Academia.eduAcademia.edu

Model Validation for Power System Frequency Analysis

2019, SpringerBriefs in Energy

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

SpringerBriefs in Energy More information about this series at http://www.springer.com/series/8903 Hossein Seifi Hamed Delkhosh • Model Validation for Power System Frequency Analysis 123 Hossein Seifi Faculty of Electrical and Computer Engineering, Iran Power System Engineering Research Centre (IPSERC) Tarbiat Modares University (TMU) Tehran, Iran Hamed Delkhosh Faculty of Electrical and Computer Engineering Tarbiat Modares University (TMU) Tehran, Iran ISSN 2191-5520 ISSN 2191-5539 (electronic) SpringerBriefs in Energy ISBN 978-981-13-2979-1 ISBN 978-981-13-2980-7 (eBook) https://doi.org/10.1007/978-981-13-2980-7 Library of Congress Control Number: 2018958945 © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2019 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore Preface The power industry and its associated interconnected electric grid are, perhaps, the most important infrastructure of the civilized world. The electric grid operation is highly challenging from various viewpoints, requiring detailed studies, typically carried out using simulation tools available for such studies. Modelling is the major step of any type of simulation studies. Modelling for power system frequency analysis is addressed in this research monograph. The framework, methods, and formulations are given based on a practical research as carried out by Iran Power System Engineering Research Centre (IPSERC) for the Iran Grid Management Company (IGMC), implemented on the large-scale Iranian power grid (15th in the world, in terms of the installed generation capacity, roughly 78 GW-2018). We intend to bridge the gap between formal learning of the model validation process from the frequency perspective and its practical implementation for a real and large-scale power grid. Therefore, the intended audiences of this monograph are both power industry experts and academia. Some individuals and organizations have made the writing of this book possible. We should especially thank the experts in IGMC, including Dr. M. Rajabi Mashhadi, Mr. A. Mazkoori, Mr. E. Zabihzadeh, and Mr. A. Abbasszadeh, for their valuable discussions and comments. The monograph has been reviewed by our team members on IPSERC, namely Mrs. M. Sajadi, Mr. M. Jorjani, Mr. V. Hakimian, Mr. L. Heidari, Mr. M. Yousefian, and Mr. S. Tajrobekar, who provided us useful suggestions and comments. Sincere thanks are due to Dr. D. Merkle, Dr. R. Premnath, and their colleagues, from Springer, for their support in the preparation and publication of this monograph. Last but not least, we should thank our families who accepted us as part-time family members during this monograph preparation. Finally, we should mention that although we have attempted to review the monograph in order to be error-free, some might still exist. Please feel free to email us about possible errors, comments, opinions, or any other useful information. Tehran, Iran October 2018 Hossein Seifi Hamed Delkhosh v Contents 1 Introduction . . . . . . . . . . 1.1 Frequency Control . . 1.2 Model Validation . . . 1.3 Monograph Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 3 4 2 Fundamentals of Frequency Control . . . . . . . . . . . . . . . . . . . 2.1 Physical Phenomenon . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Basic Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 A Historical View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4 Frequency Control Requirements . . . . . . . . . . . . . . . . . . . 2.5 Parameters Affecting System Frequency Behaviour . . . . . . 2.5.1 Generating Units . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.2 Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6 Frequency Control Strategies: Principles . . . . . . . . . . . . . 2.7 Frequency Control Strategies: Europe and North America . 2.7.1 Europe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7.2 North America . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 7 10 11 12 13 13 17 19 20 20 21 ........ ........ ........ 23 23 24 . . . . . . 26 28 31 32 34 36 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Theoretical Aspects of Model Validation from Frequency Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Model Validation Approaches . . . . . . . . . . . . . . . . . . . 3.3 Power System Frequency Model Validation: Practical Experiences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 Generalized Model Validation Framework . . . . . . . . . . 3.5 Initial Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6 Static Data Correction Method . . . . . . . . . . . . . . . . . . 3.7 Quantitative Validation . . . . . . . . . . . . . . . . . . . . . . . . 3.8 Frequency and Voltage Dependency of Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii viii Contents 4 Implementation and Numerical Results . . . . . . . . . . . . . . . . . 4.1 The Test Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 Initial Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.1 Base Data Collection . . . . . . . . . . . . . . . . . . . . . . . 4.2.2 Collecting Dynamic Information . . . . . . . . . . . . . . . 4.2.3 Selecting Incidents, Extracting the Closest Snapshot and Measured Signals . . . . . . . . . . . . . . . . . . . . . . 4.2.4 Static Data Correction . . . . . . . . . . . . . . . . . . . . . . 4.2.5 Incidents Details . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.6 Correcting the Pre-incident Frequency . . . . . . . . . . . 4.2.7 Determining the Typical and Acceptable Range of Active Load Parameters . . . . . . . . . . . . . . . . . . . 4.3 First Approach: Existing Models . . . . . . . . . . . . . . . . . . . . 4.3.1 Existing Models . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3.2 First Incident Simulation Results . . . . . . . . . . . . . . 4.3.3 Identification of New Affecting Parameters . . . . . . . 4.4 Second Approach: New Generic Model . . . . . . . . . . . . . . . 4.4.1 New Generic Model . . . . . . . . . . . . . . . . . . . . . . . . 4.4.2 Converting Model Parameters . . . . . . . . . . . . . . . . . 4.4.3 First Incident Simulation Results . . . . . . . . . . . . . . 4.4.4 Other Incidents Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 37 39 39 40 . . . . . . . . . . . . . . . . . . . . 40 40 41 42 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 43 43 45 48 49 49 50 51 56 5 Detailed Sensitivity Analysis . . . . . . 5.1 Introduction . . . . . . . . . . . . . . . 5.2 Basic Parameters and Measures . 5.3 Scenarios . . . . . . . . . . . . . . . . . 5.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 59 60 60 61 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .