Academia.eduAcademia.edu

High precision calibration of the radiocarbon time scale

1986

This paper is a twin paper to that of Stuiver and Pearson 1986 which covers the time period AD 1950-500 BC. The combined radiocarbon ages of dendrochronologicallY dated wood presented in this paper covers the time period 500-2500 BC. Specific discussion of detail effecting only one of the two laboratories is given in the paper which has, as the premier author, the person responsible for the particular laboratory's measurement. Factors effecting both laboratories can be in either paper, but are carefully referenced to the other; outline details are given in both papers.

[RnniocwxaoN, VOL 28, No. 2B, 1986, P 839-862] HIGH-PRECISION CALIBRATION OF THE RADIOCARBON TIME SCALE, 500-2500 ac GORDON W PEARSON Palaeoecology Centre, The Queen's University of Belfast, Belfast, Northern Ireland and MINZE STUIVER Center, University of Washington, Seattle, Washington 98195 of Geological Sciences and Quaternary Research Department The treatment of oak wood samples at Belfast was to first plane the 20-year blocks of wood some 180g into thin shavings. These were then bleached using sodium chlorite in 0.018N HC1 raised to a tempertaure of ca 0°C. This treatment left the samples free from tannins and lignins and close to pure cellulose. Following cellulose reparation samples were charred at 500°C to leave a carbon-rich residue ready for combustion to CO2. The treatment of the Seattle samples (mainly Pine followed one of two different methods detailed in Stuiver and Pearson 1986 twin paper). INTRODUCTION This paper is a twin paper to that of Stuiver and Pearson 1986 which covers the time period AD 1950-500 BC. The combined radiocarbon ages of dendrochronologicallY dated wood presented in this paper covers the time period 500-2500 BC. Specific discussion of detail effecting only one of the two laboratories is given in the paper which has, as the premier author, the person responsible for the particular laboratory's measurement. Factors effecting both laboratories can be in either paper, but are carefully referenced to the other; outline details are given in both papers. The construction of a calibration curve from 14C ages with statistically limited precision is not a simple matter. Not only should the standard error in the determination be as small as possible, but the calculation of this error also has to be realistic in that it should account for all variability encountered in the laboratory procedures. Independent dendrochronoloc calibration of the samples is also a must. Proof of accuracy has to come from a comparison of the results obtained in two or more facilities. It will be shown that the results obtained in Seattle and in Belfast on wood of the same age, but from different regions, give consistent replication within the quoted error over the entire interval. The aspects of replication are first discussed and are followed by the details of calibration Fig 1 Tables 1 2). The problems of quoted errors and the use and limitations of error multipliers are discussed, and recommendations are given for the inclusion of such errors in the reported 14C age. TECHNIQUE AND LABORATORY REPRODUCIBILITY Two different techniques were employed at the Belfast and Seattle laboratories. In Belfast the oak wood samples were converted to CO b combustion and sub-sampled for mass spectrometric measurement of the stable carbon isotope ratio. Benzene was then synthesized from sample CO2 following the conversion path CO2-LiC--C2H2-C6H6 using the method of Barker 1953. The benzene was then measured using a Philips PW4510 automatic liquid scintillation counter set up as previously described in Pearson 1979 1983. Various corrections were applied to the observed 2y count-rates based on the careful monitoring of internal and external parameters. The application of these corrections simulate a constant counting efficiency such that only one reference standard count-rate was used for the calculation of all the 14C ages reported herein although measured over a period of 10 Years. The system did not allow a constant background to be used over this period but corrections applied to the observed background count-rate gave an inaccuracy of < ± 0.5° when used to evaluate a 4C age of about one half-life. The method used in Seattle was the proportional counting of CO2 and is described more fully in Stuiver and Pearson 1986 twin paper). The reproducibility of Belfast data is proven by a set of 55 replicate analyses measured over a period of 10 years some replicates being done within months others repeated years later. The actual standard deviation in a single measurement assumed to be all of equal weight based on 55 replicate analyses was calculated using the relationship &= VSS/2(n-^ 1 where SS = Sum of the difference between duplicates 2, n = 55, and & is the derived single measurement standard deviation which can then be comquoted on the 110 individual pared to the mean standard deviation measurements. The actual calculated standard deviation value was & = 19.0 -r. The illCaii quoted error on the individual measurements was evaluated 1 _ from a = -1 r n and gave a value of & = 15.4 Yr, thus suggesting that the > 1 DENDROCHRONOLOGY AND SAMPLE TREATMENT The wood samples used for the Belfast radiocarbon calibration came from deciduous oaks uercus etraea and uercus robur growing at altitudes <200m in Ireland Scotland and England Pilcher et al 1984. The 7272-Year Belfast chronology consists of the ring patterns of 1035 trees. Replication was the keystone to the production of the absolute dates for the les no year is spanned by <6 trees; most years are spanradiocarbon samples; ned b 20-30 trees. External cross-dating between the Irish chronology and those from England and Germany provided independent checks on its validity Brown et al, 1986. The samples measured by the Seattle Laboratory were either Douglas Fir from the northwestern United States, Sequoia from California or German Oakk Table 2) 'Stuiver & Pearson 1986 twin paper). Y 839 Gordon W Pearson and Minze Stuiver 840 quoted error is underestimated by ca 23% or an error multiplier of 1.23 is required. The error multiplier of the Seattle laboratory was also determined experimentally in two ways: 1 from the comparison of 30 Pairs of wood samples from different trees giving an error multiplier of 1.53 and 2 repeated measurement on outlying samples yielded an error multiplication of 1.62. Both of these values were demonstrated to be maximum values , and a value of 1.60 was taken to be a reasonable estimate and perhaps still rather generous. Additional details are given in Stuiver and Pearson (1986). SYSTEMATIC DIFFERENCES BETWEEN LABORATORIES AND COMPARISON OF VARIANCE 14C The systematic age differences between the Belfast and Seattle laboratories have a maximum difference of only a few years Stuiver & Pearson 1986 twin paper). The weighted mean 14C age difference of the Belfast and Seattle bi-decadal data set is 0.6 ± 1.6 Yr number of comparisons n = 214. For the AD interval the difference is 2.6 ± 2.3 Yr n = 90 and for the BC portion it is 3.4 ± 2.1 n = 124). The 14C ages of wood of the same age for Ireland, south Germany and northwestern United States differ on average by only a few years Stuiver & Pearson twin paper). It is shown Stuiver & Pearson, 1986 twin paper that the quoted labo ratory standard deviations account for almost all the differences found between the two data sets. CONSTRUCTION OF RADIOCARBON AGE CALIBRATION CURVES The calibration curves were constructed from the set of 14C ages obtained for samples each spanning a 20-Yr interval with some exceptions as noted in the Table 1 heading. The cal AD BC or cal BP ages follow the mid-Points of the Belfast bi-decadal series whenever possible, starting in AD 1840. The AD 1940-AD 1860 data set is based on the Seattle data alone' all other 4C ages are based on the weighted Belfast Seattle averages except when Belfast skipped a decade. Here the gaps were filled by averaging 30-yr blocks of Seattle data see Table 1). As discussed previously, the standard deviations in the 14C age determinations of each laboratory are based on the reproducibility of the measurements within each laboratory and are larger than the errors usually quoted by both laboratories. For Belfast where additional factors are used to calculate the routinely reported standard deviation beyond the counting statistics the reproducibility tests indicate an error multiplier of 1.23. For Seattle where the routinely reported standard deviations include only the error derived from counting statistics, the error multiplier is 1.6. The standard deviation assigned to the curve the vertical difference between center and outer curve accounts for nearly 90% of the demonstrated standard deviation in the 14C age differences of both laboratories. The mean standard deviation reported with the curves is 12.1 Yr and is solely based on the Belfast and Seattle measuring reproducibility. The var i1 ance in the differences in 14C ages of contemporaneous samples measured independently in Belfast and Seattle indicate a measure of uncertainty that is equivalent with an average standard deviation of 13.4 Yr. The wood used for the 14C measurements came from the western United States Ireland and southern Germany Table 2. Oak wood was used for the European chronologies Becker, 1983 Pilcher et al 1984 and Douglas Fir and Sequoia for the US portion. In the preceding sections it was shown that contemporaneous wood from these trees differed on average, by only a few 14C Years. Thus, although the curves are based on wood from different trees identical results would have been obtained if all measurements had been made on a single tree from one locality. THE AGE ERROR REPORTED WITH THE RADIOCARBON DATE The international 14C community follows strict calculation procedures when determining a conventional 14C age Stuiver 8c Polach 1977). Unfor tunatelY, age error calculations are much less bound by rules. The error in any laboratory determination is a composite of 1 The Poisson statistical error based on the number of counts observed for sample and standards, assuming constant counting conditions and 2 the errors associated with factors that cause deviation from the above constant counting conditions and other non-systematic errors which affect the reproducibility of the laboratory results. The latter can be derived from replicate sample measurements. Attempts to determine systematic errors are rarely made by the 14C community. The reported sample age error one standard deviation is often based solely on Poisson statistics in the number of registered sample and standard counts. Such a substitute for a repeatmeasurement derived standard deviation leads to an underestimate because it neglects other factors that add to the variance Pearson, 1979, 1983). When identical tree-ring samples with approximate ages of ca 5000 14 C Yr were measured by 20 laboratories International Study Group, 1982 it was found that the reproducibility standard deviations in the submitted data set were substantially higher than the age errors reported by the laboratories. Systematic errors ranged from <20 Yr 3 laboratories to 200 Yr 1 laboratory). When comparing the reproducibility standard deviation obtained after removal of off-sets from the data set with the laboratory reported error it was found that Q has to be multiplied with 1.3 for a < 20 Yr, with ca 2.0 for o in the 20- to 80-Yr range, and with 1.0 for > 80 Yr (International Study Group. These multipliers are strictly laboratory-related and in principle independent of the magnitude of o. Additional information on systematic errors is available for a set of samples in the 000 to 8000 14C Yr range measured in Seattle La olla Heidelber and Tucson Stuiver et al 1986). Off-sets of 29 ± 1 0 27 ± 1 2 and 52 ± 8 y r were found respectively, for Seattle-La olla, Seattle-Heidelberg, and Seattle-Tucson comparisons. The above studies indicate that systematic errors may exist and that the reported standard deviation of a 14C age measurement is usually too low. The degree of under-reporting has only been determined so far for 20 High-Precision Calibration o odd laboratories for samples ca 5000 14C Yr old. Unfortunately, the error multipliers determined in the above international group study cannot be applied to all age ranges because the multiplier values are age dependent Stuiver et al 1986. Error multipliers also may change from year to year or even day to daY at a specific laboratory with improving or deteriorating) experimental conditions. It is recommended that the user of a 14C date obtain additional information on reproducibility and systematic error determinations from the reporting laboratory. This information should lead to a realistic standard deviation in the age based on repeat measurements of test samples although care must be taken in its use particularly when determining 2 and 3 probabilities. Limitations on systematic error size also should be provided. A systematic error, of course> should not be art of the regular ± reported with the date. In the absence of the above information the user can only take as the 14 C age error the actual reported a, with the understanding that this error is usually too small. In case the user would take twice the reported standard deviation it should be realized that 1 for some laboratories the actual error may be smaller than 2a and 2 statistical rules such as stating that only 1 event out of 20 would be outside 2a bounds are not valid because after all the original a is not a properly defined standard deviation in many instances. CALIBRATION INSTRUCTIONS The Figure 1 calibration curves consist of three lines. The center line is the actual calibration curve whereas the outer lines indicate the one sigma standard deviation uncertainty in the calibration curve. The calibration curve depicts the non-linear transformation of 14C ages to calibrated AD BC or BP ages. The nomenclature adopted for the dendro calendar Year time scale is cal AD BC or cal BP. The cal AD BC ages are plotted along the lower horizontal axis and the cal BP ages along the upper one. Cal BP ages are relative to the year AD 1950, with 0 cal BP equal to AD 1950. The relationship between cal AD BC and cal BP ages is simple: cal BP = 1950 cal AD and cal BP = 1949 cal BC. The switch from 1950 to 1949 when converting BC ages is caused by the absence of the zero year in the AD BC chronology when progressing from 1 BC to 1 AD, the cal BP ages should be without a gap). The conversion of a 14C age to a cal age is straightforward: 1 Draw a horizontal parallel to the bottom axis line A through the 14C age to be converted and 2 draw vertical lines through the intercept(s) of line A and the calibration curve center line). The cal AD BC ages can be read at the bottom axis the cal BP ages at the top. A single 14C age can correspond with multiple cal ages due to past changes in atmospheric 14C levels see Stuiver , 1982 for illustration). The user has to determine the calibrated ages from the Figure 1 graphs wing lines. An alternate approach is the use of Table 2 where the cal b drawing by ages are listed for 14C ages that increase by 20-Yr steps. Obviously, the user has to interpolate between the 20-Yr steps of i4C ages and sigmas if further fine tuning is desired. - the JqG Time Scale 500-2500 BC 841 14C age into a range of cal The conversion of the standard error in the BP ages is more complicated. The user should first determine whether he/she wants to use 1 the laboratory quoted error see previous section for a discussion or 2 increase the quoted error by a known ' error multiplier. ' ' Once the sample a has been targeted the curve a one standard deviation should be read from the calibration curve by taking the difference in radiocarbon years between center curve and outer curves in Figure 1 The curve a and sample a should then be used to calculate total a = (sample a 2 + curve a 2 Stuiver, 1982). Horizontal lines should now be drawn through the 14C age + total a, 14C and age total a value. The vertical lines drawn through the intercepts with the CENTRAL curve Yield the outer limits of possible cal AD BC or BP ages that are compatible with the sample standard deviation. The above procedure was used to derive the "ranges" of cal AD BC BP ages listed in Table 2. The conversion procedure yields 1 single or multiple cal AD BC BP ages that are compatible with a certain 14C age and 2 the range(s) of cal ages that corresponds to the standard deviation in the 14C age. The probability that a certain cal age is the actual sample age may be quite variable within the cal age range. Higher probabilities are encountered around the intercept ages. Low, or near zero probabilities are encountered when part of the calibration curve `snakes' outside the total a boundaries. The nonlinear transform of a Gaussian standard deviation around a 14C age into cal AD BC BP ages leads to a very complex probability distribution that can only be calculated with the aid of computers. We are currently developing suitable programs for these probability calculations and plan to make these programs available in the near future. The calibration data presented in this paper are to be used for samples formed in isotop is 14C equilibrium with atmospheric CO2 Although the wood samples were collected from specific regions Ireland, Germany, and western USA) the calibration data can be used for a large part of the Northern Hemisphere Stuiver> 1982). However, ssystematic age differences are possible for Southern Hemispheric samples where 14C ages of wood samples tend to be ca 30 Yr older Lerman Mook & Vogel 1970; Vo el Fuls & Visser, 11986). Thus 14C ages of Southern Hemispheric samples should be reduced bY 30 years before being converted into a cal AD BC BPage. AD BC - . SMOOTHING OF THE CALIBRATION CURVE The Figure 1 points have a 20 -Yr time separation ie the calibration ofwood samples spanning 20 Years. Samples subpoints are the mitted for dating may cover shorter egseed samples) or longer intervals matted eg, lake sediment samples). The decadal calibration results of the Seattle laboratory are available when better time resolution is needed Stuiver & Becker, 11986). If less resolution is desfired , the Figure 2 curves can be used. Here, a 5 -point moving average (usually identical with a 1 00-Yr moving average of the Figure 1 data set was used to construct the curves. A single line is given in Figure 2 because the uncertainty in the 5 point moving average is only a few radiocarbon years. The instructions for determining the 842 Gordon W Pearson and Minze Stuiver ' cal AD BC 1w ages are listed in the preceding section. Samples falling outside the ranges covered the he twin win papers Stuiver &Pearson, 1986, son & Stuiver, 1986 can be provisionally converted using the curves provided by Pearson et al 1986 employing the same method outlined above. surements of the Seattle Laboratory were supported through the National Science Foundation ants ATM-8318665 of the Climate Dynamics Program, and EAR-8115994 of the Environmental Geosciences program. MARINE SAMPLE AGES Barker, H, 1953, Radiocarbon dating: Large scale preparation of acetylene from organic material: Nature, v 172, p 631-632. Becker, B, 1983, The long-term radiocarbon trend of the absolute oak tree-ring chronology, 2800-800 Be in Stuiver M and Kra R S eds Internatl 14C conf, 11 th Proc: Radiocarbon, v 25, no. 2, p 197-203. Brown, D M, Munro, M A R, Baillie, M G L and Pilcher, R, 1986, DendrochronologY-the absolute Irish standard in Stuiver M and Kra R S eds Internatl 14C conf, 12th Proc: Radiocarbon, v 28, no. 2A. International Study Group, 1982, An inter-laboratory comparison of radiocarbon measurements in tree rings: Nature, v 298, 619-623. Lerman C Mook W G and Vo el C 1970, C14 in tree rings from different localities in Olsson, IU, ed, Radiocarbon variations and absolute chronology, Nobel symposium, 12th, Proc: New York, John WileY & Sons, p 275-299. Pearson G W 1979, Precise 14C measurement by liquid scintillation counting: Radiocarbon, v 21, no. 1, p 1-21. 1980, High precision radiocarbon dating by liquid scintillation counting applied to radiocarbon timescale calibration, in Stuiver, M and Kra, R S, eds, Internatl ' C conf, 10th Proc: Radiocarbon v 22, no. 2, p 337-345. ms 1983 The development of high precision 14C measurement and its application to archaeological time-scale problems: PhD dissert, The Queen's Univ Belfast. Pearson G W Pilcher R Baillie M G L Corbett D M and Qua, F 1986, High-precision 14C measurement of Irish oaks to show the natural 14C variations from AD 1840-5210 BC, in Stuiver, M and Kra, R S, eds, Internatl 14C conf, 12th, Proc: Radiocarbon, this issue. Pilcher, R, Baillie, M G L, Schmidt, B and Becker, B, 1984, A 7,272-Year tree-ring chrono logy for western Europe: Nature, v 312, p 150-152. Stuiver, M, 1982, A high-Precision calibration of the AD radiocarbon time scale: Radiocarbon, v 24, no. 1, p 1-26. Stuiver, M and Becker, B,1986, A decadal high-Precision calibration curve, in Stuiver, M and Kra' R S' eds' Internatl 14C conf' 12th' Proc: Radiocarbon' this issue. Stuiver, M, Kromer, B, Becker, B and Ferguson, C W, 1986, 14C age calibration back to 13,300 14C age matching of the German oak and US bristlecone pine chronologies, Yr BP and the in Stuiver M and Kra R S eds Internatl 14C conf, 12th Proc: Radiocarbon this issue. Stuiver, M and Pearson, G W, 1986, High-Precision calibration of the radiocarbon time scale, 14C conf, 12th Proc: RadiocarAD 1950-500 BC in Stuiver M and Kra R S eds Internatl bon, this issue. Stuiver, M, Pearson, G W and Braziunas, T, 1986, Radiocarbon age calibration of marine samples, in Stuiver M and Kra R S eds Internatl 14C conf, 12th Proc: Radiocarbon this issue. Stuiver M and Polach H A 1977 Discussion: Reporting of 14C data: Radiocarbon v 19 no. 3, p 355-363. Vogel, C, Fuls, A and Visser, E, 1986, Radiocarbon fluctuations during the 3rd millennium 14C conf, 12th Proc: Radiocarbon this Be in Stuiver M and Kra R S eds Internatl issue. PearY The calibraton curves should be applied only for age conversion of samples that were formed in equilibrium with atmospheric CO2. Conventional 14C ages of materials not in equilibrium with atmospheric reservoirs do not take into account the off-set in 14C age that may occur Stuiver & Polach 1977). This off-set or reservoir deficiency, has to be deducted from the reported 14C age before any attempt can be made to convert to cal AD BC BP ages. The reservoir deficiency is time dependent for the mixed layer of the ocean. Model calculated calibration curves for marine samples are listed separately in this volume Stuiver, Pearson & Braziunas, 1986). ACKNOWLEDGMENTS G W Pearson would like to thank all members past and present of the '4C laboratory who participated in this research. Particular thanks are given to S HoPer who has been responsible for the routine analysis of samples over the last two years and to D Brown who has been responsible for the selection and isolation of dendrochronolo 'callY dated wood samples supplied lied by R Pilcher and M G L Baillie. Thanks are also given to D Corbett and F Qua for their conscientious assistance in this project. Thanks are due SERC for a ant to G W Pearson to carry out this research. P Wilkinson dedicated much time and care to the Seattle high-precision measurements. P Reimer's computer virtuosity was of critical importance for producing the graphs, tables and statistical analysis. Nearly all BC determinations at Seattle were on German Oak generously supplied and dendro-dated by Bernd Becker University of Hohenheim (Stuttgart), West Germany. Dendrochronolo c determinations were also made b M Parker Vancouver BC Canada D Eckstein University of Hamburg, West Germany, and H Garfinkel University of Washington. The manuscript benefitted substantially from the scientific advice given by P M Grootes University of Washington. The radiocarbon mea- REFERENCES --------- cal BP 3050 3100 2950 2850 2750 2650 2550 2450 2350 1000 900 800 700 600 500 400 3000 2900 2700 2600 2500 2400 2300 2200 1100 cal BC Fig 1A cal BP 3550 3500 3450 3350 I 3250 3150 I i 3050 I 2950 2850 I 3400 3300 3200 3100 3000 2900 2800 2700 2600 1600 IIII..IiiiI.iiIii, 1500 1400 1300 1200 cal BC Fig 16 Iii.iIiiii 1100 1000 900 cal BP 4550 4200 4450 4350 4250 4150 4050 3950 3850 2500 2400 2300 2200 2100 2000 1900 4100 4000 3900 3800 3700 3600 3500 3400 3300 2600 cal BC Fig 10 cal BP 3050 3100 2950 I I I 2850 I I I I 2750 I 2650 I 2550 ' 2450 2350 ' i I _ r 3000 r r r rr 2900 r r 2800 r r r 2700 r r 2600 r r r 2500 r r r r 2300 r PEARSON AND STUIVER 2200 1100 i 1000 i 900 i i 800 700 cal BC Fig 2A f 600 i. S00 400 cal BP 3550 3500 3450 3350 3250 3150 3050 2950 2850 1500 1400 1300 1200 1100 1000 900 3400 3300 °m 3200 U) w 3100 z m 3000 0 U O 2900 2800 2700 2600 1600 cal BC Fig 2B cal BP 4050 3900 3950 3850 3750 3650 3550 3450 3350 2000 1900 1800 1700 1600 1500 1400 3800 3700 3600 3500 3400 3300 3200 3100 3000 2100 cal BC Fig 2C cal BP 4550 4200 4450 4350 4250 4150 4050 3950 3850 r r r 4100 r r 4000 r 3900 r r 3800 r r 3700 r r rr r 3600 r 3500 r r r 3400 r PEARSON AND STUIVER 3300 2600 2500 2400 2300 2200 cal BC Fig 20 2100 2000 1900 High-Precision Calibration o the 14C Time Scalea 500-2500 BC 851 TABLE 1-B TABLE 1-A The radiocarbon ages are the averages of age determinations made at the Uni versity of Belfast and the University of Washington (Seattle). The cal AD/BC or cal BP ages represent the mid-Points of bi-decadal wood sections. Belfast data only were used for 670 BC 690 Bc 2390 BC and 2450 BC because Seattle decade measurements were incomplete for these ages. The cal AD/BC ages follow the mid-Points of the Belfast bi-decadal series whenever possible, starting at 510 BC. The actual midpoints of the averages were occasionally slightly different. The differences have been neglected because the midPoints of the Seattle sample were always within 1.5 Years of the mid-Point of the corresponding Belfast sample. The standard deviation in the ages and values include lab error multipliers of 1.23 for Belfast and 1.6 for Seattle. The trees used and sample treatments are listed in Table 2 Stuiver & Pearson 1986). cal AD/BC cal BP BC EP BC BP BC BP BC BP BC BP BC BP BC BP BC BP BC BP BC BP BC BP BC BP BC BP BC BP BC BP BC BP BC BP BC BP 510 2459 530 2479 550 2499 570 2579 590 2539 610 2559 630 2579 650 2599 670 2619 690 2639 710 2659 730 2679 750 2699 770 2719 790 2739 10 2759 830 2779 50 2799 '"C Radiocarbon age BP cal AD/BC cal BP BC BP BC BP BC BP BC BP HC BP BC BP BC BP BC BP BC -4.1 ± 1.2 2422 t 10 -5.0 ± 1.1 2450 ± -6.3 ± 1.0 2480 ± 9 8 -5.1 ± 1.3 2489 ± 10 -1.14 ± 1.3 2478 t 11 -1.9 ± 1.2 2502 ± 10 2.3 ± 1.2 2488 ± 10 7.3 ± 1.2 2468 ± 10 5.0±1.8 2505 ± 15 BP ± 1,8 2468 ± 15 16.9±1.9 2449 t 15 20.4 ± 1,5 2442 ± 12 22.8 t 1.7 2442 t to 15.3 t 1.9 2521 14.6 t 1.2 2545 t 10 4.6 t 1.6 2644 t 13 2.2 t 1.4 2683 t 12 -.6±1.6 2725 t 13 12.1 t 16 BC BP BC BP BC BP BC BP BC BP BC BP BC Bp BC BP BC BP 870 2819 890 2839 910 2859 930 2879 950 2899 970 2919 990 2939 1010 2959 1030 2979 1050 2999 1070 3019 1090 3039 1110 3059 1120 3069 1140 3089 1150 3099 1170 119 1190 3139 i'"C age BP cal AD/BC cal BP BC BP BC BP BC BP BC BP BC BP BC BP BC BP BC Bp 1.6 12 BC BP 1.6 12 BC 1.5 12 BP BC BP 1.6 13 BC 1.5 12 1.3 10 1.4 11 1.1 9 BP BC BP 12 t t 1.3 10 1.3 10 t 1.4 11 t .4 3 t 12 t .u t 3 t 13 t 13 1210 3159 1230 3179 1250 3199 1270 3219 1290 3239 1310 3259 1330 3279 1350 3299 1370 3319 1390 3339 1410 3359 1430 3379 1450 3399 BC 11470 HP 3419 BC 1490 BP 3439 BC 1510 BP 3459 BC 1530 BP 379 BC 1550 BP 3499 BC 1570 BP 3519 BC 1590 BP 3539 BC 1610 BP 3559 BC 1630 BP 3579 BC 1650 BP 3599 BC 1670 BP 3679 BC 1690 BP 3639 '"C Radiocarbon age BP cal AD/BC cal BP BC BP BC BP BC BP BC BP BC BP 15.3 1.5 2948 t 12 12.5 1.6 2989 ± 13 19.8 1.5 2951 t 12 13.1 1.7 3024 t 14 17.1 1.8 3011 t 14 17.3 ± 1.8 3030 ± 14 13.0 t 1.6 3083 f 13 20.8 ± 1.7 3041 t 14 23.2 t 1.7 3041 t 14 21.6 ± 1.4 3073 ± 12 19.8 t 1.5 3107 t 12 16.2 t 1.5 3155 t 12 14.3 t 1.1 3189 t 9 14.8 ± 1.3 3204 t it 19.3 ± 1.6 3189 ± 13 20.0 ± 1.7 3203 t 14 11.5 ± 1.6 3289 ± 13 11.9 ± 1.8 335 t 14 17.5 ± 2.0 3280 t 16 20.1 ± 1,5 3280 ± 12 19.4 ± 1,4 3304 ± 11 18.3 ± 7.6 3333 ± 13 19.2 ± 1.2 3344 ± to 22.1 3341 ± 13 3393 t 13 ± 1.6 18.0 f 1.6 BC 1710 3659 1730 3679 1750 3699 1770 3719 1790 3739 1810 3759 1830 3779 1850 3799 1870 3819 1890 3$39 1910 3859 1930 3879 1950 3899 1970 3919 1990 3939 2010 3959 2030 3979 2050 3999 2070 4019 2090 4039 2110 4059 2130 4079 2750 4099 2170 aP BC BP BC Bp BC BP BC BP BC BP BC BP BC BP BC BP BC Bp BC BP BC Bp BC BP BC BP BC BP BC BP BC BP BC BP BC BP 14119 BC 2190 4139 BP 61"C Radiocarbon age BP 1.8 t 15 1.5 t 12 1.5 t 1.4 t 11 1.4 t 11 1.4 t 11 1.8 t 15 1.6 t 13 1.5 t 12 1.5 t 12 1.8 t t 1.4 t 12 7.5 t 12 1.7 t 14 1.9 15 1.6 13 1.5 t 1.5 1.6 12 12 t 13 1.6 13 1.6 13 1.8 14 1.3 t t 1.6 t 1.1 10 13 t 9 Gordon W Pearson and Minze Stuiver 852 TABLE 1-C cal AD/BC cal BP BC BP BC BP BC BP BC BP BC 2210 D14C TABLE 2 Radiocarbon age BP 30.1 ± 1.4 3803 ± 11 4159 2230 32.7 ± 1.6 3803 ± 13 ± 7.3 3786 ± 10 40.2 ± 1.8 3784 ± 14 37.6 ± 1.5 3823 ± 12 38.2 ± 1.8 3838 ± 14 39.6 38+6 4179 2250 37.14 The conversion of the radiocarbon ages to a series of ranges of cal AD/BC and BP dates is determined by the AD/BC intercepts of the sample radiocarbon age ± (sample samP a 2 + curve Q 2 and the calibration curve. Intercepts of the radiocarbon age with the calibration curve are listed to the right. Sample is the standard error in the radiocarbon age. For sample sigmas and ranges larger or equal to 100 Years the data were rounded to the nearest decade. When the gap between two successive ranges was less than 10 Years, the two ranges were combined to a single one. Illustrations of the above are given below. x+199 2270 4219 2290 RADIOCARBON AGE 2580±100 YR BP a total= 1002 -F (curve a)2= 101 YR 2800 BC INTERCEPT: BP 14239 BC 2310 BP 4259 BC BP 233 4279 BC 2350 BP 14299 797 ± 1.14 39.4 ± 1.6 140.7 BP 439 BC 2390 BP x+339 44.5 ± 2.4 2410 BP 4359 BC 2430 2450 4399 2470 4419 BC 2490 BP 141439 I ± 12 - 2580 3867 ± 13 43.0 ± 1.14 3877 ± 12 -a total 3867 ± 20 ± 1.3 3898 ± 11 49.0 ± .9 3871 ± Cal BC 2400 900 Cal BC range 829 soo 3865 ± 12 42.5 ± 1.4 3960 ± 1+3.0 ± 1.5 11 3976 ± 12 ti 700 760 684 I 52.4 ± 1.5 I -1 i 8 BP x+379 BC BP BC BP a tots ti sc 2370 BC -+ 656 639 I I 591 588 550 i Contracted to one range High-Precision Calibration TABLE 2 o the 14C Time Scale TABLE 2-A RADIOCARBON AGE BP 2460 v total= 202+(curvea)2=21 YR Sample 40 o AD INTERCEPTS o o 1696 1726 I W 1921 1955 1818 1859 I I o 11861 o a C3 Q Z O m Q U O 0 Q a AD 60 80 - 100 = 120 160 = 200 - CALIBRATED AGES: cal BC 755, 699, 537 cal BP 2704, 2648, 2486 and cal BC(cal BP) ranges: 761-682(2710-2631) 659-6314(2608-2583) 559-520(2508-2469) 442-420(2391-2369) 765-478(2714-2427) 771-408(2720-2357) 787-405(2736-2354) 790-400(2740-2350) 800-400(2750-2350) 810-390(2760-2340) 820-380(2770-2334) 200 RADIOCARBON AGE BP 21480 CALIBRATED AGES: -Q total Sample o o 1600 o ti a 1700 1900 1800 _ 2000 o o o Cal AD ranges 1686 1736 1807 1886 1911 1930 1955 o o 20 40 = 60 = 80 = = 100 = 120 = 160 = 200 = o o o o o o o o o 20 40 = 60 = 80 = = 100 = 120 = 160 = 200 = CALIBRATED AGES: 667, cal BC 765, 673, cal BP 2714, 2622, 2616, and cal BC(cal BP) ranges: 685-655(263-2604) 772-759(2721-2708) 700-536(2649-2485) 787-754(2736-2703) 793-522(2742-2471) 440-422(2389-2371) 797-481(2746-2430) 800-410(2750-2360) 8t0-400(2760-2350) 820-400(2770-2350) 840-390(2790-2340) 0 o = o = o = o = o = o = a = 20 40 60 t60 200 o , 2587 , 2540 BC(cal BP) ranges: 766-754(2715-2703) 771-522(2720-2471) 787-481(2736-2430) 793-408(2742-2357) 800-400(2750-2350) 800-400(2750-2350) 810-400(2760-2350) RADIOCARBON AGE BP 2520 Sample , a nd cal RADIOCARBON AGE BP 2500 Sample 684, 551 58 7, BP 270 9 26 33, 2606 2536, 2500 cal BC ca l -120 100 0 Cal o 20 o 300 853 continued RADIOCARBON AGE 120±20 YR BP } 500-2500 BC CALIBRATED AGE: cal BC 770 cal BP 2719 and cal BC(cal BP) ranges: 790-764(2739-2713) 793-759(2742-2708) 830-400(2780-2350) 892-881(2841-2830) 850-400(2800-2350) 608 613, 2562, 2557 , Gordon W Pearson and Minze Stuiver 854 RADIOCARBON AGE BP 2540 Sample o 20 40 60 80 = 100 = 120 = 160 o = o o o o o o o = 200 CALIBRATED AGE: cal BC 786 cal BP 2735 and cal BC(cal BP) ranges: 794-769(2743-2718) 674-666(2623-2615) 797-764(2746-2713) 684-656(2633-2605) 801-759(2750-2708) 805-754(2754-2703) 700-536(2649-2485) 810-520(2760-2470) 820-480(2770-2430) 439-422(2388-2371) 840-400(2790-2350) 900-400(2850-2350) 2-C TABLE TABLE 2-B RADIOCARBON AGE BP 2620 Sample 639-549(2588-2498) o - o - o - o - o - o o - o 20 40 60 80 100 120 160 200 CALIBRATED AGE: cal BC 805 cal BP 2754 and cal BC(cal BP) ranges: 810-800(2759-2749) 819-797(2768-2716) 829-793(2778-2742) 838-785(2787-2734) 848-770(2797-2719) 892-881(2841-2830) 900-760(2850-2710) 673-667(2622-2616) 700-540(2650-2490) 920-750(2870-2700) 990-480(2940-2430) 439-423(2388-2372) 614-608(2563-2557) 0 RADIOCARBON AGE BP 2560 Sample o = 20 o = 110 o = a o o o o a 60 80 = 100 = 120 160 = 200 20 40 60 80 = = 100 120 160 200 o = o = o o o o o o o o 20 40 =' 60 80 = 700 120 o - 160 a a o o o 0 - o cal BC cal BP and cal BC(cal BP) ranges: 802-792(2751-2741) 805-784(2754-2733) 809-770(2758-2719) 819-765(2768-2714) 673-667(2622-2616) 829-760(2778-2709) 684-656(2633-2605) 838-755(2787-2704) 700-540(2650-2490) 900-480(2850-2430) 439-423(2388-2372) 920-400(2870-2350) RADIOCARBON AGE BP 2600 Sample CALIBRATED AGE: CALIBRATED AGE: AGE BP 2640 cal BC 793 cal BP 2 7 42 and cal BC(cal BP) ranges: 798-783(2747-2732) 801-769(2750-2718) 805-765(2754-2714) 673-667(2622-2616) 684-656(2633-2605) 809-760(2758-2709) 818-754(2767-2703) 700-540(2650-2490) 830-520(2780-2470) 892-882(2841-2831) 850-410(2800-2360) 910-400(2860-2350) RADIOCARBON AGE BP 2580 Sample CALIBRATED AGE: Sample o = o 615-607(2564-2556) 639-550(2588-2499) o o o o o 200 809 cal BC l BP 2758 and cal BC(cal BP) ranges: 820-804(2769-2753) 829-801(2778-2750) 839-797(2788-2746) 848-793(2797-2742) 893-881(2842-2830) 900-790(2850-2740) 910-770(2860-2720) 976-964(2925-2913) 930-760(2880-2710) 638-550(2587-2499) 1000-520(2950-2470) 684-656(2633-2605) 797 2776 RADIOCARBON AGE BP 2660 Sample o 614-608(2563-2557) 639-550(2588-2499) cal BC 801 cal BP 2750 and cal BC(cal BP) ranges: 806-796(2755-2745) 809-793(2758-2742) 819-785(2768-2734) 829-770(2778-2719) 838-765(2787-2714) 673-667(2622-2616) 892-881(2841-2830) 848-760(2797-2709) 638-550(2587-2499) 910-520(2860-2470) o 20 40 60 = 80 - 100 = 120 160 CALIBRATED AGE: o = o = o = o = o = o = o = o 20 40 60 80 100 120 160 200 CALIBRATED AGE: 818 cal BC cal BP 2 7 6 7 and cal BC(cal BP) ranges: 830-808(2779-2757) 839-805(2788-2754) 848-801(2797-2750) 893-880(2842-2829) 901-797(2850-2746) 910-790(2860-2740) 920-790(2870-2740) 990-760(2940-2710) 673-667(2622-2616) 700-540(2650-2490) 1020-750(2970-2700) 614-608(2563-2557) 0 RADIOCARBON AGE BP Sample o 2 68 0 CALI B R ATE D A G E : 828 cal cal BP 2 777 and cal BC(cal BP) ranges: o o o o 80 o o o 0 120 760 200 1040-760(2990-2710) 684-656(2633-2605) 638-550(2587-2499) uoasadaad'y?H uotjvtgzjv fo aye auczL `a1vds OOSZ-OOS g aa8 miv,I, Q-g N08dtl30IatlkI 30tl aTdmeg o o o 0 0 o o o o OZ Oh 09 OB - OOl OZl 091 - OOZ dfl OOLZ 43,Ltl88I1tl3 o o OZ Oh 09 08 OOl = ozt = 091 = 00Z = o 0 o o o o TO TO pas iso TEO)3H a.tva9r :s30e (dfl iEO 3e ee T de atdmas o - 0 - o - o - o o - o 19 'z66 ' (LSSZ-£952)809-h 9h8 'z88 SZ `t£ Z L6L o o OZ Oh 09 08 OOt OZl 091 00Z 02in9iIn3 :a0v ZED 39 0a6 TO d9 6982 pus iE° TE°)3H (d8 :sa8ue,1 (0l6Z-8Z6Z)196-6L6 (LS9Z-9882)806-L£6 (6h8Z-Zh6Z)006-£66 (96LZ-£56Z)Lh8-h0of (L9LZ-ZL6z)8£9-£ZOt (09LZ-000£)0£8-OSOI (0GLZ-0h0£)OZ8-0601 (09GZ-011£)0l9-0911 (OSLZ-0tZ£)009-0921 N0821tl30IQtl21 fl`Jtl d9 00$Z QLtliI6I'Itl3 TES 38 `9L6 '596 ££6 TES Z 6 Z 'S Z 6 ht Z88Z ' aTdmEs o pue Zeo Te°)39 (dg :sa8us o OZ = Oh (8582-£562)606-h001 o 09 (6h8Z-ZL6Z)006-£ZOL 08 (96LZ-h66Z)Lh8-Sh0I 0 OOt (06LZ-0h0£)0h8-0601 = o ozL (09L2-0L0£)0£9-0z1L = o 091 l£-LOZ£)ShZI-ZSZt (h6 (09LZ-OLl£)0l8-0ZZI OOZ o (0SLZ-0lZ£)009-09Zl :sa8ae,.z l6 (9LLZ-659Z)LZ8-O (99LZ-0L9Z)L18-lZ6 (£l6Z-0Z6Z)h96-9L6 (OSLZ-Oh6Z)009-066 (oSLZ-0562)008-0001 (OhLZ-000£)06L-OSOI N09tl30i0na 39v as ogtz 39 8£8 d8 LBLZ pae TE° TE°)JH :sa8u(d8 (9Z8Z-£h8Z)LL8-h68 (9LLZ-86LZ)GZ9-6h8 (99LZ-158Z)Ll8-206 (9SLZ-659Z)608-016 (hSLZ-0L9Z)508-126 (£t6Z-SZ6Z)h96-9L6 (0SLZ-0882)008-0£6 (OSLZ-Oh6Z)008-066 (OhLZ-0L6Z)06L-0ZOI (OLLZ-Oh0£)09L-0601 (9L9Z-ZZ9Z)L99-£L9 H09av30iava acv as ozLZ aldwes :30tl (85LZ-£882)608-h£6 0 H08av30rava acv as ohLZ aaiva9i1u3 :30n TO O T aldmas o = o = o = o o = o = o o o OZ Oh 09 08 OOt OZt 091 00Z o = OZ 106 50 pus Teo TeO)39 (dg :sa8ue. (56L (99LZ-0L9Z)L£8-126 (£162-9Z6Z)h96-LL6 (L9LZ-Zh6Z)9l8-£66 (09LZ-056Z)0t9-000t (OSLZ-0L6Z)008-0Z0I (0SLZ-0h0£)o09-0601 N0921tl30Iatl8 30tl aZdweg o o = (LLLZ-£882)828-hE6 o = 0 = o o o aainaar'IvO :aou rE TO 39 606 d9 8582 pua teo Ta°)3g (dg :sa8usl (8h8Z-1L8Z)668-ZZ6 6 £ (96L?-h88Z)Lh8-5 ajdWE$ OZ o = o = o o o o hO 09 08 001 = OZl 091 = OOZ 43StlN8I'IV3 BDV TES 38 Z66 TES d8 6Z h l :sov tE° 39 £OOL iEO d9 z56z pus Tao Zao)g (dg N098tlD0I0tlk 8Dtl d8 OhBZ = l£-lOZ£)ShZI-ZSZL d8 OZ$Z (0882-£56Z)1£6-hoof (6982-ZL6z)0Z6-£z01 (8582-h66Z)606-Sh0I (0582-Zh0£)106-£60l (0082-OLO£)058-0ZtI (06L?-Oll£)Oh8-0911 (OLLZ-0IZE)0Z8-0921 (09LZ-00Z£)0l9-00£t 09 08 = OOl OZl = 091 = 00Z 0 o o OZ Oh o N09av30raaa acv as 09LZ aTdwas 39 d9 0 0azvaerzv3 pUE jEo jPO)39 (d8 :S28UE1 (Oh6z-hL6Z)166-SZ0I (1882-5662)2£6-9hOl (6982-Zh0£)0Z6-£6o1 (gS9Z-hGOE)606-SZII (059Z-Ott£)006-0911 l£-lOZ£)ShZI-ZSZI (h6 (00$2-0Ll£)05$-OZZI (08LZ-0lZ£)0£9-0921 (09LZ-09Z£)O18-Ot£l . uoptoD M uoSJvad pull azuaW tarzzn1S 958 I1Vj N0921tlD0Iatl2i 30tl dfl 0982 aTdweg o 4LtlNfiI1tlD :3Jtl TES DO Lzo TO d8 OL6Z L o (1882-hL0£)Z£6-SZIt (6982-601£)0Z6-0911 l£-ZOZ£)ShZI-£SZt (0S9Z-otz£)oo6-0921 (06LZ-OSZ£)Oh8-00£l o o o (0982-OLl£)0l6-0ZZI N09atlD0I0tla 3Jtl d9 OBQZ o Q3Stla8I'ItlD :3Dtl TO D6 TES d8 atdwes o pue jEa jE0)Da :sa8ve(dg o = OZ (5962-hh0£)9l01-5601 = Oh (1562-hL0£)Z00I-SZII = 09 (1h6z-601£)Z66-0911 = 08 ° l£-ZOZ£)ShZI-£SZl (h6 (1882-591£)Z£6-9lZl = OOl (0L9Z-0lZ£)0Z6-0921 o OZl (0982-0lZ£)Ot6-0921 = o 09l (0082-09Z£)058-0t£l o OOZ N09NtlD0I0tlF1 30tl dH atdmag o PISE 0062 o o (OLGZ-OLZ£)OZg-OZ£l o N09atlD0Iatl8 aTdweg (t56Z-966Z)z001-Lh0 I o ivi ri 9-g pus teo t00)00 (d8 :sa8us.a o o I- 43Stl88I'ItlD :3Dtl TES D8 E601 iE° d9 Zh0£ o atdwag o o o o o = o o = o o = o o = o = OOZ N099tlD0IQtl2I 3Dtl d8 0Z6Z atdmeg o = o 4Ltl219I'IVD :93Dtl pUE teo Tao)Dg (dg OZ (0h0£-0ll£)1601-1911 09 08 (6962-L0Z£)0Z0I-8521 (Z56Z-£lZ£)£00L-h9zL o o o o o o atdmeg o o 0 OZl 09l (0£6Z-09Z£)086-OL£l (0982-Oh££)016-06£l = o o o = = OZ Oh = 09 08 = o0t = OZl = 09t OOZ `ZhLI $£ll 'l60£ L80£ TES D9 l ZSZ iEO d8 l `5hZ 6l£ h ' L Lz 9 £ 9l 5 L 9?? pus iEO iP°)3E (d9 :sa8uej (h80£-£60£)S£ll-hhll (£66Z-£9Z£)hhOt-hlEl (0L6Z-0LZE)0Z0t-0Z£t (0982-08E£)0l6-0EhL o 8 43J.tlk38I`ItlO :939tl (9t£-£lZ£)hlZl-h9Zl (LOt-t5Z£)85t1-Z0£l (66Z£-LtE£)05E1-89E1 (68Z£-l£££)0h£l-Z9£l (0662-0h££)0h0I-06£l (0L6z-09££)0Z0I-0thl (0h6z-0L££)066-0ZhI (0L9Z-00h£)0Z6-05h1 o dfl L $SZ ' L 'O? 'LOZ£ l£ 'h8 £L LO pue Tee Teo)og (dg :sa8ue,a N089tl0IQV2i 90tl d8 000£ (£66Z-591£)hh0l-9lZl o o TES D9 l L `hZ l l l TO d8 '£LO£ `Z90£ L50£ 43,Ltl2I8I'ItlD :S3Jtl TES = DO '6511 d9 '80l£ pus T20 tao)Dg (dg :s08uea l5-ZOZ£)hhzl-£SZt (£6 (S50£-99L£)90tt-LIZI (lh0£-L0Z£)Z60t-8521 (£66Z-£lZ£)hh0l-h9Zl (6962-6hZ£)0Z0I-00£t (056Z-09Z£)000l-0l£t (06Z£-l££E)lh£t-ZS£t (0h6Z-0LZ£)066-0ZEI (0L9Z-09£E)0Z6-0lhl (0582-0LE£)006-0ZhI N0921tlO0Idtla 30tl d9 0$6Z = (06LZ-09££)0h8-0thl To TO (088z-0L)0£6-0ZhI OOZ 0 o Q3,Ltl98I'ltlD :SBJtl (90l£-90Z£)L0II-6521 (950£-ELZ)L0It-h4Zl (lh0£-00Z£)Z601-t0EI (66Z£-90££)OS£l-LSEI (68Z£-l£££)0h£t-z81 (0562-0h££)000t-06£l OZ Oh = 09 = 08 = 00l = OZl = 09l = OZ Oh 09 OS 00l OZl 091 (Z56Z-59t)£00l-9lzl o o = o o d9 Oh6Z N090tlD0IdtlU 30tl d9 0962 ajdwes jE0 jeo)Dg (dg :S28UE.I o o OZ = Oh 09 = Og = o0t - Ozt = 09l = OOZ 30tl (9ll-tZl£)69t1-ZGII (580£-Z60£)9£ll-Eh<< (950£-E9Z)L0tt-hlEl (lh0£-ILZE)Z601-?ZEI 43,LtlF38I'ItlO :3Jtl TES 38 E9Zl TES d9 £ ZlZ pue iPo iE0)8 (d9 :sa8us,a (90Z£-£SZ£)L0Zt-n0£l l£-981£)hZZL-L£Zl (EL (96Z£-6tE£)6hEl-0L£1 (h9l£-h9Z£)Slzl-SIEI l£-tLZ£)6511-ZZ£l (80 (68Z£-Z££E)Oh£t-£8£l (950£-hh££)LOtI-56£l (Oh0£-09£E)060t-Olhl (0662-OL££)OhOI-OZtr1 (o56z-08££)0001-o£rrl (hZh£-95h£)SLhI-LOSL (0£6Z-OZh£)086-OLhL (980£-L60£)LEII-Zhll (Z88z-hl6Z)£6-596 uoas2da2d-yaH uoazvcg21v fo ayy ThIVJ, N09kItlD0I0tl8 80tl BZaWEs 0 d8 OZO£ b auczj `alDds OOSZ-OOS liIv1 I-; 4Ltl88I1tlO :S90tl TO 09 `00£l `9LZl 6921 TES dH '6hZ£ 'SZZ£ 81Z£ pUE jEA TEO)Og (d8 :68EUE.I N09Htl0I4tlH aTdwas o o 0 0 o o o N09NtlD0IQtl1 30tl = d9 OOl£ TES O9 90hL ZP de SS££ 43.Ltlfl9I'Itlo :BDtl pue ieo teo)Dg (dg :sa8us.a (lh££-99££)Z6£l-L1hl (LLZ£-Z8Z£)8Z£l-£££l (0£££-hL££)lBEI-SZht (0LZ£-l6Z£)lZ£1-Zh£1 OZ Oh = OS OOl (9hz£-h6££)66Z1-Shhl (01Z£-09h)09Z1-0ISI (9tz£-GZZ£)69Z1-9LZI = = 091 OOZ (0l1£-0Lh£)0911-0ZS1 (£0S-955£)hS0I-L09L (980£-160£)L£1l-Zh1l (0h0£-06h£)0601-0h0I t£-hh££)StZI-56£l (h9 09 o o o 30tl = l£-Sgl£)hZZI-9£Zl o aldmes L8 Hg o o g o OZ dfl 43Ztl219 0h0£ :3Jtl iEa O9 hlEl TES dH £ ? 9 £ N0flUY00IQdd aTdwes pus TEO iE0)O9 (dfl :sa8usa (B8Z£-£££E)6££l-h8£l (hhZ£-ZLZ£)56Z1-£z£t = 0 (hLl£-58t£)SZZI-9£ZL o o = = l£-59££)SIZI-9lht (h9 o = o o o o = o = o 0Y dfl 0?L put TES TEO)3g QZVUSIZVO :0y (dfl Ofl O T dH 9lhl 09 :sa8ue.a (Zh££-£8££)E6£t-h£ht (0££E-56££)19El-9hhl (£9Z£-L0h£)h1£1-8051 (0SZ£-09h£)00EI-0ISt (0lZ£-0Lh£)09zL-0ZSI (6l5£-0h5£)0LSI-1651 (0L0E-0LS£)0Zt1-0Z9L Oh 09 08 OOt OZl 091 OOZ TAO (LGZ£-l8Z£)9Z£1-Z££t (0LZ£-06Z£)lZ£t-lh£1 (9lz£-9ZZ£)69Z1-LLZ1 (0Lt£-08h£)0ZZ1-0£S1 (L50£-Z90£)8011-£ll1 0 N0921dO0IQtlE 30tl dfi 090£ atdwas o pua jEO jE°)B QLtl88I1tlO :S3Jtl OH iE d9 `l£££ l l lh£ ' t LZ£ '062£ OLZ£ N092ItlO0Iatl2i 30tl d8 OhIE 0 0 0 o o a o o o o atdweg o Dtl d9 060£ Q3,Ltli[6I1tlD :S30tl a TES `h6£t `1£gL 6zEL IEO de '£h££ 'OSZE 8LZ£ (Z9z£-09££)£t£l-9lhl o o o a o 09 08 = OOl OZl = 091 OOZ pue TEO TE°)DH (dfl TO 8 hZhl :sa8us.a (zh££-L5h£)£6£1-8051 (0£££-£9h£)18£L-hl51 (09Z£-0LhE)0l£t-0ZS1 (05Z£-0lh£)00£l-0ZSI (0lZ£-095£)09Zt-0l9l (0lt£-065E)0911-0h9l = N0flF3tl0IQtl21 atdwas pus Tao Tao)og (dg (69Z£-Z6Z£)OZ£l-£hEl o :3Jtl (Llz£-6ZZ£)89Z1-08Z1 0 N08NtlO0Idtlil Q ES T dH ££ L £ atdmas (dg (9hZ£-95££)L6Zl-LOhI Oh TO = OZ = Oh o = 09 = 08 001 o OZt o 091 o = OOZ o 30tl d9 £ 091 (8LZ£-18Z£)6Z£1-Z£E1 (0LZ£-06Z£)lZ£l-1h£t (9lZ£-9ZZ£)69z1-LLZI (hLl£-h8l£)SZZt-5£Zl (L80£-160£)8£1t-Zhll Q3.LtlL19I'Itl 3Jtl : 3H l ££h ZED dH Z$££ pue Teo tao)g (dg :s08us1 (ZL££-56££)£Zht-9hht (h9££-LSh£)01hl-8051 (h5££-£9h£)5ohl-hlSl (£h££-89h£)h6£1-61S1 (8LZ£-l8Z£)GZ£t-Z££l (0£££-OLh£)08£l-OZSI (0LZ£-06Z£)lZ£l-th£l (6l5£-0h5£)OLSI-1651 (09Z£-06h£)O1£1-0£Sl (olZ£-0LS£)09Zt-OZ91 (0Lt£-0£9£)OZZI-0891 88 uop20D M vad uoc puv azuiyll Jaainls j, vmy -i; N082TtlD0I0tl 30tl d9 08l£ Q3Stlk19I'Itl :BDtl jEO 39 ShhL N088d30IQtl2i 30tl d6 £ 09? 08Ztl19I1tlD :8tl LEA d8 h6££ aTdmeg o - OZ 0 Oh o 09 0 08 o OOt o OZl o 09l o - OOZ (l8£-65h£)Z£hl-OlSI (ZL££-£9h£)£Zht-htSt (h9££-Q9h£)Slht-6151 (55££-ZLtr£)90h1-£ZSl (615£-0h5£)0LSI-165t (0£££-095£)08£t-0l9l (05Z£-065£)00£l-0h9l (OlZ£-Oh9£)09ZL-0691 N09Ntl30I0tl2I 30tl dfl aTdmeg o OZ Oh 09 OQ OOl OZL 09l o OOZ o o o o o atdmeg pue TES iE°)38 (cm :sa8us,a o OOZ£ o OZ Oh o 09 o 08 OOL o o OZt o (0h££-08h£)06£t-0£Sl (0LZ£-06Z£)lZ£l-lh£L (8lZ£-9ZZ£)69Z1-LLZI (hLl£-h8L£)SZZI-S£Zl 03ivaei'1d3 s30u TES 39 TES d9 (9LZ£-18Z£)6Z£l-Z£El '90L 'SShE pas TO TE0)39 (dg :sa8uea (Z6££-h9h£)£hhl-SISI (lQ££-89h£)Z£hl-6lSl (ZL££-£Lh£)£Zhl-hZSI (6l5£-0h5£)0LSI-1651 (fi9££-LLh£)SlhL-8Z5t (09££-095£)Olhl-019l (0h£-0LS£)06£l-0Z9l (9LZE-l8Z£)6Z£l-Z££l (09Z£-0£9£)0l£1-0891 (0L9£-£89£)IZLt-h£Ll (0lZ£-059£)09Zl-00ll '9LhL h9h `SZh£ £lh£ (09££-0£9£)0£h1-0891 (0L££-0h9£)0Zht-0691 (66L£-108£)0S9I-ZS9I N091tl30IQtl!! 30tl d8 0$Z£ aTdmas o = 0 = o o OZ Oh 09 Q3,LtlN9I'Itl3 :Dtl atdmes o = o = o = o 0 = TES 3e hl5l TO de £9h£ o = 0 = o o = (0L£E-0LS£)0ZhI-0Z9l (09££-065£)0lht-0h9t (0£££-0h9E)08£1-0691 (0SZ£-069£)00£l-0hLt 09l OOZ N0621tlD0I4tlN 3Dtl d8 OhZ£ o OZ Oh 09 08 00l Ozt 09l 00Z aTdmes o o = atdmes o o o o o o 0 OZ Oh = 09 08 = OOl 09l = OOZ o 9 o 49Stl219I'1tlD :S39tl o = o = o pus iE°)iEO 8 '06L L l 6L5 ' l QZS d8 '6£S£ '8Z5£ LLh£ (0h££-0£L£)06£l-09Lt iEO 38 'L091 'h551 £h5l d6 '955£ '£OS£ Z6h£ (L9h£-LZ9£)9ISI-8L91 (£9h£-h£9£)hlSt-5891 (OL9£-£89£)IZLI-h£Ll (06££-069£)0hhl-0hLI (86L£-t08£)6h81-ZS9I (09EE-0£8£)0lht-0881 (zGh£-565£)£zSl-9h91 (OSh£-059E)OOSI-OOLt (Zlh£-9Zh£)£9hl-LLhI (0L££-0l)£)0ZhI-09Lt 0 N09atl30IQtl8 30tl dfl OZ££ QLV19I1tl3 :3Dtl iEo lZ9L TES d8 OLS£ atdmas (lth£-LZh£)Z9hl-8Lht (ZQ£-lL5£)££hl-ZZ9l (0L££-065£)0ZhI-0h9l (0h££-059£)06£l-00LI TES (0LZ£-06Z£)lZ£l-lh£l (d9 :sa8ue. (9Lh£-£L5£)LZSI-hZ9 )5991-OL9l (ht9-619 OZ Oh 09 08 00L OZl 09t 00Z 6151 d9 89h£ pu2 iEO i°)D9 (d8 :sa8vel (Z9h£-£Lh£)£l5l-hZSI l5£-lh5£)6951-Z65t (g (ZSh£-LLhE)£OSl-BZSI (£6££-L55£)hhhl-8091 (0L9£-£99£)tZLt-h£Ll (09Z£-00L£)0t£l-0SLt = o (OLZ£-06Z£)lZ£t-lh£l (9lZ£-9ZZ£)69Z1-LLZt tea TO :530y pue jED jEo)Dg (dg :sa8us,z (1Lh£-655£)ZZSI-0l9l (L9h£-zL5£)9lSl-£Z91 (£9h£-h65£)hlSl-Sh9l (hSh£-LZ9£)5051-gL9l (Zlh£-9zh£)£9hl-LLhI (06££-Oh9£)Ohhl-0691 (0L9£-E89£)IZLI-h£L1 (08££-059E)0£ht-00LI (OL££-OOL£)OZhL-OSLI (l6L£-lZ8£)Zh8l-zLBI (SSG£-z9L£)9081-£l8l (8LZ£-08Z£)6Z£l-l££L N082ItlO0IQtl2i 30tl dfl 00££ 0 Q3.Ltl89I'Itla :30tl 48.Ltl238I1tl3 TO pUe iEO ieO)3H (d6 :sa8ve.a (6hhE-69h£)00SL-0ZSt (80h£-0£h£)65h-8h (E6££-£Lh£)hhhl-hZSI (9t5£-0h5£)6951-1651 (lg££-LLh£)Z£hl-BZSI = = OOl = OZl o (0£££-01L£)0S£t-09Lt iE 0 N09atl0I4V2i 8Dtl d9 OZZ£ puE TEO TE°)38 (d8 :sa8us,a (9L5£-Zh5£)L951-£65t (L9h£-9Lh£)8151-6ZSl (£9h£-L5S£)hlSl-8091 (£Sh£-tL5£)h0SI-ZZ9l (Zlh£-9Zh£)£9hl-LLhI (£6££-£65£)hhh-hh9 OOZ o ieO 39 £ZSl i° dg ZLh£ (9LZ£-l8Z£)6Z£t-Z££t OZ o Oh o 09 o Og o = OOl o OZl o = 09l = o OOZ o o pus tao teo)38 (dg :s08usJ (£SS£-0Z9£)h091-1L9t (68h£-905£)0hSI-LSSI (LLh£-LZ9£)8ZSI-8L9L (ZLh£-h£9£)£ZSl-5891 (OL9£-£89£)IZLI-h£Gl (09h£-069£)OlSI-OhLI (09hE-OOL£)OISI-OSGt (l6L£-lZ8£)Zh8-ZLBI (OL££-0£8£)OZhI-0881 (L9h£-Lh9£)8151-8691 (£lh£-SZh£)h9h-9Lhl (SSL£-Z9L£)908t-£l8l (O8££-0£L£)0£hL-08L1 High-Precision Calibration o the 14C Time Scale 500-2500 BC 859 TABLE 2-M RADIOCARBON AGE BP 3340 Sample o = o = o o = o = o = o = o o 20 AO 60 80 100 120 160 200 CALIBRATED AGE: AGE BP 3420 cal BC 1643 ca l BP 3 592 Sample and cal BC(cal BP) ranges: 1678-1619(3627-3568) 1686-1605(3635-3554) 1734-1721(3683-3670) 1740-7523(3689-3472) o CALIBRATED AGE: and cal BC(cal BP) ranges: 20 40 60 80 100 120 160 1750-1520(3700-370) 1852-1850(3801-3799) 7880-1440(3830-3390) 1890-1420(3840-3370) 200 0 0 RADIOCARBON AGE BP 3360 Sample o = o o = o = o = o - o = o o 20 40 60 80 100 120 160 200 cal BC 170 ca l BP 3689 CALIBRATED AGE: AGE BP 3440 cal BC 1677 cal BP 3 626 and cal BC(cal BP) ranges: 1686-1636(3635-3585) 173-1720(3683-3669) 1699-1620(3648-3569) 1740-1605(3689-3554) 1555-1542(3504-3491) 1747-1528(3696-3477) 1852-18119(3801-3798) 1760-1520(3710-3470) 1872-1842(3821-3791) 1813-1806(3762-3755) 1880-1510(3830-3460) 1476-1464(3425-3413) 1910-1430(3860-3380) Sample o o o o 1780-1520(3730-31470) o o o 20 40 60 = 80 too 120 - 160 200 CALIBRATED AGE: cal BC 1746 ca l BP 3 695 and cal BC(cal BP) ranges: 1856-1848(3805-3797) 1766-1739(3715-3688) 1872-1841(3821-3790) 1814-1805(3763-3754) 1878-1685(3827-3634) 1883-1677(3832-3626) 1890-1640(3840-3590) 1910-1620(3860-3570) 1778-1695(3727-3644) 1960-153(3910-3480) 2030-1520(3980-3470) 0 RADIOCARBON AGE BP 3380 Sample o = o o = o a = o = o o = o 20 40 60 80 700 120 160 200 CALIBRATED AGE: AGE BP 3460 cal BC 1685 cal BP 3 6 3 4 and cal BC(cal BP) ranges: 1700-1676(3649-3625) 1735-1718(3684-3667) 1741-1639(3690-3588) 1747-1620(3696-3569) 1853-1849(382-3798) 1763-1606(3712-3555) 1872-1842(3821-3791) 1813-1806(3762-3755) 1880-1520(3830-31470) 1890-1510(3840-3460) 1940-1440(3890-3390) CALIBRATED AGES: , o a a o 1555-1542(3504-3491) 1780-1530(3730-31480) o o o o o 20 40 60 80 - 100 = 120 160 200 - and cal BC(cal BP) ranges: X873-1841(3822-3790) 1815-1804(37 64-3753) 1878-1739(3827-3688) 1883-1733(3832-3682) 1722-1696(36 71-3645) Sample o = o o = o = o = o o o = 20 40 60 80 100 120 160 200 o CALIBRATED AGES: and cal BC(cal BP) ranges: 1741-1683(3690-3632) 1747-1676(3696-3625) 1853-1849(3802-3798) 1872-1842(3821-3791) 1880-1610(3830-3560) 1880-1530(3830-3480) 1910-1520(3860-3470) 1960-1510(3910-3460) , 1761 3 710 1779-1745(3728-3694) 1889-1685(3838-36314) 1910-1680(3860-3630) 1940-1640(3890-3590) 2019-2002(3968-3951) 2040-1520(3990-31470) 1980-7610(39 3-3560) 1555-7543(3504-392) 0 0 RADIOCARBON AGE BP 3400 cal BC 1851, 1850, ca l BP 3 800 37 99 cal BC 1733, cal BP 3 68 2, AGE BP 3480 1721, 1697 3 6 70, 3 646 CALIBRATED AGES: cal BC 1872, 1842, 1813, 1807, 1777 cal BP 3 82 1, 379 1 37 62 375 6 37 26 , Sample o o o o o o o o 200 o and cal BC(cal BP) ranges: , , 860 Gordon W Pearson and Minze Stuiver TABLE RADIOCARBON AGE BP 3500 2-N CALIBRATED AGES: TABLE cal BC 1877, ca l BP 3 826 , Sample o = o = o = o = o = o = o = o 20 40 60 SO 100 120 160 200 o = o = o = o = o = o = o = o = o 20 40 60 80 100 120 160 200 o = o = o = o = o = o = o = o = o 35140 and cal BC(cal Sample o = o = o = o = o o o o 20 40 60 80 = 100 = 120 = 160 200 o o and cal BC(cal BP) ranges: o o o o o cal BC 1883 cal BP 3832 RADIOCARBON AGE BP 3600 Sample 1795-1786(37144-3735) CALIBRATED AGE: cal BC 1888 cal BP 3837 o 20 40 60 80 o = o = o = o = o =100 o = 120 o = o = 160 200 CALIBRATED AGE: 1794-1787(3743-3736) RADIOCARBON AGE BP 3620 o 20 40 = 60 = 80 = = 100 = 120 o = o = o o o o o 2050-1680(4000-3630) o = CALIBRATED AGES: 2183-2166(4132-4115) 1794-1787(3743-3736) 2200-1760(4150-3710) 2290-1740(4240-3690) 160 200 2140-1880(4090-3830) 1834-1824(3783-3773) 0 RADIOCARBON AGE BP 3640 Sample 1842-1777(3791-3726) cal BC 2018, 2002, 1980 cal BP 3967, 3951, 3929 and cal BC(cal BP) ranges: 2033-1954(3982-3903) 2037-1934(3986-3883) 2124-2079(4073-4028) 2042-1906(3991-3855) 2133-2065(4082-4014) 2047-1888(3996-3837) cal BC 1908 cal BP 3857 and cal BC(cal BP) ranges: 1722-1696(3671-3645) 2140-1880(4090-3830 21140-16140(14090-3590) CALIBRATED AGE: 1834-1824(3783-3773) 0 Sample 1835-1823(3784-3772) 1842-1776(3791-3725) 1980-1760(3929-3709) cal BC 1961 cal BP 3910 and cal BC(cal BP) ranges: 1982-1932(3931-3881) 2022-1999(3971-3948) 2032-1905(3981-3854) 2037-1888(3986-3837) 2124-2079(4073-4028) 2042-1883(3991-3832) 2050-1880(4000-3830) 2133-2065(4082-4014) 1794-1787(3743-3736) 1842-1777(3791-3726) 2140-1870(4090-3820) 2200-1750(4150-3700) 2278-2233(4227-4182) 2210-1730(4160-3680) BP) ranges: 1941-1887(3890-3836) 7964-1882(3913-3831) 2019-2001(3968-3950) 1794-1787(373-3736) 2032-1872(3981-3821) 2040-1760(3990-3710) 2123-2080(4072-4029) 2140-1730(4090-3680) 2190-1680(4140-3630) cal BC 1936 l BP 3885 a 4 RADIOCARBON AGE BP 3560 CALIBRATED AGE: 3737 20 CALIBRATED AGE: 1913-1882(3862-3830 1938-1877(3887-3826) 1963-1872(3912-3821) 2019-2001(3968-3950) 2030-1750(3980-3700) 2040-1740(3990-3690) 2133-2066(4082-4015) 2182-2166(4131-4115) 20 40 60 80 100 120 160 200 AGE BP 3580 1788 Sample and cal BC(cal BP) ranges: 1889-1876(3838-3825) 1910-1871(3859-3820) 1938-1760(3887-3709) 1962-1746(3911-3695) 2019-2002(3968-3951) 2030-1730(3980-3680) 2123-2080(4072-4029) 2140-1620(4090-3570) RADIOCARBON AGE BP Sample , and cal BC(cal BP) ranges: 1884-1871(3833-3820) 1889-1759(3838-3708) 1909-1746(3858-3695) 1937-1740(3886-3689) 1960-1730(3910-3680) 2019-2002(3968-3951) 2040-1640(3990-3590) 2133-2066(4082-4015) RADIOCARBON AGE BP 3520 Sample 1834, 1824, 1793, 37 8 3, 37 7 3> 3 742 2-0 o = o = o = o = o = o = o = 0 20 40 60 80 100 120 160 200 o CALIBRATED AGE: and cal BC(cal BP) ranges: 2096-2089(4045-4038) 2125-2079(140714-14028) 2133-2065(4082-4014) 2138-1907(4087-3856) 2182-2166(4131-4115) 2200-1880(4150-3830) 2278-2233(4227-1+182) 2320-1750(4270-3700) cal BC 2032 ca l BP 3981 High-Precision Calibration o the 14C Time Scale, 500-2500 861 BC TABLE 2- TABLE 2-P RADIOCARBON AGE BP 3660 Sample o = o = o = a = o p = o = a = o = o = o = a = 2183-2166(41324115) o 20 40 60 80 Sample o = a o o = a = o = o = Sample o = o = a = o = o = o = o = 1834-1824(3783-3773) 17914-1787(371433736) o BC 2123, 2080, 20142 al BP 4072, 4029, 3991 2003-X979(3952-3928) 2400-1870(4350-3820) 1842-1777(3791-3726) BC 2133, al BP 4082, ccal 2290-1940(4240-3890) 2340-1890(4290-3840) o 20 40 60 80 100 120 160 200 1834-1824(3783-3773) CALIBRATED AGE: BC 2181 , al BP X130, 4165, 4091 ccal 2081-2042(4030-3991) 2003-1979(3952-3928) CALIBRATED AGES: Sample o = o = o = o = o = 2067, 20147 4016, 3996 1793-1787(371423736) BC 2138 al BP 4087 o = o = RADIOCARBON AGE BP 3780 Sample o = o = o = o = o = o = o = 20 40 60 80 100 120 160 o = 200 2071-2046(4020-3995) o CALIBRATED AGE: o = o = o = o = o = o = o o = cal BC 2202 cal BP 4151 and cal BC(cal BP) ranges: 2279-2231(4228-4180) 2210-2194(4159-4143) 2289-2180(4238-429) 2167-2142(4116-4091) 2318-2137(4267-4086) 2344-2133(4293-4082) 2068-2047(4017-3996) 2453-2423(4402-4372) 2400-2120(4350-4070) 2460-2040(4410-3990) 2470-2020(4420-3970) 2002-1980(3951-3929) >2490-19140(>4440-3890) RADIOCARBON AGE BP 3800 Sample BC 2195, cal BP 4144, 4105, 4096 and cal BC(cal BP) ranges: 2203-z142(4152-4091) 2279-2232(4228-4181) 2289-2133(4238-4082) 2317-2122(4266-4071) 2340-2040(4290-3990) 2453-2423(4402-4372) 2460-1960(4410-3910) 2470-1910(4420-3860) o 20 40 60 So 100 120 160 200 CALIBRATED AGES: ccal and cal BC(cal BP) ranges: 2186-2164(4135-4113) 2143-2132(4092-408t) 2195-2121(4144-4070) 2081-2041(403-3990) 2202-2036(4151-3985) 2279-2232(4228-4181) 2209-2031(4158-3980) 2290-2020(4240-3970) 2003-1979(3952-3928) 2320-1960(4270-3910) 2453-2423(4402-4372) 2400-1910(4350-3860) 2460-1880(4410-3830 RADIOCARBON AGE BP 3760 o = 2210-1910(4160-3860) CALIBRATED ACES 2460-1880(4410-3830 2289-2037(4238-3986) 2320-2030(4270-3980) 2340-2020(4290-3970) 2460-1940(4410-3890) 2470-1890(4420-3840) ccal and cal BC(cal BP) ranges: 2082-2041(403-3990) 2138-2119(4087-4068) 2184-2165(4133-14>>14) 2143-2036(4092-3985) 2195-2031(y114u3980) 2202-2017(4151-3966) 2003-1979(3952-3928) 2210-1960(4160-3910) 2279-2232(4228-4181) o CALIBRATED AGES 0 CALIBRATED AGES 2453-2423(4402-4372) RADIOCARBON AGE BP 372 o v" 2279-2233(42284182) 2320-1880(4270-3830 60 80 100 120 160 200 o o nn-iOllf1(p15(1-890) 20 qp o 2142-1935(4091-3$84) 22UU-1oyV17v - RADIOCARBON AGE BP 3700 o o 2195-1959(4144-3908) ,.. o o and cal BC(cal BP) ranges: 213u-2061(4o83-u010) 2048-2036(3997-3985) 2138-2031(4087-3980) 2183-2165(4132-utt4) 2143-2017(4092-3966) o = o 2004-1978(3953-3927) 37140 and cal 8C(cal BP) ranges: 2196-2137(4145-4086) 2069-2047(4018-3996) 2202-2132(1415114081) 2279-2232(4228-4181) 2209-2122(4158-4071) o 20 40 60 80 100 120 160 200 o 2200-1910(4150-3860) 2290-1880(14240-3830 2340-1760(4290-3710) 120 160 = 200 o Sample 2138-1959(4087-3908) RADIOCARBON AGE BP 3680 Sample RADIOCARBON AGE BP cal BC 2037 cal BP 3986 and cal BC(cal BP) ranges: 2126-2078(4075-u027) 2043-2031(3992-3980) 2133-2064(4082-4013) 2048-2017(3997-3966) o 20 40 60 80 100 120 160 200 = CALIBRATED AGE: o 20 40 60 80 100 120 160 200 and cal BC(cal BP) ranges: 2290-2201(4239-4150) 2320-2194(4269-4143) 2344-2180(U293-41z9) 2453-ZU23(4u02-4372) 2460-2130(4410-4080) 2460-2120(4410-4070) 2470-2030(4420-3980) >2490-1960(>4440-3910) 2158-2146(4107-4095) 2080-2042(4029-3991) cal BC 2278. cal BP 4227, 4182, 4158 862 Gordon W Pearson and Mznze Stuzver TABLE 2-R TABLE RADIOCARBON AGE BP 3820 CALIBRATED AGE: cal BC 2288 cal BP 4237 RADIOCARBON AGE BP 3900 Sample o and cal BC(cal BP ranges: o = 20 2325-2276(4274-4225) 2238-2207(14187-14156) o = 40 2345-2201(4294-4150) a 60 2453-2422(4A02-4371) 2399-2794(4348-4143) 2157-2147(4706-4096) o = 80 2458-2180(4407-u129) 2167-2142(4116-4097) o = 100 2460-2740(4410-4090) o 120 2470-2130(4420-4080) 2068-2047(4017-3996) o = 160 >2490-2040(>4440-3990) o 200 >2490-2020(>4440-3970) 2003-1979(3952-3928) RADIOCARBON AGE BP 3840 Sample o ' o = o o o = o = a o = a 20 40 60 80 100 120 760 200 CALIBRATED AGE: Sample o = o o = o = o o cal BC 2316 cal BP 4265 o = a = a 20 40 60 80 100 720 160 200 and cal BC ( cal BP ) ranges: Sample 237-2286(4296-4235) o 2454-2422(4403-4371) 2400-2277(4349-4226) 2236-2208(4185-14157) 2458-2201(L407-4150) 2462-2794(4411-4743) 2157-2147(1I106-096) 2470-2780(4420-4130) 2166-2742(4115-4091) 2470-2140(4420-4090) >2490-2120(>4440-4070) 2080-2042(4029-3991) >2490-2030(>4440-3980) = o o = o = o - o = o = a o 20 40 60 80 100 120 160 200 cal BC 2457 cal BP 41406 2462-2452(4411-4401) 2426-2396(4375-345) 2466-2342(4415-4297) 2471-2313(4420-4262) >2490-2288(>4439-4237) >2490-2280(>4440-4230) 2234-2209(4783-4158) >2490-2200(>4440-4150) >2490-2180(>4440-4130) 2166-2142(4115-4091) >2490-2730(>4440-4080) 2067-2047(4016-3996) RADIOCARBON AGE BP 3920 and cal BC(cal BP) ranges: CALIBRATED AGE: 2-$ CALIBRATED AGE: cal BC 2462 cal BP 4411 and cal BC(cal BP) ranges: 2466-2457(4415-4406) 2411-2409(4360-4358) 2472-2453(4421-4402) 2425-2397(4374-4346) >2490-2342(>4439-4291) >2490-2374(>4439-4263) >2490-2290(>4440-4240) >2490-2280(>4440-4230) 2234-2209(4183-4158) >2490-2190(>4440-740) 2157-2147(4106-4096) >2490-2140(>4440-4090) a RADIOCARBON AGE BP 3860 Sample o o o o o o o o 20 AO = 60 80 = 100 120 160 - 200 = o CALIBRATED AGE: cal BC 233 cal BP 4292 RADIOCARBON AGE BP 3940 and cal BC(cal BP ranges: 2454-2421(4403-370) 2401-2309(4350-4258) 2458-2287(14407-4236) 2462-2278(4411-4227) 2235-2208(4184-4157) 2466-2201(1415-4150) 2470-2190(4420-4140) 2157-2147(4706-4096) >2490-2180(>4A40-4130) 2166-2742(4115-4091) >2490-2130(>4440-4080) 2067-2047(4016-3996) >2490-2040(>4440-3990) RADIOCARBON AGE BP 3880 CALIBRATED AGES: cal BC 2453, 2423, 2398 cal BP 4402, 432, 4347 Sample o and cal BC(cal BP) ranges: o 20 2458-2340(4407-4289) 0= UO 2462-2311(4417-4260) a= 60 2466-2288(4415-4237) o= 80 2471-2278(4420-4227) 2234-2208(4183-4157) 100 >2490-2200(>4440-4150) 120 >2490-2190(>4440-4140) 2157-2147(4106-4096) 160 >2490-2140(>4440-4090) >2490-2720(>4440-4070) 2080-2042(4029-3997) = 200 Sample o 20 40 60 80 = 700 = 120 = 160 o = o o o o a o = 200 o CALIBRATED AGE: cal BC 2466 cal BP 4415 and cal BC(cal BP) ranges: 2474-2461(4423-4410) >2490-2457(>4439-4406) >2490-2453(>4439-4402) 2424-2398(4373-4347) >2490-2342(>4439-4291) >2490-2310(>4440-4260) >2490-2290(>4440-4240) >2490-2200(>4440-4150) >2490-2180(>4440-4130) 2166-2142(4115-4091) RADIOCARBON AGE BP 3960 CALIBRATED AGE: cal BC 2470 cal BP 4419 Sample o and cal BC(cal BP) ranges: o = 20 >2490-2465(>4439-4414) o 40 >2490-2461(>4439-4470) o 60 >2490-2457(>4439-4406) o 80 >2490-2453(>4439-4402) 2424-2398(4373-4317) o 100 >2490-2340(>4440-4290) o 120 >2490-2310(>4440-4260) o 160 >2490-2280(>4440-4230) 2234-2209(4183-4158) o = 200 >2490-2790(>4440-4740) 2157-2147(4106-4096)