Grundlehren der
mathematischen Wissenschaften 309
ASeries 0/ Comprehensive Studies in Mathematics
Editors
M. Artin S. S. Chern 1. Coates 1. M. Fröhlich
H. Hironaka F. Hirzebruch L. Hörmander
C. C. Moore 1. K. Moser M. Nagata W. Schmidt
D. S. Scott Ya. G. Sinai 1. Tits M. Waldschmidt
S.Watanabe
Managing Editors
M. Berger B. Eckmann S. R. S. Varadhan
Alejandro Adern
R. James Milgram
Cohomology
of Finite Groups
Springer-Verlag Berlin Heidelberg GmbH
Alejandro Adern
Department of Mathernatics
University of Wisconsin
Madison, Wl 53706, USA
R. James Milgram
Departrnent of Applied Hornotopy
Stanford University
Stanford, CA 94305-9701, USA
Mathernatics Subject Classification (1991): 20J05, 20J06, 20110,
55R35, 55R40, 57S17, 18GlO, 18G15, 18G20, 18G40
ISBN 978-3-662-06284-5
ISBN 978-3-662-06282-1 (eBook)
DOI 10.1007/978-3-662-06282-1
Library of Congress Cataloging-in-Publication Data
Adern, Alejandro. Cohomology of finite groupsl
Alejandro Adern, Richard James Milgram.
p. cm. - (Grundlehren der mathematischen Wissenschaften; 309)
Inciudes bibliographical references and index.
1. Finite groups. 2. Homology theory. I. Milgram, R. James. 11. Title. 111. Series.
QA177.A34 1995 512'.55-dc20 94-13318 CIP
This work is subject to copyright. All rights are reserved, whether the whole or part
ofthe material is concemed, specifically the rights oftranslation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilm or in any other way,
and storage in data banks. Duplication of this publication or parts thereof is permitted
only under the provisions of the German Copyright Law of September 9, 1965, in its
current version, and permission for use must always be obtained from SpringerVerlag. Violations are liable for prosecution under the German Copyright Law.
© Springer-Verlag Berlin Heidelberg 1994
Originally published by Springer-Verlag Berlin Heidelberg New York in 1994.
Softcover reprint of the hardcover 1st edition 1994
Typesetting: Camera-ready copy produced by the authors' output file using aSpringer
TEX macro package
41/3140-54321 0 Printed on acid-free paper
SPIN 10078665
Table of Contents
Introduction ................................................
1
Chapter I. Group Extensions, Simple Aigebras
and Cohomology
o.
1.
2.
3.
4.
5.
6.
7.
8.
Introduction ..............................................
Group Extensions .........................................
Extensions Associated to the Quaternions ....................
The Group of Unit Quaternions and SO(3) ...................
The Generalized Quaternion Groups and Binary Tetrahedral
Group ...................................................
Central Extensions and SI Bundles on the Torus T 2 ••..••.•.••
The Pull-back Construction and Extensions ..................
The Obstruction to Extension When the Center Is Non-Trivial ..
Counting the Number of Extensions .........................
The Relation Satisfied by JL(gI, g2, g3) .......................
A Certain Universal Extension ..............................
Each Element in H~(G;
C) Represents an Obstruction .........
Associative Aigebras and H~(G;
C) ..........................
Basic Structure Theorems for Central Simple lF-Algebras .......
Tensor Products of Central Simple lF-Algebras ................
The Cohomological Interpretation of Central Simple Division
Aigebras .................................................
Comparing Different Maximal Subfields, the Brauer Group .....
7
8
12
14
16
18
20
23
27
32
34
35
36
36
38
40
43
Chapter 11. Classifying Spaces and Group Cohomology
O.
1.
2.
3.
4.
Introduction ..............................................
Preliminaries on Classifying Spaces ..........................
Eilenberg-MacLane Spaces and the Steenrod Algebra A(p) .....
Axioms for the Steenrod Algebra A(2) .......................
Axioms for the Steenrod Algebra A(p) .......................
The Cohomology of Eilenberg-MacLane Spaces ................
The Hopf Algebra Structure on A(p) ........................
Group Cohomology ........................................
Cup Products .............................................
45
45
53
55
55
56
57
57
66
VI
5.
6.
7.
8.
Table of Contents
Restrietion and Thansfer
Thansfer and Restrietion for Abelian Groups ..................
An Alternate Construction of the Thansfer ....................
The Cartan-Eilenberg Double Coset Formula .................
Tate Cohomology and Applications ..........................
The First Cohomology Group and Out(G) ....................
69
71
73
76
81
87
Chapter 111. Modular Invariant Theory
O.
1.
2.
3.
4.
5.
6.
Introduction ..............................................
Generallnvariants............................ . . . . . . . . . . . . .
The Dickson Algebra ......................................
A Theorem of Serre .......................................
The Invariants in H*((Zjp)nj'Fp ) Under the Action of Sn
The Cardenas-Kuhn Theorem... ........ .............. .... ..
Discussion of Related Topics and Further Results ..............
The Diekson Aigebras and Topology .........................
The Ring of Invariants for SP2n('F 2) .........................
The Invariants of Subgroups of GL4('F2) ......................
93
93
100
105
108
112
115
115
115
116
Chapter IV. Spectral Sequences and Detection Theorems
O.
1.
2.
3.
4.
5.
6.
7.
Introduction ..............................................
The Lyndon-Hochschild-Serre Spectral Sequence: Geometrie
Approach ................................................
Wreath Products ..........................................
Central Extensions ........................................
A Lemma of Quillen-Venkov ................................
Change of Rings and the Lyndon-Hochschild-Serre Spectral
Sequence .................................................
The Dihedral Group D 2n ...................................
The Quaternion Group Qs .................................
Chain Approximations in Acyclie Complexes ..................
Groups With Cohomology Detected by Abelian Subgroups .....
Structure Theorems for the Ring H* (Gj 'Fp) ..................
Evens-Venkov Finite Generation Theorem ....................
The Quillen-Venkov Theorem ...............................
The Krull Dimension of H* (Gj 'F p) ......... . . . . . . . . . . . . . . . ..
The Classification and Cohomology Rings of Periodie Groups ...
The Classification of Periodie Groups ........................
The Mod(2) Cohomology of the Periodic Groups ..............
The Definition and Properties of Steenrod Squares ......... . ..
The Squaring Operations ...................................
The P-Power Operations for p Odd ..........................
117
118
119
122
124
125
128
131
134
140
143
143
144
144
146
149
154
156
157
159
Table of Contents
VII
Chapter V. G-Complexes and Equivariant Cohomology
O.
1.
2.
3.
Introduction to Cohomological Methods ......................
Restrietions on Group Actions ..............................
General Properties of Posets Associated to Finite Groups ......
Applications to Cohomology ................................
S4 .......................................................
SL3 (lF 2 ) ••••••••••••••••••••••••••••••••.•••••••••••••••.•
The Sporadic Group Mn ...................................
The Sporadic Group J 1 .•.•.•.•....•..•••.••.••••••••.••..•
161
165
170
176
178
178
179
179
Chapter VI. The Cohomology of Symmetrie Groups
O.
1.
2.
3.
4.
5.
6.
Introduction ..............................................
Detection Theorems for H*(Snj lFp ) and Construction of
Generators ...............................................
Hopf Algebras ............................................
The Theorems of Borel and Hopf ............................
The Structure of H*(SnjlF p ) •••••••.••••••••••••••••••••••••
More Invariant Theory .....................................
H*(Sn), n = 6,8,10,12 ...................................
The Cohomology of the Alternating Groups ..................
181
184
197
201
203
206
211
214
Chapter VII. Finite Groups of Lie Type
1.
2.
3.
4.
5.
6.
7.
Preliminary Remarks ......................................
The Classical Groups of Lie Type ...........................
The Orders of the Finite Orthogonal and Symplectic Groups ....
The Cohomology of the Groups GLn(q) ......................
The Cohomology of the Groups O;'(q) for q Odd ..............
The Cohomology Groups H*(Om(q)jlF 2) .....................
The Groups H*(SP2n(q)jlF 2) ................................
The Exceptional Chevalley Groups ..........................
219
220
227
231
235
240
241
246
Chapter VIII. Cohomology of Sporadie Simple Groups
O.
1.
2.
3.
4.
5.
Introduction ..............................................
The Cohomology of Mn .................................. ,
The Cohomology of J 1 ••••••••••••.•...••..••••••.••..•.••.
The Cohomology of M 12 ...................................
The Structure of Mathieu Group M 12 •..•••••••.•.••••..•••••
The Cohomology of M 12 ...................................
Discussion of H*(M12jlF2) ..................................
The Cohomology of Other Sporadic Simple Groups ............
The O'Nan Group 0' N ....................................
251
252
253
254
254
258
263
267
267
VIII
Table of Contents
The Mathieu Group M 22
The Mathieu Group M 23
268
271
Chapter IX. The Plus Construction and Applications
O.
1.
2.
3.
4.
Preliminaries .............................................
Definitions ...............................................
Classification and Construction of Acyclic Maps ...............
Examples and Applications .................................
The Infinite Symmetrie Group ..............................
The General Linear Group Over a Finite Field ................
The Binary Icosahedral Group ..............................
The Mathieu Group M 12 •••••••••••••••••••••••••••••••.•••
The Group J 1 ••.••..••••.• • . • . • • . . • • . . • • . • • • . • • • • . • • • • • ..
The Mathieu Group M 23 ••••..•••••••••.••••••••••.•••..•••
The Kan-Thurston Theorem ...... . . . . . . . . . . . . . . . . . . . . . . . ..
273
273
275
277
277
278
279
281
281
282
283
Chapter X. The Schur Subgroup of the Brauer Group
O.
1.
2.
3.
4.
5.
Introduction ..............................................
The Brauer Groups of Complete Local Fields .................
Valuations and Completions ................................
The Brauer Groups of Complete Fields with Finite Valuations "
The Brauer Group and the Schur Subgroup for Finite
Extensions of Q ...........................................
The Brauer Group of a Finite Extension of Q .................
The Schur Subgroup of the Brauer Group ....................
The Group (QjZ) and Its Aut Group ........................
The Explicit Generators of the Schur Subgroup ...............
Cyclotomic Algebras and the Brauer-Witt Theorem ...........
The Galois Group of the Maximal Cyclotomie Extension of lF ...
The Cohomologieal Reformulation of the Schur Subgroup ... . ..
The Groups H;ont(GFiQjZ) and H;ont(GviQjZ) ..............
The Cohomology Groups H;ont(GFi QjZ) ....................
The Local Cohomology with QjZ Coefficients .................
The Explicit Form of the Evaluation Maps at the Finite
Valuations ................................................
The Explicit Structure of the Schur Subgroup, S(lF) ...........
The Map H;ont(Gvi QjZ)---tH;ont(Gvi Q;,cycl)' ................
The Invariants at the Infinite Real Primes ....................
The Remaining Local Maps .................................
289
290
290
293
295
295
297
298
299
299
300
301
304
304
307
309
310
311
314
316
References .................................................. 319
Index ....................................................... 325