Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2011
…
1 file
Oil palm and cocoa are important plantation crops and require bioinformatics tools to hasten the research output and aid in crop improvement programmes. The current work was undertaken to assign putative function to available Expressed Sequence Tags (EST's) of oil palm and cocoa. Annotated EST's of cocoa and oil palm were developed into searchable database. EST's of oil palm and cocoa were first retrieved from dbEST. FASTA formatted EST sequences were converted into contigs by running in CAP3. The contigs sequences were run in BLAST tool and their putative functions were predicted based on homology. A database of annotated ESTs was developed using MySQL and PHP programs. In this database, EST's of cocoa and oil palm, BLAST results and gene information were stored as different tables. The database homepage contains six menus namely 'Home', 'About database', 'Tool', 'Useful links', 'Site map' and 'Contact us'. The same page contains annotated gene information for cocoa and oil palm separately. For browsing the annotated ESTs of cocoa and oilpalm, separate text boxes are provided such as 'ESTs', 'blast results' and 'gene information'. The text box 'EST's' of oil palm has links to six different tables which stores information about six different tissues and cocoa contains seven different tables, which stores information about seven different tissues. The 'gene information' contains the 'contig number', 'similarities found in each organism', 'accession number', 'structure accession number' and 'gene function'. The cocoa and oil palm putative gene database-COPGENE is hosted at CPCRI bioinformatics website (www.bioinfcpcri.org).
BMC Genomics, 2007
Background: Oil palm is the second largest source of edible oil which contributes to approximately 20% of the world's production of oils and fats. In order to understand the molecular biology involved in in vitro propagation, flowering, efficient utilization of nitrogen sources and root diseases, we have initiated an expressed sequence tag (EST) analysis on oil palm.
2010
Copyright © 2010 Nehir Ozdemir Ozgenturk et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Olive (Olea europaea L.) is an important source of edible oil which was originated in Near-East region. In this study, two cDNA libraries were constructed from young olive leaves and immature olive fruits for generation of ESTs to discover the novel genes and search the function of unknown genes of olive. The randomly selected 3840 colonies were sequenced for EST collection from both libraries. Readable 2228 sequences for olive leaf and 1506 sequences for olive fruit were assembled into 205 and 69 contigs, respectively, whereas 2478 were singletons. Putative functions of all 2752 differentially expressed unique sequences were designated by gene homology based on BLAST and annotated using BLAST2GO. While 1339 ESTs show no hom...
Acta Oceanologica Sinica, 2013
Olive (Olea europaea L.) is an important source of edible oil which was originated in Near-East region. In this study, two cDNA libraries were constructed from young olive leaves and immature olive fruits for generation of ESTs to discover the novel genes and search the function of unknown genes of olive. The randomly selected 3840 colonies were sequenced for EST collection from both libraries. Readable 2228 sequences for olive leaf and 1506 sequences for olive fruit were assembled into 205 and 69 contigs, respectively, whereas 2478 were singletons. Putative functions of all 2752 differentially expressed unique sequences were designated by gene homology based on BLAST and annotated using BLAST2GO. While 1339 ESTs show no homology to the database, 2024 ESTs have homology (under 80%) with hypothetical proteins, putative proteins, expressed proteins, and unknown proteins in NCBI-GenBank. 635 EST's unique genes sequence have been identified by over 80% homology to known function in other species which were not previously described in Olea family. Only 3.1% of total EST's was shown similarity with olive database existing in NCBI. This generated EST's data and consensus sequences were submitted to NCBI as valuable source for functional genome studies of olive.
Molecular and Biochemical Parasitology, 2004
Olive (Olea europaea L.) is an important source of edible oil which was originated in Near-East region. In this study, two cDNA libraries were constructed from young olive leaves and immature olive fruits for generation of ESTs to discover the novel genes and search the function of unknown genes of olive. The randomly selected 3840 colonies were sequenced for EST collection from both libraries. Readable 2228 sequences for olive leaf and 1506 sequences for olive fruit were assembled into 205 and 69 contigs, respectively, whereas 2478 were singletons. Putative functions of all 2752 differentially expressed unique sequences were designated by gene homology based on BLAST and annotated using BLAST2GO. While 1339 ESTs show no homology to the database, 2024 ESTs have homology (under 80%) with hypothetical proteins, putative proteins, expressed proteins, and unknown proteins in NCBI-GenBank. 635 EST's unique genes sequence have been identified by over 80% homology to known function in other species which were not previously described in Olea family. Only 3.1% of total EST's was shown similarity with olive database existing in NCBI. This generated EST's data and consensus sequences were submitted to NCBI as valuable source for functional genome studies of olive.
BMC Genomics, 2012
Olive (Olea europaea L.) is an important source of edible oil which was originated in Near-East region. In this study, two cDNA libraries were constructed from young olive leaves and immature olive fruits for generation of ESTs to discover the novel genes and search the function of unknown genes of olive. The randomly selected 3840 colonies were sequenced for EST collection from both libraries. Readable 2228 sequences for olive leaf and 1506 sequences for olive fruit were assembled into 205 and 69 contigs, respectively, whereas 2478 were singletons. Putative functions of all 2752 differentially expressed unique sequences were designated by gene homology based on BLAST and annotated using BLAST2GO. While 1339 ESTs show no homology to the database, 2024 ESTs have homology (under 80%) with hypothetical proteins, putative proteins, expressed proteins, and unknown proteins in NCBI-GenBank. 635 EST's unique genes sequence have been identified by over 80% homology to known function in other species which were not previously described in Olea family. Only 3.1% of total EST's was shown similarity with olive database existing in NCBI. This generated EST's data and consensus sequences were submitted to NCBI as valuable source for functional genome studies of olive.
Molecular Biology Reports, 2010
The first transcriptomes, expressed sequence tags (ESTs) in a leaf and root from Withania somnifera plant referenced in this report are the first of its kind. A cDNA library was constructed from samples of the 2-months-old, in vitro cultured leaves and roots, which generated 1,047 leaf cDNA and 1,034 root cDNA clones representing 48.5% and 61.5% unique sequences. The ESTs from leaf and root grouped into 239 and 230 clusters representing 22.8% and 22.2% of total sequences. Of these, about 70% encoded proteins found similar (E-value ≥10−14) to characterized or annotated proteins from the NCBI non-redundant database and diverse molecular functions and biological processes based on gene ontology (GO) classification. We identified genes with potential role in photosynthesis (cytochrome p-450), pathogenesis (arginine decarboxylase, chitinase) and withanolide biosynthesis (squalene epoxidase, CDP-ME kinase). Highly expressed transcripts, with a particularly high abundance of cytochrome p-450 (0.85% in leaf) were noticed. Pfam analysis revealed the presence of functional domains in selected sequences. W. somnifera is a source of multifarious and beneficial alkaloids referred as withanolides. High levels of withanolides accumulate in mature leaves and roots. Since, the knowledge for synthesis and presence of some of these important biochemical constituent is limited, identification of the genes involved in two different pathways of secondary metabolite synthesis (MVA and MEP), in different tissue will be requisite for articulation of withanolide biosynthesis. This investigation aimed at elucidating the differential gene expression in two vital sites where withanolides essentially found and leaf and root transcriptomes were comparatively analyzed. The comparative analysis of the sequences provides a framework for future research in proteomics and evolutionary genomics in the withanolide biosynthesis.
Applied and Environmental Microbiology, 2002
Oil palm suspension cultures were initiated by transferring the gel-like friable embryogenic tissue onto liquid medium supplemented with auxins. In this study, transcripts that were differentially expressed in oil palm suspension cells cultured at different auxin concentrations were examined using suppression subtractive hybridization. Total RNA was first isolated from oil palm suspension cells proliferated in liquid medium with different hormone concentrations for 6 months. Four different hormone combinations: T1 (0.1 mg/l 2,4-D and 1.0 mg/l NAA), T2 (0.4 mg/l 2,4-D and 1.0 mg/l NAA), T3 (1.0 mg/l NAA), and T4 (0.4 mg/l 2,4-D) were used for the treatments. The first and second subtractions were performed using samples T1 and T2 in forward and reverse order. The other two subtractions were forward and reverse subtractions of T3 and T4, respectively. Reverse northern analyses showed that 14.13% of these clones were preferentially expressed in T1, 13.70% in T2, 14.75% in T3, and 15.70% in T4. Among the 294 cDNA clones that were sequenced, 61 contigs (assembled from 165 sequences) and 129 singletons were obtained. Among the 61 contigs, 10 contigs consist of sequences from treatment T1, 8 contigs were from treatment T2, 10 contigs were contains sequences of treatment T3 and 13 contigs contains sequences of treatment T4. Northern analyses of five transcripts that were shown to be differentially expressed in the oil palm suspension cells by reverse northern analysis revealed that transcripts 16A1 (a putative lignostilbene-a,b-dioxygenase, EgLSD) and 16H12 (a putative ethylene responsive 6, EgER6) were differentially expressed in oil palm suspension cells treated with different levels of auxin.
Plant Physiology and Biochemistry, 2001
Oil palm suspension cultures were initiated by transferring the gel-like friable embryogenic tissue onto liquid medium supplemented with auxins. In this study, transcripts that were differentially expressed in oil palm suspension cells cultured at different auxin concentrations were examined using suppression subtractive hybridization. Total RNA was first isolated from oil palm suspension cells proliferated in liquid medium with different hormone concentrations for 6 months. Four different hormone combinations: T1 (0.1 mg/l 2,4-D and 1.0 mg/l NAA), T2 (0.4 mg/l 2,4-D and 1.0 mg/l NAA), T3 (1.0 mg/l NAA), and T4 (0.4 mg/l 2,4-D) were used for the treatments. The first and second subtractions were performed using samples T1 and T2 in forward and reverse order. The other two subtractions were forward and reverse subtractions of T3 and T4, respectively. Reverse northern analyses showed that 14.13% of these clones were preferentially expressed in T1, 13.70% in T2, 14.75% in T3, and 15.70% in T4. Among the 294 cDNA clones that were sequenced, 61 contigs (assembled from 165 sequences) and 129 singletons were obtained. Among the 61 contigs, 10 contigs consist of sequences from treatment T1, 8 contigs were from treatment T2, 10 contigs were contains sequences of treatment T3 and 13 contigs contains sequences of treatment T4. Northern analyses of five transcripts that were shown to be differentially expressed in the oil palm suspension cells by reverse northern analysis revealed that transcripts 16A1 (a putative lignostilbene-a,b-dioxygenase, EgLSD) and 16H12 (a putative ethylene responsive 6, EgER6) were differentially expressed in oil palm suspension cells treated with different levels of auxin.
Molecular Biotechnology, 1994
Oil palm suspension cultures were initiated by transferring the gel-like friable embryogenic tissue onto liquid medium supplemented with auxins. In this study, transcripts that were differentially expressed in oil palm suspension cells cultured at different auxin concentrations were examined using suppression subtractive hybridization. Total RNA was first isolated from oil palm suspension cells proliferated in liquid medium with different hormone concentrations for 6 months. Four different hormone combinations: T1 (0.1 mg/l 2,4-D and 1.0 mg/l NAA), T2 (0.4 mg/l 2,4-D and 1.0 mg/l NAA), T3 (1.0 mg/l NAA), and T4 (0.4 mg/l 2,4-D) were used for the treatments. The first and second subtractions were performed using samples T1 and T2 in forward and reverse order. The other two subtractions were forward and reverse subtractions of T3 and T4, respectively. Reverse northern analyses showed that 14.13% of these clones were preferentially expressed in T1, 13.70% in T2, 14.75% in T3, and 15.70% in T4. Among the 294 cDNA clones that were sequenced, 61 contigs (assembled from 165 sequences) and 129 singletons were obtained. Among the 61 contigs, 10 contigs consist of sequences from treatment T1, 8 contigs were from treatment T2, 10 contigs were contains sequences of treatment T3 and 13 contigs contains sequences of treatment T4. Northern analyses of five transcripts that were shown to be differentially expressed in the oil palm suspension cells by reverse northern analysis revealed that transcripts 16A1 (a putative lignostilbene-α,β-dioxygenase, EgLSD) and 16H12 (a putative ethylene responsive 6, EgER6) were differentially expressed in oil palm suspension cells treated with different levels of auxin.
BMC Plant Biology, 2012
Background: The oil palm (Elaeis guineensis Jacq.) is a perennial monocotyledonous tropical crop species that is now the world's number one source of edible vegetable oil, and the richest dietary source of provitamin A. While new elite genotypes from traditional breeding programs provide steady yield increases, the long selection cycle (10-12 years) and the large areas required to cultivate oil palm make genetic improvement slow and labor intensive. Molecular breeding programs have the potential to make significant impacts on the rate of genetic improvement but the limited molecular resources, in particular the lack of molecular markers for agronomic traits of interest, restrict the application of molecular breeding schemes for oil palm.
Revue arménienne des questions contemporaines, 2011
Built environment project and asset management, 2016
Journal of Public Affairs, 2019
The Oxford Handbook of Cognitive Sociology, 2019
Heisenbergs und Paulis Quantenfeldtheorie von 1958, 2020
Zenodo (CERN European Organization for Nuclear Research), 2023
Acta otorhinolaryngologica Italica : organo ufficiale della Societa italiana di otorinolaringologia e chirurgia cervico-facciale, 2014
Agronomy
Seed Science and Technology, 2012
Innovative Systems Design and Engineering, 2013
Environment and Planning B: Planning and Design, 2008