALIBRATED AGE:
cal BC 2466
cal BP 4415
and cal BC(cal BP) ranges:
2474-2461(4423-4410)
>2490-2457(>4439-4406)
>2490-2453(>4439-4402) 2424-2398(4373-4347)
>2490-2342(>4439-4291)
>2490-2310(>4440-4260)
>2490-2290(>4440-4240)
>2490-2200(>4440-4150)
>2490-2180(>4440-4130)
2166-2142(4115-4091)
RADIOCARBON AGE BP 3960
CALIBRATED AGE:
cal BC 2470
cal BP 4419
Sample o and cal BC(cal BP) ranges:
o =
20
>2490-2465(>4439-4414)
o
40
>2490-2461(>4439-4470)
o
60
>2490-2457(>4439-4406)
o
80
>2490-2453(>4439-4402) 2424-2398(4373-4317)
o
100
>2490-2340(>4440-4290)
o
120
>2490-2310(>4440-4260)
o
160
>2490-2280(>4440-4230) 2234-2209(4183-4158)
o = 200
>2490-2790(>4440-4740)
2157-2147(4106-4096)