Pacific Journal of
Mathematics
RAMSEY THEORY AND CHROMATIC NUMBERS
G ARY T HEODORE C HARTRAND AND A LBERT DAVID P OLIMENI
Vol. 55, No. 1
September 1974
P AC I F I C JOU R N AL OF M AT H E M AT I C S
Vol. 55, N o. 1, 1974
RAMSEY TH EORY AN D CH ROM ATIC N U MBERS
G ARY C H ARTRAN D AN D ALBE R T D . P OLI M E N I
LetzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
χ ( G) denote the chromatic number of a graph G. For
positive integers nίf n2,
, nk (k ^ 1) the chromatic Ramsey
number χ ( n ίf n2,
, nk) is defined as the least positive integer
p such that for any factorization K p — U*= i Gif χ { G t) Ξ> w* for
at least one i,l ^i ^k.
It is shown that x(nu n2,
, nk) =
1 + ΓR= i (nt — 1). The vertex- arboricity a(G) of a graph G is
the fewest number of subsets into which the vertex set of G
can be partitioned so that each subset induces an acyclic
graph. For positive integers nlt n2,
, w* (ft ^ 1) the vertexarboricity Ramsey number a(nltn2, - ,nk) is defined as the
least positive integer p such that for any factorization K p —
U*=i Gi> d(Gt) ^ Ύ ii for at least one i, 1 rg % <Ξ k. It is shown
, nk) = 1 + 2k ΓR= i (nt —1).
that a(nlt n2,
I n t r o d u c t io n * The classicalzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLK
Ramsey number r{m, ri), for positive
integers m and n, is t h e least positive in teger p such t h a t for an y
graph G of order p, either G contains t h e complete graph Km of
order m as a subgraph or t h e complement G of G contains Kn as a
subgraph . More gen erally, for k(^ 1) positive in tegers nfί n2,
, %,
the Ramsey number r(nlf n2, • • • , nk ) is defined as t h e least positive
U Gk (i.e.,
integer p such t h a t for an y factorization Kv — G1\ J G2\ J
the Gi are spanning, pair wise edge- disjoint, possibly em pty subgraphs
of Kp such t h a t t h e union of t h e edge sets of t h e G, equals the edge
set of KP), Gi contains Kn. as a subgraph for a t least one ,ί 1 ^ i ^
k. I t is known (see [5]) t h a t all such R am sey n um bers exist; however, th e actual values of r(nl9 n2,
, nk ), k ^ 1, are known in only
seven cases (see [2, 3]) for which min {nlf n2,
, nk } ^ 3.
A clique in a graph G is a m axim al complete subgraph of G.
The cϊΐgwe number (ω G) is t h e m axim um order am ong t h e cliques of
G. The Ramsey num ber r{nu n2,
, nk ) m ay be altern atively defined
as t h e least positive in teger p such t h a t for an y factorization Kv =
UGfe, ω ίG J ^ w, for a t least one i,
l^ί<,k.
ftU ^U
The foregoing observation su ggest s t h e following definition. Let
/ be a graphical param eter, and let nu n2,
, nkf k^l
be positive
in tegers. The f- Ramsey number f(nlf n2,
, nk ) is t h e least positive
integer p such t h a t for an y factorization Kp = G1 (J G2 (J
U Gk ,
f(Gi) ^ Π i for a t least one i, 1 <Z i <Z k. H ence, (ω n u n2,
, nk ) =
KΛi> %2, • • • , ^fc)> i e., t h e ω- Ramsey n um ber is t h e Ramsey number.
The object of th is paper is to in vestigate / - Ramsey numbers for
two graphical param et ers / , namely ch rom atic n um ber and vertexarboricity.
39
40
G. CHARTRAN D AN D A. D. POLIMEN I
C h ro m at ic R am sey n um bers* ThezyxwvutsrqponmlkjihgfedcbaZYXWVUTSR
chromatic number χ( G) of a
graph G is t h e fewest num ber of colors which may be assigned to
t h e vertices of G so t h a t adjacent vertices are assigned different
colors. F or positive in tegers nlt n2, - —,nk , t h e chromatic Ramsey
number χ( n yί n2,
, nk ) is t h e least positive integer p such t h a t for
any factorization Kp = Gx U G2 U
Gk , χ{G %) ^ nt for some i, 1 <^ i g;
k. The existence of t h e n um bers χ( n u n2, • • • , nk ) is guaran teed by
t h e fact t h a t χ( n fί n2,
, nk ) ^ r( ^ x , n2,
, wA). We are now preWe begin with a
pared to presen t a formula for χ( n lt n2, - - - ,nk).
lemma.
If G = G x u G 2 U
LE M M A.
U Gk ,
then
P roo/ . F or i = 1, 2,
, k, let a χ(G t )- coloring be given for Gt.
We assign to a vertex v oΐ G t h e color (c lf c2, • • • , cfe), wh ere ct is
t h e color assigned to v in Gt. This produces a coloring of G using
a t most IK«iZ(G<) colors; hence, χ(G ) ^ Π t
TH EOREM
1.
For positive integers nlf n2,
lt
, nk ,
n2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIH
. , nk) = 1 + Π (nt - 1) .
l
Proof. The result is immediate if ^ = 1 for some ϊ; hence, we
assume that ^ ^ 2 for all i, 1 ^ ΐ ^ Λ. F irst, we verify that
X(nlt n2, -
*,nk)^
Π
Let p = 1 + Π i= i (^ί ~ 1)> and assum e t h ere exists a factorization
if* = G 1U G 2 U
U Gk such t h a t %((?*) ^ ^ - 1 for each i = 1,2, • • - ,&.
Then by t h e Lemma, it follows t h a t
1 + Π (*« -
1) = X(K,) ^ Π Z(G.) ^ Π (nt <=1
ί= l
1) ,
i= l
which produces a contradiction. Th us, in an y factorization Kp =
(?i U G 2 U
U Gk for j> = 1 + Π?= i (nt - 1), we have χ{G τ ) ^ ^ f for
at least one i, 1 <* i <^ k.
In order to show t h a t
k
X(nlf n2,
we
exhibit
a factorization
, nk ) ^ 1 + Π (nt ^ f c = Gx U (?2 U
1) ,
U Gk9
where
Nh =
RAMSEY THEORY AND CHROMATIC N UMBERS
41
Πl= i (% — 1) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
χ( Gi) <; nt — 1 for i = 1, 2,
, k. The factorization
is accomplished by employing induction on k. For k = 1, we simply
observe that χ( K N ) — χ( K ni_^ —nt — 1. Assume there exists a factorization KNk _ l = JE?!U JBΓ U
U - fiffe.i such th at χ(H"<) ^ ^ —1 for
i = 1, 2, • • • ,& — !. Let JP denote % — 1 (pairwise disjoint) copies of
KNk χ and define Gk by G& = F . Thus, Gk contains nk - 1 pairwise
disjoint copies of H t for i = 1, 2,
, k — 1, which we denote by G>
Hence, i^ f c = G x U G 2 U
U Gk , where χ( G %) ^ nt — 1 for each ,ί
1 g ΐ ^ ί;, which produces the desired result.
2
Vertex- arboricity Ramsey numbers* The vertex- arboricity a{G)
of a graph G is the minimum number of subsets into which the vertex set of G may be partitioned so th at each subset induces an
acyclic subgraph. As with the chromatic number, the vertex- arboricity may be considered a coloring number since a(G) is the least
number of colors which may be assigned to the vertices of G so that
no cycle of G has all of its vertices assigned the same color.
Our next result will establish a formula for the vertex- arboricity
Ramsey number a(nu n2,
, nk ) f defined as the least positive integer p
such that for every factorization KP = (?! U G2 U
U Gk9 a(Gt) ^ nt for
,
some i, 1 <£ i <£ ifc. Since a(Kn) = {n/ 2}, it follows that a(nlf n2,
%) ^ r(2nt — 1, 2n2 — 1,
, 2nk — 1). In the proof of the following
result, we shall make use of the (edge) arboricity α x(G) of a graph,
which is the minimum number of subsets into which the edge set of
G may be partitioned so that the subgraph induced by each subset
is acyclic. I t is known (see [1, 4]) that aJJK,) — {n/ 2}.
THEOREM
2 . For positive
integers
n lf n2, ' " , n k ,
a(nlf n2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSR
. , nk) = 1 + 2k Π fa< - 1) .
Proof. In order to show th at
k
<Φ i, n2,
, nk ) ^ 1 + 2k Π (nt -
1) ,
we let p = 1 + 2k Πi= i (n{ — 1) and assume th ere exists a factorization Kp = G1 U G2 U
U Gk such t h a t a(G^) <. nt — 1 for each i =
1, 2, • • • ,&. F or each i —1, 2,
, Λ, th ere isa partition {£/",,!, Ϊ7<fϊ,
,
t7ifW<_J of th e vert ex set V(Gt) of G f such t h a t t h e subgraph {Uii5}
of Gi induced by Uifj is acyclic, j = 1,2,
, ^ έ — 1. At least one
of the sets U1Λ , Ult2, , U1%%1- 19 say UUmι , contains a t least 1 +
2k Πi=2 (w>i — 1) vertices. Thus, a t least one oft h e sets UttU U2}2, ,
42
G. CHARTRAND AN D A. D . POLIMEN I
ίf2,tt2- i> sayzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCB
U2>m2y contains a t least 1 + 2ft Π Ls (^i — 1) vertices of
U1>mi. P roceeding inductively, we arrive a t subsets i7lfWl, U2>m2, • • • ,
Ukίm]e such t h a t f|l= i Ui)m. contains a t least 1 + 2ft Π t ί + i i^i —1) vertices, 1 ^ ί <£ ft —1. I n particular, Π L i Ui>m., contains a set Uhaving 1 + 2k vertices. F or each ί = 1, 2, « ,ft, <ί7> is an acyclic
This implies t h a t αx(ίΓ1+sjfe) ^ ft, which
subgraph of t h e graph (Ui>mi).
is con tradictory. Therefore, &((?*) ^ nt for a t least one i, 1 ^ i ^ k.
The proof will be complete once we have verified t h a t
k
a(nl9 n2,
, nk ) ^ 1 + 2k Π ( ^ -
1)
• = 11
Let r = Π ί= i (^i ~" 1) We shall exhibit a factorization K2kr = G1\ J
U Gk such t h a t a(Gt) ^ w, - 1 for i = 1, 2,
, &. We begin
G2 U
with r pair wise disjoint copies of K2k , labeled K2\ , Kikf
, K2k . Since
^i(^2&) = ^> it follows t h a t K2k — (Ji= i Fif where each Ft is an acyclic
grap h . We in troduce t h e n otation Fit to denote th e Ft contained in
Kι 2k , 1 = 1,2, - - , r an d i = 1, 2, • • • ,&. With each of t h e r Λ- tuples
(clf c2,
, ck ), cά = 1, 2,
, % —1 an d i = 1, 2,
, ft, we identify
a complete graph K\ k , I = 1, 2,
, r, in such a way t h a t t h e identification is one- to- one. Then, for each i = 1, 2,
, ft and I = 1,2,
,
r, we associate with ί7^ t h e ft- tuple identified with K2\ . Define t h e
graph Gif i = 1, 2,
, ft, t o consist of t h e graph s Filf Fi2,
,i^r;
in addition, each vertex of Fis is adjacen t to each vertex of Ftί ,
s, t = 1, 2,
, r, provided t h e ΐ t h coordinate is th e first coordinate
in which their associated ft- tuples differ (otherwise, there are no edges
between Fi8 an d Ftί ). I t is th en seen t h a t K2kr = U iU <?,. F o r
each i —1, 2,
, ft, define F<,y t o be t h e set of all vertices v such
t h a t v is a vertex of an Fu whose associated ft- tuple (clf c2,
, ck )
h as ct = i ; i = 1, 2, • • • , ^ - 1. Then {V<fl, F i> 2 , • • • , F ^ ^ . J is a
partition of F ( G J for which t h e subgraph (Vij) consists of
rftibi — 1) pairwise disjoint copies of Ft9 j = 1, 2,
, ^ —1. Thus,
< F i f J > is an acyclic graph for each such j . H ence, α(G {) ^ nt — 1,
i = Ί f 2 f . . . , ft.
REF EREN CES
1. L. W. Beineke, Decompositions of complete graphs into forests, Magyar Tud. Akad.
M at. Kutato I n t . KozL, 9 (1964), 589- 594.
2. J . E. G raver and J . Yackel, Some graph theoretic results associated with Ramsey's
theorem, J . Combinatorial Theory, 4 (1968), 125- 175.
3. R. E. G reenwood and A. M. G leason, Combinatorial relations and chromatic graphs,
Canad. J . M ath., 7 (1955), 1- 7.
4. C. St. J . A. N ash- Williams, Edge- disjoint spanning trees of finite graphs, J .
London M ath. So c , 3 6 (1961), 445- 450.
5. F . P . Ramsey, On a problem of formal logic, Proc. London Math. Soc, 3 0 (1930),
264- 286.
RAMSEY THEORY AND CHROMATIC NUMBERS
43
Received October 4, 1974. The second author's research was supported by the
Research Foundation of the State of New York.
WESTERN MICHIGAN UNIVERSITY
AND
SUNY, COLLEGE AT FREDONIA
PACIFIC JOURNAL OF MATHEMATICS
ED ITORS
RICHARD AR E N S (M an agin g E ditor)
U niversity of California
Los Angeles, California 90024
J . DUGUNDJI
D epartment of Mathematics
U niversity of Southern California
Los Angeles, California 90007
R.
D . GlLBARG AND J. MlLGRAM
A.
BE AU M O N T
U niversity of Washington
Seattle, Washington 98105
Stanford U niversity
Stanford, California 94305
ASSOCIATE ED ITORS
E. F. BECKENBACH
B. H . NEUMANN
F . WOLF
K . YOSHIDA
SU PPORTIN G IN STITU TION S
UNIVERSITY OF BRITISH COLUMBIA
CALIFORN IA IN STITU TE OF TECHNOLOGY
UN IVERSITY OF CALIFORN IA
MONTANA STATE U N IVERSITY
UN IVERSITY OF NEVADA
NEW MEXICO STATE U N IVERSITY
OREGON STATE U N IVERSITY
UN IVERSITY OF OREGON
OSAKA U N IVERSITY
U N IVERSITY OF SOUTHERN CALIFORN IA
STAN FORD UN IVERSITY
U N IVERSITY OF TOKYO
U N IVERSITY OF UTAH
WASHING TON STATE UN IVERSITY
U N IVERSITY OF WASHINGTON
*
*
*
AMERICAN MATHEMATICALzyxwvutsrqponmlkjih
SOCIETY
NAVAL WEAPONS CENTER
Printed in Japan by ίntarnational Academic P rinting Co., Ltd., Tokyo, Japan
Pacific Journal of Mathematics
Vol. 55, No. 1
September, 1974
Robert Lee Anderson, Continuous spectra of a singular symmetric
differential operator on a Hilbert space of vector-valued functions . . . .
Michael James Cambern, The isometries of L p (X, K ) . . . . . . . . . . . . . . . . . . .
R. H. Cameron and David Arne Storvick, Two related integrals over spaces
of continuous functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Gary Theodore Chartrand and Albert David Polimeni, Ramsey theory and
chromatic numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
John Deryck De Pree and Harry Scott Klein, Characterization of
collectively compact sets of linear operators . . . . . . . . . . . . . . . . . . . . . . . .
John Deryck De Pree and Harry Scott Klein, Semi-groups and collectively
compact sets of linear operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
George Epstein and Alfred Horn, Chain based lattices . . . . . . . . . . . . . . . . . . . .
Paul Erdős and Ernst Gabor Straus, On the irrationality of certain series . . .
Zdeněk Frolík, Measurable uniform spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stephen Michael Gagola, Jr., Characters fully ramified over a normal
subgroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Frank Larkin Gilfeather, Operator valued roots of abelian analytic
functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
D. S. Goel, A. S. B. Holland, Cyril Nasim and B. N. Sahney, Best
approximation by a saturation class of polynomial operators . . . . . . . . .
James Secord Howland, Puiseux series for resonances at an embedded
eigenvalue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
David Jacobson, Linear GCD equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
P. H. Karvellas, A note on compact semirings which are multiplicative
semilattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Allan Morton Krall, Stieltjes differential-boundary operators. II . . . . . . . . . . .
D. G. Larman, On the inner aperture and intersections of convex sets . . . . . .
S. N. Mukhopadhyay, On the regularity of the P n -integral and its
application to summable trigonometric series . . . . . . . . . . . . . . . . . . . . . . .
Dwight Webster Read, On (J, M, m)-extensions of Boolean algebras . . . . .
David Francis Rearick, Multiplicativity-preserving arithmetic power
series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Indranand Sinha, Characteristic ideals in group algebras . . . . . . . . . . . . . . . . .
Charles Thomas Tucker, II, Homomorphisms of Riesz spaces . . . . . . . . . . . . . .
Kunio Yamagata, The exchange property and direct sums of indecomposable
injective modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1
9
19
39
45
55
65
85
93
107
127
149
157
177
195
207
219
233
249
277
285
289
301