Board of Governors of the Federal Reserve System
International Finance Discussion Papers
Number 883
December 2006
Measurement Matters for Modeling U.S. Import Prices
Charles P. Thomas
and
Jaime Marquez
NOTE: International Finance Discussion Papers are preliminary materials circulated to stimulate
discussion and critical comment. References in publications to International Finance Discussion Papers
(other than an acknowledgment that the writer has had access to unpublished material) should be cleared
with the author or authors. Recent IFDPs are available on the Web at www.federalreserve.gov/pubs/ifdp/.
Measurement Matters for Modeling U.S. Import Prices
Charles P. Thomas
and
Jaime Marquez
Abstract: We focus on capturing the increasingly important role that emerging economies play in determining
U.S. import prices. Emerging market producers differ from others in two respects: (1) their cost structure is
well below that of developed-market producers, and (2) their wide profit margins induce pricing policies that
seek to exhaust production capacity. We argue that these features have dampened the short-run responses of
import prices to changes in the value of the dollar but that they have not altered the associated long-run
response. To capture these considerations, we develop a new method to measure foreign prices and adopt a
formulation that differentiates between short- and long-run responses.
Our econometric work asks two questions: First, can one replicate the literature's dispersion of passthrough estimates? Second, is there any evidence of a change in the dynamic response of import prices to
changes in the exchange value of the dollar? To address the first question, we estimate the parameters of our
models using several alternative measures of U.S. and foreign prices, dynamic specifications, and sample
periods. We find that these alternative inputs translate into a large range of parameter estimates, a finding that
helps to rationalizing the existing dispersion of estimates. To address the second question, we compute the
implied dynamic adjustment of import prices to a change in the value of the dollar using parameters estimated
from two samples: 1974-2000 and 1974-2005. The long-run response of import prices is similar regardless of
which sample is used---roughly one-half of the change in the exchange rate is passed through to import prices.
However, the short-run response is quite sensitive to the sample period. Specifically, the short-run response
based on data through 2005 is smaller than the short-run response based on data through 2000. We argue that
one force behind the change in dynamics of the import-price process is the greater presence of producers from
emerging economies and that their effect on import prices can be captured with their measure of foreign
prices.
JEL classifications: F17, F41, C51, C53
Keywords: aggregation methods, automated specification, exchange rates, pass-through, Penn World
Tables.
E-mail addresses are
[email protected] and
[email protected]. We are grateful to Neil Ericsson,
Joe Gagnon, Jane Ihrig, Mario Marazzi, Trevor Reeve, Nathan Sheets, and Robert Vigfusson for their
detailed comments. A previous version of this paper was presented in the workshop series of the Federal
Reserve Board and the meetings of the Fall 2005 meetings of the Midwest International Economics
Group. The calculations use PcGets; see Hendry and Krolzig (2001). The views in this paper are solely
the responsibility of the author(s) and should not be interpreted as reflecting the views of the Board of
Governors of the Federal Reserve System or of any other person associated with the Federal Reserve
System. This paper can be downloaded without charge from the Social Science Research Network
electronic library at http://www.ssrn.com/ .
4
Lqwurgxfwlrq
Mxvw krz pxfk wkh groodu vkrxog ghsuhfldwh wr uhvwruh h{whuqdo edodqfh lv wkh vxemhfw ri dq rq0jrlqj
ghedwh lq zklfk olwwoh djuhhphqw h{lvwv1 Wkh glvdjuhhphqwv vwhp iurp vhyhudo vrxufhv exw dq lpsruwdqw
rqh lv wkh uhvsrqvlyhqhvv ri X1V1 lpsruw sulfhv wr fkdqjhv lq wkh ydoxh ri wkh groodu1 Vshflfdoo|/ Jrogehuj
dqg Nqhwwhu +4<<:,/ dqg Fdpsd dqg Jrogehuj +5338, uhsruw wkdw kdoi ri wkh pryhphqwv ri wkh groodu
duh sdvvhg wkurxjk wr lpsruw sulfhv zkhuhdv Rolyhl +5335, dqg Pdud}}l hw do1 +5338, qg wkdw wklv sdvv0
wkurxjk/ zkloh vljqlfdqw lq wkh sdvw/ kdv yluwxdoo| glvdsshduhg1 Xvlqj d qhz phdvxuh ri iruhljq sulfhv/
zh qg wkdw sdvv0wkurxjk lq wkh orqj0uxq dw wkh whq0|hdu krul}rq kdv ehhq vwdeoh dw rqh0kdoi zkhuhdv
sdvv0wkurxjk lq wkh vkruw0uxq dw wkh wzr0|hdu krul}rq kdv ghfolqhg pdunhgo| ryhu wkh sdvw ghfdgh1 Zh
eholhyh wkhvh qglqjv frqwulexwh wr uhvroylqj wkh glvshuvlrq ri uhfhqw hvwlpdwhv1
Wkh jhqhudo iudphzrun wr prgho lpsruw sulfhv xvhg e| suhylrxv vwxglhv lv jlyhq lq htxdwlrq +4,=
Sp @ i +S| / Si / Sfrp ,/
+4,
zkhuh Sp lv wkh sulfh ri X1V1 lpsruwv> S| lv wkh sulfh ri X1V1 surgxfwv> Si lv wkh iruhljq sulfh h{suhvvhg
lq grooduv> dqg Sfrp lv wkh sulfh ri lqwhuqdwlrqdoo| wudghg frpprglwlhv1 Htxdwlrq +4, doorzv iru wkh
srvvlelolw| wkdw iruhljq h{sruwhuv vhhn wr uhwdlq vrph sdulw| zlwk jhqhudo X1V1 sulfhv e| dgmxvwlqj wkhlu
h{sruw sulfhv wr fkdqjhv lq wkh sulfhv suhydlolqj lq wkh X1V1 pdunhw1 Vxfk d vwudwhj|/ nqrzq dv sulflqj
wr pdunhw/ lpsolhv wkdw
CSp
CS|
A 31 Htxdwlrq +4, dovr doorzv iru wkh srvvlelolw| wkdw dq lqfuhdvh lq
wkh ydoxh ri wkh groodu/ zklfk udlvhv Si > lv wkhq sdvvhg wkurxjk wr Sp = Vxfk d uhvsrqvh lv nqrzq dv wkh
h{fkdqjh0udwh sdvv0wkurxjk dqg lw lpsolhv wkdw
CSp
CSi
A 314
Htxdwlrq +4, rhuv rqh zd| wr udwlrqdol}h wkh glvshuvlrq ri hvwlpdwhv ri uhsruwhg lq wkh olwhudwxuh=
hpslulfdo vwxglhv glhu lq wkhlu fkrlfh ri sulfh phdvxuhv/ hfrqrphwulf irupxodwlrqv/ vdpsoh shulrgv/ dqg
hvwlpdwlrq whfkqltxhv1 Dqrwkhu h{sodqdwlrq lv wkdw wklv glvshuvlrq lv uh hfwlqj d vwuxfwxudo fkdqjh lq wkh
ehkdylru ri h{sruwhuv wr wkh Xqlwhg Vwdwhv wkdw lv qrw dghtxdwho| fdswxuhg e| uhfhqw vwxglhv1 Lqghhg/
rqh uhfhqw ghyhorsphqw wkdw txdolhv dv d vwuxfwxudo fkdqjh lv wkh lqfuhdvhg lpsruwdqfh ri hphujlqj
hfrqrplhv dv d vrxufh ri X1V1 lpsruwv15 Wr judvs krz wklv srvvlelolw| vkdshv rxu vwudwhj| lqyroyhv d eulhi
h{srvlwlrqdo ghwrxu wr zklfk zh qrz wxuq1
Wkhuh duh wzr vdolhqw ihdwxuhv ri hphujlqj hfrqrplhv wkdw pd| dhfw wkh ehkdylru ri X1V1 lpsruw
sulfhv1 Iluvw/ hphujlqj hfrqrplhv kdyh orz surgxfwlrq frvwv uhodwlyh wr ghyhorshg hfrqrplhv1 Vhfrqg/
4 Qrw doo vwxglhv duh zloolqj wr h{whqg wkh ehqhw ri wkh grxew wr htxdwlrq +4,1 Lqghhg/ uhfhqw vwxglhv uhfrjql}h wkdw
vwudwhjlf lqwhudfwlrqv dprqj surgxfhuv phdqv wkdw dqg duh qrw sdudphwhuhv wr eh hvwlpdwhg exw udwkhu hqgrjhqrxv
rxwfrphv uhvxowlqj iurp ghpdqg0vxsso| lqwhudfwlrqv dw wkh plfur ohyho1 Vhh Jurq dqg Vzhqvrq +5333,/ Jurvv dqg Vfkplww
+5333,/ Khoohuvwhlq +5337,> Ergqdu hw do1 +5335,> Jxvw hw do1 +5339,1
5 Uhfhqw gdwd vkrz wkdw Fklqd glvsodfhg Fdqdgd dv wkh odujhvw surylghu ri qrq0ixho jrrgv wr wkh Xqlwhg Vwdwhv1
hphujlqj hfrqrplhv kdyh ehhq lqfuhdvlqj wkhlu fdsdflw| wr surgxfh h{sruwdeoh jrrgv dw d udslg udwh1
Wr wkh h{whqw wkdw hphujlqj0pdunhw surgxfhuv duh sulflqj wkhlu h{sruwv wr dfklhyh d pdunhw vkduh wkdw
h{kdxvwv wkhlu jurzlqj surgxfwlrq fdsdflw|/ zh zrxog h{shfw wzr glvwlqfw hhfwv rq lpsruw sulfhv1 Wkh
uvw hhfw lv vwudljkw0iruzdug= zh zrxog h{shfw vrph grzqzdug suhvvxuh rq lpsruw sulfhv dv hphujlqj0
pdunhw h{sruwhuv sulfh vrphzkdw ehorz suhydlolqj sulfhv lq rughu wr jdlq pdunhw vkduh1 Zh zrxog h{shfw
wklv h{sdqvlrq lq vxsso| wr erwk lqfuhdvh wkh wrwdo yroxph ri lpsruwv dqg wr glvsodfh vrph lpsruwv iurp
kljkhu frvw surgxfhuv zkr duh qrz qr orqjhu deoh wr sulfh deryh wkhlu yduldeoh frvwv1 Wkh vhfrqg hhfw lv
pruh vxewoh dqg lqyroyhv wkh uhvsrqvlyhqhvv ri lpsruw sulfhv wr fkdqjhv lq h{fkdqjh udwhv1 Li wkh hphujlqj
pdunhw surgxfhuv idfh vkruw0uxq fdsdflw| frqvwudlqwv/ wkhq dv wkhlu vkduh lq X1V1 lpsruwv lqfuhdvhv/ zh
zrxog h{shfw lpsruw sulfhv wr ehfrph ohvv uhvsrqvlyh wr h{fkdqjh udwh pryhphqwv dqg pruh uhvsrqvlyh
wr X1V1 sulfh ghyhorsphqwv1
Wr xqghuvwdqg wklv fkdqjh lq sulfh uhvsrqvlyhqhvv/ lw lv khosixo wr irfxv rq wkh lpsruw0vxsso| vfkhgxoh1
Wr wkh h{whqw wkdw fdsdflw| frqvwudlqwv duh elqglqj/ wkh vkruw0uxq vxsso| vfkhgxoh ehfrphv pruh qhduo|
yhuwlfdo1 Wkxv pryhphqwv lq h{fkdqjh udwhv ru iruhljq frvwv/ zklfk lqgxfh yhuwlfdo vkliwv lq wkh vxsso|
vfkhgxoh/ zloo kdyh d uhodwlyho| vpdoo lpsdfw rq sulfhv zkloh d vkliw lq wkh ghpdqg vfkhgxoh zloo kdyh d
uhodwlyho| odujh lpsdfw rq sulfhv1 Wklv vlwxdwlrq grhv qrw lpso| wkdw iruhljq sulfhv/ ru h{fkdqjh udwhv/
duh ehfrplqj ohvv lpsruwdqw lq wkh ghwhuplqdwlrq ri X1V1 lpsruw sulfhv exw/ udwkhu/ wkdw wkh g|qdplfv
ri wkh surfhvv duh fkdqjlqj1 Lq sduwlfxodu/ wkh orqj0uxq +vhfxodu, pryhphqwv duh vwloo ghwhuplqhg lq odujh
sduw e| iruhljq fdsdflw| dqg frvwv +zlwk vrph uljkwzdug guliw lq wkh vxsso| vfkhgxoh,/ exw wkh vkruw0uxq
pryhphqwv duh pruh forvho| wlhg wr X1V1 ghpdqg dqg X1V1 grphvwlf sulfh ghyhorsphqwv +wkurxjk wkh
vwhhshqlqj ri wkh vxsso| vfkhgxoh,1
Wr prgho wklv skhqrphqrq hfrqrphwulfdoo| uhtxluhv d phdvxuh ri iruhljq sulfhv wkdw h{solflwo| fdswxuhv
erwk wkh jurzlqj fdsdflw| ri hphujlqj0pdunhw surgxfhuv dqg wkh idfw wkdw wkh frvw vwuxfwxuh ri wkhvh
surgxfhuv lv zhoo ehorz wkdw ri ghyhorshg0pdunhw surgxfhuv1 Vhfwlrq 5 ghyhorsv vxfk d phdvxuh ri iruhljq
sulfhv dqg frqwudvwv lw wr h{lvwlqj phdvxuhv ri djjuhjdwh iruhljq sulfhv1 Vhfwlrq 5 dovr orrnv dw wkh grphvwlf
sulfh phdvxuhv dqg qrwhv wkdw glhuhqw phdvxuhv ri X1V1 sulfhv fduu| glhuhqw lpsolfdwlrqv iru prgholqj
lpsruw sulfhv1 Li rqh fkrrvhv wkh X1V1 JGS gh dwru/ wkhq iruhljq surgxfwv duh dvvxphg wr frpshwh
zlwk X1V1 jrrgv dqg vhuylfhv zkhuhdv li rqh xvhv wkh JGS gh dwru iru jrrgv/ wkhq iruhljq surgxfwv duh
dvvxphg wr frpshwh zlwk X1V1 jrrgv16
Vhfwlrq 6 ghvfulehv vhyhudo glhuhqw hfrqrphwulf vshflfdwlrqv wkdw kdyh ehhq xvhg wr hvwlpdwh wkh
sdudphwhuv ri htxdwlrq +4, dqg qrwhv krz wkhvh vshflfdwlrqv glhu lq wkhlu fkdudfwhul}dwlrq ri orqj0
6 .
-" ! -"
2
-"
uxq ehkdylru1 Vhfwlrq 7/ xvlqj dqqxdo revhuydwlrqv iurp 4<:7 wr 5338/ hvwlpdwhv vhyhudo yhuvlrqv ri
htxdwlrq +4, dqg uhsruwv rq wkh vhqvlwlylw| ri wkh hvwlpdwlrq uhvxowv wr fkdqjhv lq phdvxuhv ri X1V1 dqg
iruhljq sulfhv/ g|qdplf vshflfdwlrqv/ dqg vdpsoh shulrgv1 Wkh vhfwlrq dovr hvwlpdwhv wkh sdudphwhuv
xvlqj vdpsoh0vhohfwlrq whfkqltxhv wr h{foxgh revhuydwlrqv zkhq hphujlqj hfrqrplhv zhuh qrw lpsruwdqw
lq zruog wudgh1 Dffruglqjo|/ Vhfwlrq 7 glylghv wkh glvfxvvlrq lq wzr sduwv= Ixoo0vdpsoh Hvwlpdwlrq
dqg Vdpsoh0vhohfwlrq Hvwlpdwlrq1 Zh qg wkdw fkdqjhv lq hvwlpdwlrq ghvljq jlyh ulvh wr d glvshuvlrq
ri hvwlpdwhv/ dv irxqg lq wkh olwhudwxuh1 Zh dovr qg/ xvlqj rxu qhz phdvxuh ri iruhljq sulfhv dqg
uhfhqw revhuydwlrqv/ wkdw wkh vkruw0uxq h{fkdqjh udwh sdvv0wkurxjk lv forvh wr }hur exw wkdw wkh orqj0uxq
sdvv0wkurxjk lv derxw rqh0kdoi1 Zh lqwhusuhw wklv uhvxow dv vxjjhvwlqj wkdw wkh jurzlqj lpsruwdqfh ri
hphujlqj hfrqrplhv grhv qrw lpso| wkdw iruhljq sulfhv/ ru h{fkdqjh udwhv/ duh ehfrplqj ohvv lpsruwdqw
lq wkh ghwhuplqdwlrq ri X1V1 lpsruw sulfhv exw/ udwkhu/ wkdw wkh g|qdplfv ri wkh surfhvv duh fkdqjlqj1
5
Phdvxuhphqw Pdwwhuv
Zh phdvxuh wkh sulfh ri X1V1 lpsruwv/ S > dv wkh pxowlodwhudo sulfh gh dwru ri X1V1 phufkdqglvh lpsruwv
h{foxglqj rlo/ frpsxwhuv/ dqg vhplfrqgxfwruv1 Iru zrun xvlqj glvdjjuhjdwh lpsruw sulfhv vhh \dqj +4<<:,/
Rolyhl +5335,/ Fdpsd dqg Jrogehuj +5338,1 Iru wkh sulfh ri udz pdwhuldov/ S / zh xvh wkh LPI*v
qrq0ixho frpprglw| sulfh lqgh{1 Iru iruhljq dqg X1V1 grphvwlf sulfhv/ krzhyhu/ zh frqvlghu vhyhudo
dowhuqdwlyhv zklfk duh glvfxvvhg ehorz1
514
Iruhljq Sulfhv +Si ,
Phdvxulqj iruhljq sulfhv lv ri lqwhuhvw ehfdxvh wkh| vhuyh dv sur{lhv iru iruhljq frvwv iru zklfk gdwd
duh qrw uhdglo| dydlodeoh1 Wkh jhqhudo sudfwlfh iru phdvxulqj iruhljq sulfhv djjuhjdwhv iruhljq FSLv/
h{suhvvhg lq X1V1 grooduv/ xvlqj elodwhudo wudgh zhljkwv1 Zh ghsduw iurp wklv sudfwlfh lq vhyhudo zd|v1
Iluvw/ zh dujxh wkdw JGS gh dwruv duh d ehwwhu sur{| iru grphvwlf frvwv wkdq FSLv1 Vhfrqg/ udwkhu wkdq
djjuhjdwlqj iruhljq JGS gh dwruv h{suhvvhg lq X1V1 grooduv/ zh frqvwuxfw rxu phdvxuh ri S vr dv wr
hqvxuh frqvlvwhqf| zlwk wkh hyroxwlrq ri X1V1 lqwhuqdwlrqdo uhodwlyh sulfhv1 Zh dwwdlq wklv frqvlvwhqf| lq
wzr vwhsv1 Wkh uvw vwhs lqyroyhv phdvxulqj X1V1 lqwhuqdwlrqdo uhodwlyh sulfhv/ T=
T @
S
>
S
+5,
zkhuh S lv wkh sulfh ohyho ri X1V1 surgxfwv1 Wklv uvw vwhs lv qhhghg ehfdxvh gdwd iru devroxwh sulfh
ohyhov dfurvv frxqwulhv duh qrw hdvlo| dydlodeoh zkhuhdv wkh ohyhov ri wkh dvvrfldwhg elodwhudo uhodwlyh sulfhv
3
duh dydlodeoh1 Wkh vhfrqg vwhs xvhv htxdwlrq +5, wr vroyh iru S wdnlqj dv jlyhq gdwd iru T dqg S =
Lpsohphqwlqj wkhvh wzr vwhsv zrxog eh vwudljkwiruzdug li wkhuh zhuh djuhhphqw rq krz wr frqvwuxfw
T= Dv Fklqq +5338, qrwhv/ krzhyhu/ vxfk dq djuhhphqw lv qrw fxuuhqwo| lq sodfh1 Lqghhg/ wkh h{lvwlqj
phdvxuhv ri T frqvwuxfwhg e| wkh Ihghudo Uhvhuyh/ wkh LPI/ dqg wkh RHFG glhu lq wkhlu pl{ ri frxqwulhv/
lq wkhlu phdvxuh ri sulfhv/ lq wkhlu zhljkwlqj vfkhphv/ dqg lq wkhlu djjuhjdwlrq phwkrgv1 Wkh rqh ihdwxuh
wkhvh phdvxuhv ri T kdyh lq frpprq lv wkhlu uholdqfh rq uhodwlyh sulfh lqgh{hv1 Dv glvfxvvhg ixuwkhu
ehorz/ vxfk phdvxuhv fdqqrw ixoo| fdswxuh wkh jurzlqj lpsruwdqfh ri wkh orz0frvw surgxfhuv ehfdxvh
lqgh{hv lqglfdwh/ e| frqvwuxfwlrq/ wkh shufhqw fkdqjh ri wkh yduldeoh uhodwlyh wr d edvh |hdu1 Rxu phdvxuh
irfxvhv rq wkh ohyho ri lqwhuqdwlrqdo uhodwlyh sulfhv dqg qrw ri lwv fkdqjh1
51414
Phdvxulqj Lqwhuqdwlrqdo Uhodwlyh Sulfhv
Fhqwudo wr rxu frqvwuxfw ri T lv wkh phdvxuhphqw ri wkh ohyho ri wkh sulfh ri X1V1 surgxfwv uhodwlyh wr wkh
ohyho ri wkh sulfh ri wkh lwk frxqwu|/ t = Zh phdvxuh wklv elodwhudo uhodwlyh sulfh dv
t@
Hl
'
S S S 'l
>
zkhuh H 'l lv wkh vsrw groodu h{fkdqjh udwh uhodwlyh wr wkh lwk fxuuhqf| +d ulvh lq H 'l frqvwlwxwhv dq
dssuhfldwlrq ri wkh groodu,> dqg S S S l
'
lv wkh SSS h{fkdqjh udwh uhsruwhg e| wkh Shqq Zruog Wdeohv17
Wklv SSS udwh lv d zhljkwhg dyhudjh ri wkh sulfhv ri wkh lwk frxqwu| uhodwlyh wr X1V1 sulfhv xvlqj dv
zhljkwv wkh surgxfwlrq ohyhov ri wkh lwk frxqwu|1 Wkh sulfhv xvhg e| wkh Shqq gdwd duh edvhg rq kljko|
frpsdudeoh surgxfwv dfurvv frxqwulhv dqg wkh dvvrfldwhg zhljkwv dffrxqw iru wkh ixoo ydoxh ri JGS1 Wkh
Shqq gdwd duh frqvwuxfwhg wr doorz furvv0frxqwu| frpsdulvrqv dqg wkxv zhoo vxlwhg wr rxu sxusrvhv1
Qrwh wkdw t glhuv lpsruwdqwo| iurp wkh sulfh lqgh{hv xvhg lq pdfurhfrqrplfv1 W|slfdoo|/ wkhvh
sulfh lqgh{hv duh frqvwuxfwhg wr htxdo 433 lq d jlyhq |hdu/ vr lw zrxog pdnh qr vhqvh wr frpsduh wkh ohyho
ri sulfh lqgh{hv lq wzr frxqwulhv1 Lq frqwudvw/ t lv xqlwohvv dqg hdv| wr lqwhusuhw= D ydoxh ri 5 phdqv
wkdw wkh edvnhw ri wkh lwk frxqwu| lv wzlfh dv h{shqvlyh lq wkh Xqlwhg Vwdwhv dv lw lv lq wkh lwk frxqwu|1
Zh djjuhjdwh wkhvh elodwhudo uhodwlyh sulfhv lqwr rxu frqvwuxfw T xvlqj wzr irupxodv= d jhrphwulf
djjuhjdwh/ ghqrwhg dv T > dqg d Glylvld djjuhjdwh/ ghqrwhg dv T =8 Wkh jhrphwulf djjuhjdwh lv
T @ +t4 ,4w +t5 ,5w +t ,qw >
7 /
6
" )
8 2
0
1 2 " & 33
/ + ! 4 )
5 ! !
!
$%%%
4
zkhuh z lv wkh vkduh ri wkh lwk frxqwu| lq wkh djjuhjdwh1 Vhyhudo idfwruv dhfw wkh djjuhjdwh T = dq
lqfuhdvh lq X1V1 sulfhv udlvhv lw/ zkloh dq lqfuhdvh lq iruhljq sulfhv orzhuv lw> d qrplqdo dssuhfldwlrq ri wkh
groodu +dq lqfuhdvh lq H l , udlvhv T 1 Wkhvh wkuhh idfwruv zrun wkurxjk wkhlu hhfw rq wkh elodwhudo uhodwlyh
'
sulfhvwkh t 3 v1 Lq dgglwlrq/ fkdqjlqj wkh zhljkwv dorqh zloo dhfw T hyhq li qrqh ri wkh xqghuo|lqj sulfhv
ru h{fkdqjh udwhv fkdqjh1 Vshflfdoo|/ hphujlqj0pdunhw hfrqrplhv kdyh uhodwlyho| orz surgxfwlrq frvwv
dqg wkhlu vkduh lq zruog wudgh kdv ehhq lqfuhdvlqj1 Wkh uhvxowlqj lqfuhdvh lq wkhlu vkduh lq zruog pdunhwv
lv fdswxuhg e| wkh lqfuhdvh lq wkhlu zhljkwv1 Orrvho| vshdnlqj/ udlvlqj wkh zhljkw rq wkhvh orz0sulfh
frxqwulhv orzhuv wkh cdyhudjh* sulfh deurdg dqg udlvhv X1V1 sulfhv uhodwlyh wr wkh dyhudjh iruhljq sulfh/
hyhq li qr xqghuo|lqj sulfhv fkdqjh1
Lq frqwudvw/ wkh Glylvld djjuhjdwh ri X1V1 lqwhuqdwlrqdo uhodwlyh sulfhv lv d zhljkwhg dyhudjh ri jurzwk
udwhv ri elodwhudo uhodwlyh sulfhv=
T
T
@
T4
@4
t
t
4
lw
>
+6,
zkhuh e| frqyhqwlrq/ T@ lv vhw htxdo wr 433 wr d jlyhq shulrg dqg wkh lqgh{ ohyho iru doo rwkhu
shulrgv lv ghqhg uhfxuvlyho|1 Wkh fklhi gudzedfn ri wklv phdvxuh iru rxu sxusrvhv lv wkdw lw fdqqrw ixoo|
uhfrjql}h wkh lpsruwdqfh ri orz0sulfh frxqwulhv vxfk dv Fklqd dqg Ph{lfr1 Wr eh vxuh/ wkh zhljkwv iru
wkhvh wzr frxqwulhv kdyh lqfuhdvhg exw wkhlu uhodwlyh sulfhv kdyh ehhq idluo| vwdeoh zklfk phdqv wkdw wkh
odujh zhljkwv duh ehlqj pxowlsolhg e| qhjoljleoh jurzwk udwhv1 Wkh jhrphwulf djjuhjdwh grhv qrw vxhu
iurp wklv olplwdwlrq ehfdxvh fkdqjhv lq zhljkwv dhfw wkh djjuhjdwh hyhq li doo wkh uhodwlyh sulfhv duh
{hg1
Lq frqvwuxfwlqj wkhvh djjuhjdwhv/ zh frqvlghu wzr w|shv ri zhljkwv= X1V1 elodwhudo qrq0rlo lpsruwv
dqg d eurdg phdvxuh ri X1V1 wudgh frpshwlwlyhqhvv1 Dv vkrzq lq wkh wrs sdqho ri jxuh 4/ xqolnh wkh
fkrlfh ri zhljkwv/ wkh fkrlfh ri djjuhjdwlrq phwkrg pdwwhuv iru phdvxulqj wkh lqwhuqdwlrqdo uhodwlyh sulfh
ri X1V1 surgxfwv1 Vshflfdoo|/ wkh jhrphwulf djjuhjdwh kdv dq xszdug wuhqg phdqlqj wkdw wkh sulfh ri
X1V1 surgxfwv uhodwlyh wr iruhljq surgxfwv kdv ehhq lqfuhdvlqj ryhu wlph1 Vxfk d wuhqg rzhv sulpdulo| wr
vkliwv lq frxqwu| zhljkwv dzd| iurp wkh uhodwlyho| kljk0sulfh lqgxvwuldo frxqwulhv wrzdug wkh orzhu0sulfh
ghyhorslqj hfrqrplhv1 Lq frqwudvw/ wkh Glylvld djjuhjdwh ri uhodwlyh sulfhv hperglhv d grzqzdug wuhqg
lq X1V1 lqwhuqdwlrqdo uhodwlyh sulfhv1 Dffrxqwlqj iru wkh glhuhqfh lq wuhqgv lqyroyhv uhfrjql}lqj wkdw wkh
Glylvld djjuhjdwh irfxvhv rq wkh pryhphqwv lq wkh elodwhudo uhdo h{fkdqjh udwhv dorqh zkloh ljqrulqj wkh
jhqhudo vkliw wrzdugv wkh uhodwlyho| orz0sulfh surgxfhuv1 Fdswxulqj wklv jhqhudo vkliw uhtxluhv djjuhjdwlrq
ri wkh ohyhov ri elodwhudo uhodwlyh sulfhv/ zklfk lv zkdw jhrphwulf djjuhjdwlrq doorzv1
2 !
) ! " 7
$%%8
! 9 !
: ! ! !
5
51415
Hvwlpdwlqj Iruhljq Sulfhv lq Grooduv
Jlyhq gdwd iru X1V1 grphvwlf sulfhvwkh JGS gh dwrudqg iru wkh djjuhjdwh ri X1V1 lqwhuqdwlrqdo uhodwlyh
sulfhv/ zh xvh htxdwlrq +5, wr frqvwuxfw gdwd iru iruhljq sulfhv1 Vshflfdoo|/ wkh phdvxuh ri iruhljq sulfhv
lq grooduv lpsolhg e| T lv
S @
S
=
T
Wkh phdvxuh ri iruhljq sulfhv lq grooduv lpsolhg e| T lv
S @
S
=
T
Wkh erwwrp sdqho ri jxuh +4, vkrzv wkdw/ jlyhq wkh gdwd iru S > glhuhqfhv lq wkh hyroxwlrq ri djjuhjdwh
uhodwlyh sulfhv wudqvodwh lqwr glhuhqfhv iru wkh wzr phdvxuhv ri iruhljq sulfhv1 Vshflfdoo|/ diwhu prylqj
lq orfn vwhs iurp 4<:5 wr 4<;9/ wkh vhulhv glyhujh zlwk S jurzlqj idvwhu wkdq S = Wkh jurzlqj jds
ehwzhhq wkhvh wzr vhulhv uh hfwv wkh jurzlqj jds dvvrfldwhg zlwk wkh fkrlfh ri djjuhjdwlrq phwkrg1
515
X1V1 Sulfhv +S| ,
Wr phdvxuh wkh sulfhv ri X1V1 surgxfwv wkdw frpshwh zlwk lpsruwv zh frqvlghu wkuhh phdvxuhv= wkh
Surgxfhu Sulfh Lqgh{/ wkh ryhudoo JGS gh dwru/ dqg wkh JGS gh dwru iru jrrgv dorqh1 Wkh glvwlqfwlrq
ehwzhhq jrrgv dqg vhuylfhv pljkw pdwwhu li rqh dujxhv wkdw lpsruwv ri jrrgv frpshwh zlwk X1V1 jrrgv/
dqg qrw zlwk X1V1 jrrgv dqg vhuylfhv1 Wkdw vxfk d glvwlqfwlrq lv srwhqwldoo| uhohydqw lv fohdu iurp jxuh
51 Lqghhg/ vlqfh 4<:3/ wkh sulfh gh dwru iru X1V1 jrrgv dqg vhuylfhv kdv jurzq idvwhu wkdq wkh SSL dqg
wkh JGS gh dwru iru jrrgv1 Ixuwkhupruh/ vlqfh 4<<8/ wkh jurzwk udwh ri sulfh gh dwru iru jrrgv kdv d
qduurz udqjh ri xfwxdwlrqv durxqg }hur zkhuhdv wkh jurzwk udwh iru wkh ryhudoo JGS gh dwru lv srvlwlyh
wkurxjkrxw wkh vdpsoh1 Iru wkh SSL/ wkh jurzwk udwh dovr xfwxdwhv durxqg }hur exw wkh udqjh ri wkh
xfwxdwlrqv h{fhhg wkdw ri wkh gh dwru iru JGS jrrgv1
516
Phdvxulqj dqg Prgholqj
Wkh ohiw sdqhov ri jxuh 6 uhyhdo d forvh uhodwlrq ehwzhhq S dqg wkh sulfh ri lpsruwv1 Wkh uljkw sdqhov
uhyhdo/ lq frqwudvw/ d jurzlqj glvwdqflqj ehwzhhq S dqg wkh sulfh ri lpsruwv diwhu 4<;81 Vxfk d jds fdq
eh frqvwuxhg dv vxjjhvwlqj d ghfolqh lq wkh uhvsrqvlyhqhvv ri X1V1 lpsruw sulfhv wr wkh h{fkdqjh udwh1
Wkh gdwd dovr uhyhdo d jurzlqj jds ehwzhhq wkh sulfh gh dwru iru lpsruwv dqg wkh sulfh gh dwru iru X1V1
jrrgv dqg vhuylfhv1 Wkdw glvwdqflqj lv qrw suhvhqw li rqh xvhv wkh X1V1 gh dwru iru jrrgv dorqh1
6
Wr hydoxdwh wkh wlph0vhulhv surshuwlhv ri wkhvh yduldeohv/ Wdeoh 4 vkrzv wkh uhvxowv iurp wkh Dxjphqwhg
Glfnh|0Ixoohu whvwv ri vwdwlrqdulw|1 Zlwk rqh h{fhswlrq/ wkh DGI whvwv fdqqrw uhmhfw d xqlw0urrw iru wkhvh
vhulhv> wkh h{fhswlrq lv wkh frpprglw| sulfh lqgh{ iru zklfk wkh DGI whvw vwdwlvwlf h{fhhgv e| d jrrg
pdujlq wkh 4( fulwlfdo ydoxh1 Iru wkh sulfh ri lpsruwv/ wkh DGI whvw vkrzv d pdujlqdo uhmhfwlrq ri wkh
xqlw0urrw k|srwkhvlv dw fhuwdlq odjv1
6
Hfrqrphwulf Vshflfdwlrqv
Iru sdudphwhu hvwlpdwlrq zh vshfli| htxdwlrq +4, dv dq dxwruhjuhvvlyh glvwulexwhg odj=
oq S
@ . +O, oq S . +O, oq S . +O, oq S . oq S
4
. x >
+7,
zkhuh O lv wkh odj rshudwru dqg x LQ +3> 5 ,= Wkh dsshdo ri htxdwlrq +7, lv lwv h{lelolw| lq glhuhqwldwlqj
ehwzhhq vkruw0uxq hhfwv dqg orqj uxq hhfwv1 Wkh h{fkdqjh0udwh sdvv0wkurxjk lv +4, lq wkh vkruw0uxq
+4,
+4,
+4,
dqg 4
lq wkh orqj0uxq1 Wkh uhpdlqlqj orqj0uxq frh!flhqwv duh 4 iru wkh sulflqj wr pdunhw dqg 4
iru wkh sulfh ri frpprglwlhv1 Wkh glhuhqfh ehwzhhq vkruw0 dqg orqj0uxq hhfwv lv ghwhuplqhg e| wkh
sdudphwhu zklfk phdvxuhv wkh shuvlvwhqfh ri lpsruw sulfhv1
D srsxodu dowhuqdwlyh wr htxdwlrq +7, h{sodlqv wkh jurzwk udwh ri lpsruw sulfhv lq whupv ri jurzwk
udwhv ri lwv ghwhuplqdqwv=
S
S
S
S
S
@ 3 . 3 +O,
. 3 +O,
. 3 +O,
. 3
S 4
S 4
S 4
S 4
S
4
5
. y >
+8,
zkhuh y LQ +3> 5 , dqg zh dwwdfk dq c3 * wr wkh frh!flhqwv wr hpskdvl}h wkdw wkh| glhu iurp wkrvh lq
htxdwlrq +7,1 Djdlq/ wkh h{fkdqjh0udwh sdvv0wkurxjk lv 3 +4, lq wkh vkruw uxq dqg 4+4,
3 lq wkh orqj0
3
+4,
uxq1 Wkh uhpdlqlqj orqj0uxq frh!flhqwv duh 4+4,
3 iru wkh sulflqj wr pdunhw dqg 43 iru wkh sulfh ri
3
3
frpprglwlhv1
Htxdwlrqv +7, dqg +8, glhu lq wkhlu fkdudfwhul}dwlrq ri orqj0uxq ehkdylru1 Vshflfdoo|/ wkh orqj0uxq
lpsruw sulfh lpsolhg e| htxdwlrq +8, lv duelwudu| ehfdxvh lw ghshqgv rq wkh ydoxh ri wkh lqlwldo frqglwlrq>
wkh orqj0uxq lpsruw sulfh lpsolhg e| htxdwlrq +7, lv/ krzhyhu/ xqltxho| ghwhuplqhg1 Vshflfdoo|/ htxdwlrq
+7, lpsolhv wkdw/ uhjdugohvv ri wkh lqlwldo frqglwlrq/ wkh orqj0uxq ohyho ri lpsruw sulfhv lv ghwhuplqhg dv
oq S
/
@
. oq S . oq S . oq S >
4
)
7
$%%'( 0 , ,
+9,
$%%'
+4,
+4,
zkhuh @ +4,
4 > @ 4 > dqg @ 4 = Iru wkhvh frh!flhqwv wr eh frqvlvwhqw zlwk wkh suhglfwlrqv ri
wkhru|/ wkh| qhhg wr phhw wkh vljq uhvwulfwlrqv + A 3> A 3/ A 3, dqg wkh krprjhqhlw| frqglwlrq
+ . . @ 4,> wkh orqj0uxq frh!flhqwv iru htxdwlrq +8, qhhg wr phhw frpsdudeoh frqglwlrqv1
7
Hfrqrphwulf Uhvxowv
714
Ixoo0vdpsoh Hvwlpdwlrq
Sdudphwhu hvwlpdwlrq uhvwv rq wkh Jhqhudo0wr0Vshflf vwudwhj|1 Wkh jhqhudo irupxodwlrqv fruuhvsrqg wr
htxdwlrqv +7, dqg +8, zkhuh zh lqfoxgh fxuuhqw ydoxhv dqg 4 odj iru hdfk suhghwhuplqhg yduldeoh> wkh
vshflf irupxodwlrqv duh rewdlqhg e| lpsohphqwlqj wkh dxwrpdwhg0vshflfdwlrq dojrulwkp ghyhorshg e|
Khqgu| dqg Nuro}lj +5334,1 Wkhlu dojrulwkp frpelqhv ohdvw vtxduhv zlwk d vhohfwlrq fulwhuld wkdw h{foxghv
irupxodwlrqv odfnlqj sdudphwhu frqvwdqf|/ zklwh0qrlvh uhvlgxdov/ dqg lqvljqlfdqw yduldeohv1 Ixuwkhu/ wkh
fulwlfdo ydoxhv xvhg lq prgho vhohfwlrq duh qrw {hg lq dgydqfh exw/ udwkhu/ duh fdofxodwhg vhtxhqwldoo| wr
uhfrjql}h wkh mrlqw qdwxuh ri prgho vshflfdwlrq dqg sdudphwhu hvwlpdwlrq1
Wdeoh 5 uhsruwv wkh orqj0uxq frh!flhqw hvwlpdwhv iru wkh vshflf irupxodwlrq dvvrfldwhg zlwk htxdwlrq
+7, dorqj zlwk wkh hydoxdwlrq ri wkh surshuwlhv ri wkh uhvlgxdov> Wdeoh 6 uhsruwv wkh dvvrfldwhg uhvxowv iru
htxdwlrq +8,1 Wr idflolwdwh wkh glvfxvvlrq/ jxuhv 709 vkrz wkh vhqvlwlylw| ri wkhvh hvwlpdwhv wr fkdqjhv lq
41 wkh hfrqrphwulf vshflfdwlrq= htxdwlrq +7, yhuvxv htxdwlrq +8,>
51 wkh phdvxuh ri X1V1 sulfhv/ S = JGS gh dwru iru jrrgv dqg vhuylfhv +J)V,/ JGS gh dwru iru
jrrgv +Jrrgv,/ Surgxfhu Sulfh Lqgh{ +SSL,>
61 wkh phdvxuh ri iruhljq sulfh/ S = jhrphwulf djjuhjdwh dqg Glylvld djjuhjdwh>
71 wkh zhljkwlqj vfkhph/ z = X1V1 elodwhudo qrq0rlo lpsruwv +qrq0rlo, wr xvlqj X1V1 wudgh frpshwlwlyh0
qhvv +eurdg,>
81 wkh hvwlpdwlrq shulrg= 4<:705333 dqg 4<:7053381
Edvhg rq wkh ixoo vdpsoh/ jxuh 7 uhsruwv wkh orqj0uxq hvwlpdwhv ri wkh sulflqj wr pdunhw frh!flhqw/
e>
e Lqvshfwlrq ri wkh uhvxowv uhyhdov vhyhudo qglqjv1 Iluvw/
dqg ri h{fkdqjh0udwh sdvv0wkurxjk frh!flhqw/ 1
dv vkrzq lq wkh wrs sdqho/
e lv srvlwlyh dqg vljqlfdqw h{fhsw zkhq wkh hvwlpdwlrq xvhv wkh irupxodwlrq
lq ohyhov zlwk wkh Glylvld phdvxuh ri iruhljq sulfhv dorqj zlwk hlwkhu wkh X1V1 SSL ru wkh X1V1 ryhudoo
8 !
2 Sp 3 !
3
3
8
e lv srvlwlyh/ vljqlfdqwo| juhdwhu wkdq }hur/ dqg
JGS gh dwru1 Vhfrqg/ dv vkrzq lq wkh erwwrp sdqho/
e edvhg rq wkh htxdwlrq lq ohyhov/ htxdwlrq +7,/ zlwk wkh jhrphwulf iruhljq
h{fhhgv 4261 Wklug/ ydoxhv ri
sulfh duh forvh wr 318 dqg duh/ lq jhqhudo/ odujhu wkdq hvwlpdwhv edvhg rq wkh Glylvld iruhljq sulfh1
Wkh uroh ri frpprglw| sulfhv ghshqgv rq wkh vshflfdwlrq1 Iru wkh htxdwlrq lq ohyhov +Wdeoh 5,
frpprglw| sulfhv duh qrw uhohydqw zkhuhdv iru wkh htxdwlrq lq jurzwk udwhv +Wdeoh 6,/ wkh| duh1 Vxfk d
glhuhqfh lv qrw vxusulvlqj ehfdxvh/ dv Wdeoh 4 vkrzv/ wkh ohyho ri wkh sulfh ri frpprglwlhv lv vwdwlrqdu|1
Lq whupv ri wkh hvwlpdwh ri shuvlvwhqfh/ e
/ wkh uhvxowv iru wkh htxdwlrq lq ohyhov +Wdeoh 5, lqglfdwh wkdw e
lv vljqlfdqw dqg zhoo ehorz rqh> iru wkh htxdwlrq lq jurzwk udwhv +Wdeoh 6,/ e
lv qrw vwdwlvwlfdoo| glhuhqw
iurp }hur1 Lq whupv ri wkh surshuwlhv ri wkh uhvlgxdov/ wkh hylghqfh fdqqrw uhmhfw wkh k|srwkhvhv ri vhuldo
lqghshqghqfh dqg krprvnhgdvwlflw| iru hlwkhu vshflfdwlrq1
e h{fhhgv 426 lv dw rggv zlwk vwxglhv wkdw irfxv rq uhfhqw revhuyd0
Ilqglqj wkdw wkh vpdoohvw ydoxh ri
e forvh wr }hur1 Rqh srvvlelolw| lv wkdw uhfhqw revhuydwlrqv duh uhvsrqvleoh
wlrqv dorqh dqg uhsruw ydoxhv ri
e Lq vxfk d fdvh/ rqh vkrxog h{shfw wkdw h{foxglqj wkhp iurp rxu vdpsoh zrxog udlvh
iru d ghfolqh lq =
e Wr h{soruh wklv srvvlelolw|/ zh uh0hvwlpdwh wkh frh!flhqwv zlwk d vdpsoh wkdw hqgv lq 5333
wkh ydoxh ri =
dqg frpsduh wkh uhvxowlqj hvwlpdwhv wr wkrvh edvhg rq wkh ixoo vdpsoh1
e fkdqjhv lq uhvsrqvh wr dowhuqdwlyh vdpsoh shulrgv zkloh frqwuroolqj
Iljxuh 8 vkrzv krz wkh ydoxh ri
iru sulfh phdvxuhv dqg ixqfwlrqdo irupv1
Zh qg qr hylghqfh ri d kljkhu orqj0uxq h{fkdqjh0udwh
sdvv0wkurxjk iru wkh vdpsoh hqglqj lq 53331 Lqvwhdg/ iru wkh ohyho vshflfdwlrqv dqg vrph X1V1 sulfh
e Dv vkrzq lq jxuh 9/
phdvxuhv/ zh qg wkdw h{whqglqj wkh vdpsoh lqfuhdvhv qrwlfhdeo| wkh ydoxh ri 1
wkh hvwlpdwhg sulflqj0wr0pdunhw frh!flhqw/
e> lv vrphzkdw pruh vhqvlwlyh wr vdpsoh shulrg/ hvshfldoo|
iru wkh ohyho vshflfdwlrqv edvhg rq wkh Glylvld phdvxuh ri iruhljq sulfhv1
Vhyhudo frqfoxvlrqv hphujh iurp wkhvh hvwlpdwlrq uhvxowv1 Iluvw/ wkh orqj0uxq hhfw ri h{fkdqjh udwhv rq
lpsruw sulfhv lv dw ohdvw rqh0wklug dfurvv doo uhjuhvvlrqv1 Vhfrqg/ wkh phuh lqfoxvlrq ri uhfhqw revhuydwlrqv
e Wklug/ wkh phdvxuhphqw ri iruhljq sulfhv pdwwhuv iru hvwlpdwlqj
grhv qrw vljqlfdqwo| orzhu wkh ydoxh ri =
e edvhg rq wkh jhrphwulf iruhljq sulfh duh odujhu
wkh h{fkdqjh0udwh sdvv0wkurxjk1 Vshflfdoo|/ ydoxhv ri
+forvh wr 318, dqg ohvv vhqvlwlyh wr fkdqjhv lq vshflfdwlrq wkdq hvwlpdwhv edvhg rq wkh Glylvld iruhljq
sulfh1 Ilqdoo|/ fkdqjhv lq hvwlpdwlrq ghvljq jlyh ulvh wr d glvshuvlrq ri hvwlpdwhv/ dv irxqg lq wkh olwhudwxuh1
Vxfk d glvshuvlrq lv sureohpdwlf iru srolf| dssolfdwlrqv= vhhplqjo| plqru fkdqjhv lq hvwlpdwlrq ghvljq
fduu| udglfdoo| glhuhqw lpsolfdwlrqv uhjduglqj wkh vwuhqjwk ri wkh h{shqglwxuh0vzlwfklqj hhfw ri d fkdqjh
lq wkh h{fkdqjh ydoxh ri wkh groodu1
Wr glvfulplqdwh dprqj wkhvh vshflfdwlrqv/ zh dujxh wkdw srolf| dssolfdwlrqv ehqhw iurp irupxodwlrqv
2 #
" .
; !
9
wkdw h{klelw wkuhh surshuwlhv= frqvwdqf| ri orqj0uxq sdudphwhuv/ zklwh0qrlvh uhvlgxdov/ dqg frqvlvwhqf|
zlwk sulfh krprjhqhlw|1 Dsso|lqj wklv fulwhuld |lhogv wzr vshflfdwlrqv/ uhsurgxfhg lq Wdeoh 71 Rqh
vshflfdwlrq xvhv wkh irupxodwlrq lq ohyhov dorqj zlwk wkh jhrphwulf iruhljq sulfh dqg wkh X1V1 gh dwru
iru JGS jrrgv> wklv vshflfdwlrq lv odehohg dv V 1 Wkh vhfrqg vshflfdwlrq xvhv wkh irupxodwlrq lq jurzwk
udwhv dorqj zlwk wkh Eurdg zhljkwhg Glylvld phdvxuh ri iruhljq sulfh dqg wkh X1V1 SSL> wklv vshflfdwlrq
lv odehohg dv V 144
e 318 iru V dqg 317 iru V = Krzhyhu/ wkhvh vshfl0
Wkhvh wzr vshflfdwlrqv kdyh vlplodu ydoxhv iru =
fdwlrqv glhu lq wkhlu lpsolfdwlrqv iru wkh orqj0uxq= wkh frh!flhqw iru V uhihuv wr d orqj0uxq uhvsrqvh ri
wkh ohyho ri lpsruw sulfhv zkhuhdv wkh frh!flhqw iru V uhihuv wr wkh vkruw uxq +rqh |hdu, uhvsrqvh ri wkh
jurzwk udwh ri lpsruw sulfhv1 Wklv glvwlqfwlrq zrxog qrw eh uhohydqw li wkh hvwlpdwhg dgmxvwphqw ghod|
lq V zhuh eulhi/ exw lw lv qrw1 Iljxuh : vkrzv krz lpsruw sulfhv uhvsrqg wr d k|srwkhwlfdo rqh0shufhqw
vxvwdlqhg ghsuhfldwlrq ri wkh groodu145 Wkh uhvxowv uhyhdo vhyhudo ihdwxuhv ri lqwhuhvw1 Iluvw/ wkh prghov
glhu juhdwo| lq wkhlu vkruw0uxq uhvsrqvhv1 Vshflfdoo|/ diwhu rqh |hdu/ V suhglfwv wkdw lpsruw sulfhv zloo
lqfuhdvh e| 317 shufhqw +eoxh olqh, zkhuhdv V vkrzv d qhjoljleoh uhvsrqvh +eodfn olqh,146 Diwhu irxu |hduv/
krzhyhu/ wkh wzr vshflfdwlrqv suhglfw urxjko| wkh vdph hhfw rq lpsruw sulfhv1 Vhfrqg/ wr hpskdvl}h
krz fkdqjhv lq wkh hvwlpdwlrq vdpsoh kdyh fkdqjhg wkh fkdudfwhu ri g|qdplf dgmxvwphqw/ wkh jxuh dovr
lqfoxghv wkh uhvsrqvh iurp V xvlqj sdudphwhu hvwlpdwhv edvhg rq gdwd wkurxjk 5333 +uhg olqh,1 Wkh
uhvsrqvhv iurp wkhvh wzr vdpsoh shulrgv frqyhujh wr yluwxdoo| lghqwlfdo ydoxhv lq wkh orqj uxq1 Wkhlu
vkruw0uxq uhvsrqvhv duh/ krzhyhu/ txlwh glhuhqw= wkh vshflfdwlrq edvhg rq gdwd wkurxjk 5333 kdv d
kljkhu vkruw0uxq uhvsrqvh dqg d txlfnhu dgmxvwphqw wr wkh orqj0uxq wkdq wkh hvwlpdwh edvhg rq gdwd
wkurxjk 53381 Zh lqwhusuhw wklv qglqj dv ehlqj frqvlvwhqw zlwk wkh lghd wkdw wkh lqfuhdvhg lpsruwdqfh
ri hphujlqj hfrqrplhv kdv fkdqjhg wkh g|qdplfv ri wkh surfhvv ri lpsruw0sulfh ghwhuplqdwlrq1
Eh|rqg vwdwlqj wkh reylrxvqdpho|/ wkdw wkhuh lv dq lpsruwdqw glhuhqfh ehwzhhq vkruw dqg orqj
uxq hhfwv/ wkhvh uhvxowv duh qrw srzhuixo hqrxjk wr glvfulplqdwh ehwzhhq V dqg V = Wr wkdw hqg/
zh h{dplqh wkh rxw0ri0vdpsoh dffxudf| ri wkhvh wzr irupxodwlrqv1 Vshflfdoo|/ zh dsso| wkh Jhqhudo0wr0
Vshflf dojrulwkp zlwk gdwd wkurxjk 5333 dqg wkhq xvh g|qdplf vlpxodwlrqv wr jhqhudwh h{0srvw iruhfdvwv
44 2 ' 5
/
!
2
!! <
! = >? ! 2 < %'$ @%8A
%%3( '*B 2 = >? ! 8C DDD = $%%*
D%$ *B 2 ! 9 /
E ! . !
45 2
E f n u u E n u n 2 u 2 n
46 2
j
< f !
f n f
10
iru 533405338147 Iljxuh ; vkrzv wkh <8 shufhqw frqghqfh edqgv ri wkhvh h{0srvw iruhfdvwv148 Wkh uhvxowv
lqglfdwh wkdw/ ryhu wkh uvw wzr |hduv/ erwk htxdwlrqv kdyh vwdwlvwlfdoo| lqvljqlfdqw suhglfwlrq huuruv exw
wkdw V lv pxfk pruh dffxudwh wkdq V 1 Wkxv/ li wkh vroh sxusrvh ri hvwlpdwlrq lv vkruw0whup iruhfdvwlqj/
wkhq V lv wkh suhihuuhg vshflfdwlrq1 Wkh hylghqfh iru krul}rqv eh|rqg wzr |hduv lv/ krzhyhu/ ohvv
vxssruwlyh ri V = Hyhq wkrxjk erwk htxdwlrqv vkrz vwdwlvwlfdoo| vljqlfdqw suhglfwlrq huuruv/ wkh urrw0
phdq vtxduhg huuru ryhu wkh yh0|hdu krul}rq lv vl{ shufhqw iru V exw hljkw shufhqw iru V = Wkxv/ li wkh
srolf| dssolfdwlrq h{whqgv eh|rqg wzr |hduv wkhq V fduulhv juhdwhu suhflvlrq1
Dw wklv srlqw zh zrxog frqfoxgh wkdw/ ri wkh wzr irupxodwlrqv wkdw h{klelw zklwh0qrlvh uhvlgxdov
dqg frqvlvwhqf| zlwk wkh krprjhqhlw| srvwxodwh/ wkh rqh zlwk wkh orzhvw dyhudjh iruhfdvw huuru lq wkh
phglxp whup xvhv rxu jhrphwulf phdvxuh ri iruhljq sulfhv1 Lw kdv d orqj0uxq sdvv0wkurxjk ri rqh0kdoi1
Wklv irupxodwlrq fdswxuhv wkh fkdqjlqj qdwxuh ri wkh lpsruw0sulfh surfhvv e| xvlqj d phdvxuh ri iruhljq
sulfhv wkdw uh hfwv wkh jurzlqj lpsruwdqfh ri hphujlqj hfrqrplhv1 Wkhuh lv/ krzhyhu/ dq dowhuqdwlyh
vwudwhj| wkdw uhwdlqv wkh frqyhqwlrqdo phdvxuhv ri iruhljq sulfh dqg xvhv vdpsoh0vhohfwlrq phwkrgv vr dv wr
h{foxgh revhuydwlrqv zkhq hphujlqj hfrqrplhv zhuh qrw lpsruwdqw lq zruog wudgh1 Lq wkh qh{w vxevhfwlrq
zh zhljk wkh fkrlfh ri uhwdlqlqj fxuuhqw +Glylvld edvhg, phdvxuhv ri iruhljq sulfhv dqg vkruwhqlqj wkh
vdpsoh shulrg djdlqvw uhsodflqj wkh Glylvld phdvxuhv ri iruhljq sulfhv zlwk wkh jhrphwulf dowhuqdwlyh dqg
uhwdlqlqj wkh ixoo vdpsoh shulrg1
715
Vdpsoh0vhohfwlrq Hvwlpdwlrq
Wkh uhvxow ri wkh uhfhqw ghfolqh lq wkh sdvv0wkurxjk lv edvhg rq txduwhuo| gdwd zkhuhdv rxu gdwd duh
dqqxdo1 Wkxv zh ehjlq e| frquplqj wkdw wklv vdph ihdwxuh lv dovr suhvhqw lq wkh dqqxdo dqdorjxh wr
wkhvh prghov1 Wr wklv hqg/ zh dsso| uroolqj uhjuhvvlrqv wr wkh jurzwk htxdwlrq +8, xvlqj wkh Glylvld
phdvxuh ri S dqg wkh surgxfhu sulfh lqgh{ iru S dqg d zlqgrz ri 48 |hduv vwduwlqj lq 4<:7149 Iljxuh
e3 =
< vkrzv wkh <8 shufhqw frqghqfh lqwhuydo iru wkh hvwlpdwhg sdvv0wkurxjk frh!flhqw ri htxdwlrq +8,/
e3 iurp 3178 lq 4<<8 wr 314: lq 5338/ d sdwwhuq lq olqh zlwk wkh
Wkh uhvxowv uhyhdo d vxvwdlqhg ghfolqh lq
qglqjv ri Rolyhl +5335, Pdud}}l dqg Vkhhwv +5339,14:
e3 lv urexvw wr prgho vshflfdwlrq1 Lq fkrrvlqj dq dowhuqdwlyh
Zh qrz dvn zkhwkhu wklv ghfolqh lq
47 2
#
" ! ; !
$%%%
48 /
!
! :
@ 3
49 +
4: 2
!
?
!
: 6
#
"
2
!
"
pw
p>w n
pw
11
irupxodwlrq/ zh iroorz Hulfvvrq +5339/ Wdeoh 915, zkr vkrzv wkdw htxdwlrq +7, fdq eh h{suhvvhg dv dq
huuru0fruuhfwlrq irupxodwlrq=
S
S 4
@ 3 . 3 +O,
.h
oq S
S
S
S
S
. 3 +O,
. 3 +O,
. 3
S 4
S 4
S 4
S
4
h oq S 4 .
.
h oq S 4 . h
oq S
4
4
+:,
5
. x =
Htxdwlrq +:, lv dsshdolqj ehfdxvh lw glhuhqwldwhv ehwzhhq vkruw0 dqg orqj0uxq uhvsrqvhv1 Wkh frh!flhqwv
dvvrfldwhg zlwk wkh jurzwk udwhv ri wkh uljkw0kdqg vlgh yduldeohv uhsuhvhqw vkruw0uxq uhvsrqvhv> wkh
frh!flhqwv dvvrfldwhg zlwk wkh yduldeohv lq ohyhov fdswxuh wkh dgmxvwphqw ri wkh sulfh ri lpsruwv wr lwv
orqj0uxq ydoxh1 Lqghhg/ wkh uhvxowlqj h{suhvvlrq iru wkh orqj0uxq ohyho ri lpsruw sulfhv lv htxdwlrq +9,
deryh zkhuh @ h > @ hh > @ h > h
@ + 4,> dqg lv wkh frh!flhqw ri wkh odjjhg lpsruw sulfh lq
h
h
iru wkh htxdwlrq lq ohyhov/ htxdwlrq +7,1
Iru hvwlpdwlrq/ zh lpsohphqw uvw d Jhqhudo0wr0Vshflf vwudwhj| xvlqj wkh ixoo vdpsoh dqg wkhq dsso|
uroolqj uhjuhvvlrqv wr wkh vhohfwhg vshflfdwlrq= Wkh wrs ohiw sdqho ri jxuh 43 vkrzv wkdw e3 ghfolqhv iurp
318 lq 4<<3 wr 315 lq 5338/ mxvw dv lq wkh uroolqj0uhjuhvvlrq uhvxowv uhsruwhg lq jxuh <1 Wklv qglqj vxjjhvwv
wkdw wkh vkruw0uxq sdvv0wkurxjk kdv ghfolqhg uhjdugohvv ri ixqfwlrqdo irup/ d qglqj frqvlvwhqw zlwk wkh
uhvxowv uhsruwhg e| Rolyhl +5335, dqg Pdud}}l dqg Vkhhwv +5339,1 Wkh wrs uljkw dqg erwwrp sdqhov ri
e
h vwduw dw }hur exw lqfuhdvh +lq devroxwh ydoxh, dqg uhpdlq frqvwdqw vlqfh
jxuh 43 vkrz wkdw erwk e
h
dqg
e @ h > kdv
4<<81 Lq sduwlfxodu/ jxuh 44 vkrzv wkdw wkh lpsolhg hvwlpdwh ri wkh orqj0uxq sdvv0wkurxjk/
e
e
h
e ri V = Wkhvh
xfwxdwhg ehwzhhq 317 dqg 318 zlwk d vdpsoh phdq ri 317;/ zklfk lv forvh wkh ydoxh ri
qglqjv vxssruw rxu ylhz wkdw wkh jurzlqj lpsruwdqfh ri hphujlqj hfrqrplhv grhv qrw lpso| wkdw iruhljq
sulfhv/ ru h{fkdqjh udwhv/ duh ehfrplqj ohvv lpsruwdqw lq wkh ghwhuplqdwlrq ri X1V1 lpsruw sulfhv exw/
udwkhu/ wkdw wkh g|qdplfv ri wkh surfhvv duh fkdqjlqj1 Lqghhg/ wkh vkruw0uxq h{fkdqjh udwh sdvv0wkurxjk
lv qrz forvh wr }hur exw wkh orqj0uxq sdvv0wkurxjk lv derxw rqh0kdoi1
Djdlq/ wklv glhuhqfh ehwzhhq vkruw0 dqg orqj0uxq uhvsrqvhv zrxog qrw eh uhohydqw li wkh dgmxvwphqw
surfhvv zhuh vzliw1 Wr hvwlpdwh wkh ghod| lq dgmxvwlqj wr wkh orqj0uxq/ zh h{dplqh wkh uhvsrqvh ri lpsruw
sulfhv wr d vxvwdlqhg/ rqh0shufhqw lqfuhdvh lq wkh ydoxh ri wkh groodu1
Iljxuh 45 vkrzv d vlplodulw| ri
vkruw0uxq uhvsrqvhv= 314: iru wkh irupxodwlrq lq jurzwk udwhv +|hoorz olqh, dqg 3158 iru wkh huuru0fruuhfwlrq
prgho +juhhq olqh,1 Wklv vlplodulw| lv/ krzhyhu/ vkruw0olyhg zlwk wkh uhvsrqvh iurp wkh huuru0fruuhfwlrq
prgho ehlqj pruh wkdw wzlfh dv odujh dv wkdw iurp wkh jurzwk udwh htxdwlrq diwhu wkuhh |hduv1 Ixuwkhu/
jxuh 45 vxjjhvwv wkdw wkh glvshuvlrq lq hvwlpdwhv irxqg lq wkh olwhudwxuh pljkw eh gxh wr d idloxuh wr
1
12
33$%%8
glhuhqwldwh ehwzhhq vkruw0uxq dqg orqj0uxq uhvsrqvhv lq wkh ohyho ri lpsruw sulfhv1
Iljxuh 45 dovr vxjjhvwv wkdw rqh fdq fdswxuh wkh lqfuhdvhg uroh ri hphujlqj hfrqrplhv lq wzr zd|v=
e| hlwkhu prgli|lqj phwkrgv wr phdvxuh iruhljq sulfhv +eodfn olqh, ru e| xvlqj frqyhqwlrqdo phdvxuhv ri
sulfhv frpelqhg zlwk uroolqj uhjuhvvlrqv +juhhq olqh,1 Krzhyhu/ odfnlqj d whvw wr glvfulplqdwh ehwzhhq
wkh wzr dssurdfkhv/ zh rhu wzr uhdvrqv zk| prgholqj lpsruw sulfhv ehqhwv iurp d vwudwhj| wkdw
hpskdvl}hv phdvxuhphqw dv rssrvhg wr vdpsoh vhohfwlrq1 Iluvw/ uroolqj uhjuhvvlrqv hperg| d whqvlrq
uhohydqw wr srolf| zrun= zkhuhdv wkh sdudphwhu hvwlpdwhv duh dvvxphg wr eh frqvwdqw gxulqj wkh iruhfdvw
shulrg/ wkh| duh dvvxphg wr fkdqjh gxulqj wkh hvwlpdwlrq shulrg1 Vhfrqg/ dv Pdud}}l dqg Vkhhwv +5339,
qrwh/ hvwlpdwhv iurp uroolqj uhjuhvvlrqv pd| eh vhqvlwlyh wr wkh fkrlfh ri wkh zlqgrz xvhg iru hvwlpdwlrq1
Zlwkrxw remhfwlyh fulwhuld iru fkrrvlqj wkh hvwlpdwlrq zlqgrz/ wklv lqwurgxfhv dqrwkhu vxemhfwlyh/ exw
lpsruwdqw/ hohphqw wr wkh prgholqj surfhvv1
8
Frqfoxvlrqv
Wklv sdshu rhuv dq hpslulfdo dqdo|vlv ri wkh ehkdylru ri X1V1 lpsruw sulfhv zlwk d irfxv rq dvvhvvlqj wkh
glvshuvlrq ri hvwlpdwhg sdvv0wkurxjk ri h{fkdqjh udwhv1 Zh qg wkdw/ zkhuhdv wkh sdvv0wkurxjk lq wkh
vkruw0uxq kdv ghfolqhg/ wkh orqj0uxq sdvv0wkurxjk kdv uhpdlqhg vwdeoh1 Zh eholhyh wkdw wkhvh qglqjv
dujxh iru hpsor|lqj irupxodwlrqv wkdw glhuhqwldwh ehwzhhq vkruw0 dqg orqj0uxq uhvsrqvhv1 Zh dovr dujxh
wkdw wkh rqh irufh ehklqg wkh fkdqjh lq g|qdplfv ri wkh lpsruw0sulfh surfhvv lv wkh juhdwhu suhvhqfh ri
surgxfhuv iurp hphujlqj hfrqrplhv1 Dqg zh vkrz wkdw wkhlu hhfw rq lpsruw sulfhv fdq eh fdswxuhg
zlwk rxu phdvxuh ri iruhljq sulfhv1
Uhihuhqfhv
^4` Ergqdu/ J1/ E1 Gxpdv/ dqg U1 Pduvwrq/ 5335/%Sdvv0wkurxjk dqg H{srvxuh/% Mrxuqdo ri Ilqdqfh/
8:/ 4<<05641
^5` Erzpdq/ G1/ 5333/ %Qrwhv rq LI H{fkdqjh Udwh Lqgh{hv/% plphr1
^6` Exvvlhuh/ P1/ 5337/ %Qrq0olqhdu H{fkdqjh Udwh Sdvv0wkurxjkB%/ plphr/ Ihghudo Uhvhuyh Erdug1
^7` Fdpsd/ M1 dqg O1 Jrogehuj/ 5338/ %H{fkdqjh Udwh Sdvv0Wkurxjk lqwr Lpsruw Sulfhv/% Uhylhz ri
Hfrqrplfv dqg Vwdwlvwlfv/ ;:/ 9:<09<31
^8` Fklqq/ P1/ 5338/ %D Sulphu rq Uhdo Hhfwlyh H{fkdqjh Udwhv= Ghwhuplqdqwv/ Ryhuydoxdwlrq/ Wudgh
Iorzv dqg Frpshwlwlyh Ghydoxdwlrq/% QEHU Zrunlqj Sdshu Qr1 448541
13
^9` Hulfvvrq/ Q1/ 5339/ Hpslulfdo Prghoolqj ri Hfrqrplf Wlph Vhulhv/ R{irug= R{irug Xqlyhuvlw| Suhvv
+iruwkfrplqj,1
^:` Jrogehuj/ S1 dqg P1 Nqhwwhu/ 4<<:/ %Jrrgv Sulfhv dqg H{fkdqjh Udwhv= Zkdw Kdyh Zh OhduqhgB/%
Mrxuqdo ri Hfrqrplf Olwhudwxuh/ 68/ 4576045:51
^;` Jurq/ D1 dqg G1 Vzhqvrq/ 5333/ %Frvw Sdvv0wkurxjk lq wkh X1V1 Dxwrpreloh Pdunhw/% Uhylhz ri
Hfrqrplfv dqg Vwdwlvwlfv/ ;5/ 64906571
^<` Jurvv/ G1 dqg Q1 Vfkplww/ 5333/ %H{fkdqjh Udwh Sdvv0Wkurxjk dqg G|qdplf Roljrsro|= Dq Hpslu0
lfdo Lqyhvwljdwlrq/% Mrxuqdo ri Lqwhuqdwlrqdo Hfrqrplfv/ 85/ ;<04451
^43` Jxvw/ F1/ V1 Ohgxf/ dqg U1 Yljixvvrq/ 5339/ %Wudgh Lqwhjudwlrq/ Frpshwlwlrq/ dqg wkh Ghfolqh lq
H{fkdqjh Udwh Sdvv0wukrxjk/% wklv frpshqglxp1
^44` Khoohuvwhlq/ U1/ 5337/ %Zkr Ehduv wkh Frvw ri d Fkdqjh lq wkh H{fkdqjh UdwhB Wkh Fdvh ri Lpsruwhg
Ehhu/% Ihghudo Uhvhuyh Edqn ri Qhz \run/ Vwd Uhsruw qr1 4:<1
^45` Khqgu|/ G1 I1 dqg K1 Nuro}lj/ 5334/ Dxwrpdwlf Hfrqrphwulf Prgho Vhohfwlrq Xvlqj SfJhwv/ Orqgrq=
Wlpehuodnh1
^46` Oruhwdq/ P1/ 5338/ %Lqgh{hv ri wkh Iruhljq H{fkdqjh Ydoxh ri wkh Groodu/% Ihghudo Uhvhuyh Exoohwlq/
<4/ Qr14 +Zlqwhu,/ 40;1
^47` Pdud}}l/ P1/ Q1 Vkhhwv/ U1 M1 Yljixvvrq/ dqg rwkhuv/ 5338/ %H{fkdqjh Udwh Sdvv0wkurxjk wr X1V1
Lpsruw Sulfhv= Vrph Qhz Hylghqfh/% Lqwhuqdwlrqdo Ilqdqfh Glvfxvvlrq Sdshu/ Qr1 ;661
^48` Pdud}}l/ P1 dqg Q1 Vkhhwv/ 5339/ %Ghfolqlqj H{fkdqjh Udwh Sdvv0wkurxjk wr X1V1 Lpsruw Sulfhv=
Wkh Srwhqwldo Uroh ri Joredo Idfwruv/% wklv frpshqglxp1
^49` Rolyhl/ J1/ 5335/ %H{fkdqjh Udwhv dqg wkh Sulfhv ri Pdqxidfwxulqj Surgxfwv Lpsruwhg lqwr wkh
Xqlwhg Vwdwhv/% Qhz Hqjodqg Hfrqrplf Uhylhz/ Iluvw Txduwhu/ 604;1
^4:` Sroodug/ S1 dqg F1 Frxjkolq/ 5337/ %Vl}h Pdwwhuv= Dv|pphwulf H{fkdqjh Udwh Sdvv0wkurxjk dw wkh
Lqgxvwu| Ohyho/% Ohyhukxoph Fhqwuh Uhvhdufk Sdshu 53372461
^4;` Vxpphuv/ U1 dqg D1 Khvwrq/ 4<<4/ %Wkh Shqq Zruog Wdeoh +Pdun 8,= Dq h{sdqghg Vhw ri Lqwhuqd0
wlrqdo Frpsdulvrqv/ 4<8304<;;/% Txduwhuo| Mrxuqdo ri Hfrqrplfv/ 439/ 65:069;1
^4<` \dqj/ M1/ 4<<:/ %H{fkdqjh Udwh Sdvv0Wkurxjk lq X1V1 Pdqxidfwxulqj Lqgxvwulhv/% Uhylhz ri Hfr0
qrplfv dqg Vwdwlvwlfv/ ;</ <804371
14
Table 1 : Augmented Dickey-Fuller Tests-1974-2005
Variable
Import Price
GDP Deflator
Goods & Services
Lags
t-adf
beta Y_1
SER
AIC
Variable
Lags
t-adf
beta Y_1
SER
AIC
3
-2.896
0.899
0.030
-6.891
Commodity
3
-4.712**
0.292
0.085
-4.783
2
-3.206*
0.907
0.029
-6.950
Price
2
-4.830**
0.243
0.090
-4.699
1
-2.173
0.938
0.032
-6.808
1
-4.936**
0.266
0.088
-4.755
0
-3.646*
0.906
0.034
-6.713
0
-3.952**
0.428
0.096
-4.620
3
-2.014
0.976
0.009
-9.321
GDP Deflator
3
-2.276
0.946
0.012
-8.756
Goods
2
-2.574
0.971
0.009
-9.338
2
-2.613
0.941
0.011
-8.810
1
-1.721
0.981
0.009
-9.234
1
-2.434
0.950
0.011
-8.841
0
-8.198**
0.940
0.012
-8.752
0
-8.198**
0.891
0.013
-8.556
Foreign Price:
3
-2.410
0.901
0.047
-5.954
Foreign Price:
3
-2.302
0.904
0.050
-5.857
Geometric
2
-2.281
0.912
0.047
-5.994
Geometric
2
-2.152
0.915
0.049
-5.894
Non-oil Weights
1
-2.214
0.917
0.046
-6.044
Trade Weights
1
-2.080
0.920
0.049
-5.942
0
-2.971*
0.882
0.052
-5.838
0
-2.760
0.887
0.055
-5.747
Foreign Price:
3
-1.790
0.947
0.049
-5.866
Foreign Price:
3
-1.860
0.944
0.050
-5.845
Divisia
2
-1.723
0.953
0.049
-5.920
Divisia
2
-1.711
0.951
0.050
-5.888
Non-oil Weights
1
-1.572
0.958
0.049
-5.955
Trade Weights
1
-1.547
0.957
0.050
-5.917
0
-2.137
0.937
0.055
-5.741
0
-2.108
0.935
0.056
-5.692
3
-2.238
0.942
0.027
-7.051
2
-3.118*
0.931
0.027
-7.089
1
0
-2.036
-4.723**
0.949
0.902
0.032
0.035
-6.823
-6.637
Producer Price Index
Legend
t-ADF: augmented Dickey-Fuller Test; an'*' means that the test rejects the hypothesis of a unit root
beta Y-1: Coefficient of the level of the lagged dependent variable
AIC: Akaike information criterion
Rejection values 5%=-2.96; 1%=-3.67. Constant included.
15
Table 2: Long-run Coefficients: Level Specification--Sensitivity to Foreign Prices, U.S. Prices, Weighting Schemes, and Sample Periods
Foreign U.S.
Weights Sample
Pricing to Market
Price
Price
coeff.
se
Geometric
0.04
Goods & Nonoil 1974-2000 0.72
Services
1974-2005 0.49
0.05
Pass-through
coeff.
se
Commodity
coeff.
se
0.26
0.46
0.03
0.04
0.10
0e
0.03
--
0e
0.29
Lagged Dep. Var.
coeff.
se
Intercept
coeff.
se
Homogeneity
coeff.
se
Residuals (a)
SER Independ Homosk
-0.06
-0.31
0.36
0.12
0.13
1.09
0.95
0.06
0.06
0.014
0.018
0.35
0.02
0.54
0.76
Broad
1974-2000
1974-2005
0.71
0.47
0.04
0.05
0.27
0.47
0.03
0.04
0.10
0e
0.02
--
0e
0.29
-0.06
-0.27
0.41
0.11
0.13
1.08
0.94
0.05
0.06
0.013
0.017
0.36
0.02
0.36
0.66
Nonoil
1974-2000
1974-2005
0.51
0.56
0.07
0.12
0.52
0.47
0.08
0.12
0e
0e
---
0e
0.64
-0.09
0e
0e
---
1.03
1.03
0.11
0.17
0.028
0.026
0.07
0.39
0.57
0.69
Broad
1974-2000
1974-2005
0.50
0.53
0.06
0.09
0.52
0.49
0.06
0.10
0e
0e
---
0.33
0.58
0.06
0.09
0e
0e
---
1.03
1.03
0.08
0.13
0.025
0.026
0.08
0.18
0.78
0.62
Nonoil
1974-2000
1974-2005
0.52
0.35
0.08
0.16
0.48
0.57
0.09
0.12
0e
0e
---
0.56
0.66
0.16
0.15
0e
0.45
-0.35
1.00
0.91
0.12
0.20
0.020
0.020
0.16
0.49
0.76
0.51
Broad
1974-2000
1974-2005
0.54
0.46
0.05
0.05
0.46
0.50
0.06
0.05
0e
0e
---
0.41
0.27
0.16
0.08
0e
0.23
-0.13
1.00
0.95
0.08
0.07
0.018
0.020
0.12
0.05
0.76
0.52
1974-2000
1974-2005
0.77
0.26
0.07
0.21
0.18
0.48
0.05
0.18
0.13
0e
0.04
--
0.33
0.69
0.08
0.08
-0.42
0.98
0.20
0.40
1.08
0.75
0.09
0.28
0.014
0.021
0.44
0.02
0.68
0.09
Broad
1974-2000
1974-2005
0.78
0.27
0.07
0.20
0.17
0.47
0.05
0.14
0.13
0e
0.04
--
0.32
0.68
0.08
0.08
-0.39
1.02
0.19
0.38
1.08
0.74
0.09
0.24
0.014
0.022
0.40
0.16
0.50
0.05
Nonoil
1974-2000
1974-2005
0.55
0.73
0.04
0.08
0.42
0.35
0.04
0.04
0e
0.06
-0.03
0.30
0.18
0.08
0.09
0e
-0.73
-0.25
0.97
1.14
0.06
0.09
0.022
0.018
0.03
0.01
0.53
0.96
Broad
1974-2000
1974-2005
0.79
0.78
0.07
0.06
0.34
0.34
0.03
0.03
0e
0e
---
0e
0e
---
-0.70
-0.70
0.19
0.17
1.13
1.13
0.08
0.07
0.020
0.019
0.04
0.02
0.88
0.79
Nonoil
1974-2000
1974-2005
0.63
0.15
0.03
0.28
0.32
0.47
0.03
0.16
0e
0e
---
0.33
0.78
0.13
0.12
0e
1.51
-0.74
0.95
0.63
0.04
0.32
0.015
0.020
0.22
0.46
0.29
0.37
1974-2000 0.63
0.03
0.32
1974-2005 0.19
0.25
0.46
0e: Algorithm excludes explanatory variable from specification.
0.03
0.14
0e
0e
---
0.29
0.76
0.12
0.12
0e
1.41
-0.64
0.95
0.65
0.04
0.29
0.014
0.020
0.23
0.38
0.39
0.48
Goods
PPI
Divisia
Goods & Nonoil
Services
Goods
PPI
Broad
(a): Entries for "Independ" and "Homosk" are significance levels for rejecting the hypothesis of serial independence and homoskedasticity.
16
Table 3: Long-run Coefficients; Growth Specification--Sensitivity to Foreign Prices, U.S. Prices, Weighting Schemes, and Sample Periods
Foreign U.S.
Weights
Price
Price
Geometric
Goods & Nonoil
Services
Goods
PPI
Sample
Pricing to Market
coeff
se
Pass-through
coeff
se
Commodity
coeff
se
Lagged Dep. Var. Intercept
coeff
se
coeff
se
Homogeneity
coeff
se
SER
Residuals(a)
Independ. Homosk
1974-2000
1974-2005
0.73
0.71
0.11
0.11
0.37
0.36
0.09
0.09
0.09
0.07
0.03
0.03
0e
0e
---
0e
0e
---
1.18
1.14
0.15
0.14
0.022
0.022
0.91
0.96
0.82
0.44
Broad
1974-2000
1974-2005
0.75
0.72
0.11
0.11
0.35
0.35
0.08
0.08
0.09
0.08
0.03
0.03
0e
0e
---
0e
0e
---
1.19
1.15
0.14
0.14
0.022
0.022
0.23
0.89
0.91
0.69
Nonoil
1974-2000
1974-2005
0.83
0.85
0.16
0.15
0.42
0.41
0.10
0.09
0.10
0.09
0.04
0.04
0e
0e
---
0e
0e
---
1.36
1.36
0.19
0.18
0.026
0.024
0.70
0.76
0.98
0.97
Broad
1974-2000
1974-2005
0.86
0.88
0.16
0.14
0.40
0.39
0.10
0.08
0.11
0.10
0.04
0.04
0e
0e
---
0e
0e
---
1.37
1.37
0.19
0.17
0.026
0.024
0.60
0.62
0.97
0.88
Nonoil
1974-2000
1974-2005
0.58
0.52
0.10
0.11
0.47
0.44
0.08
0.09
0.06
0.08
0.03
0.05
0e
0e
---
0e
0e
---
1.11
1.04
0.13
0.15
0.022
0.024
0.57
0.57
0.05
0.23
Broad
1974-2000
1974-2005
0.60
0.49
0.09
0.12
0.45
0.46
0.07
0.10
0.06
0.11
0.03
0.06
0e
0.10
-0.11
0e
0e
---
1.11
1.05
0.12
0.17
0.022
0.024
0.35
0.53
0.04
0.67
1974-2000
1974-2005
0.72
1.01
0.12
0.16
0.33
0.36
0.09
0.08
0.09
0.08
0.04
0.03
0e
0e
---
0e
-0.02
-0.01
1.14
1.44
0.15
0.18
0.023
0.021
0.96
0.99
0.55
0.71
Broad
1974-2000
1974-2005
0.72
1.00
0.12
0.16
0.33
0.34
0.08
0.08
0.10
0.08
0.04
0.03
0e
0e
---
0e
-0.02
-0.01
1.14
1.43
0.15
0.18
0.023
0.022
0.94
0.96
0.79
0.70
Nonoil
1974-2000
1974-2005
0.83
0.77
0.16
0.15
0.39
0.36
0.09
0.08
0.10
0.15
0.04
0.05
0e
0e
---
0e
0e
---
1.33
1.28
0.19
0.17
0.026
0.023
0.68
0.49
0.89
0.95
Broad
1974-2000
1974-2005
0.83
0.77
0.16
0.15
0.39
0.35
0.09
0.08
0.11
0.16
0.04
0.05
0e
0e
---
0e
0e
---
1.32
1.28
0.19
0.17
0.026
0.023
0.64
0.40
0.93
0.93
Nonoil
1974-2000
1974-2005
0.55
0.59
0.10
0.12
0.41
0.44
0.07
0.09
0.12
0.08
0.05
0.06
0e
0e
---
0e
-0.01
-0.01
1.08
1.11
0.13
0.16
0.022
0.024
0.24
0.68
0.87
0.82
0.40
0.42
0.07
0.09
0.13
0.09
0.05
0.06
0e
0e
---
0e
-0.01
-0.01
1.07
1.09
0.13
0.16
0.022
0.025
0.20
0.60
0.72
0.78
Divisia
Goods & Nonoil
Services
Goods
PPI
1974-2000 0.54
0.10
1974-2005 0.58
0.12
0e: Algorithm excludes explanatory variable from specification.
Broad
(a): Entries for "Independ" and "Homosk" are significance levels for rejecting the hypothesis of serial independence and homoskedasticity.
17
Wdeoh 7= Orqj0uxq Frh!flhqw Hvwlpdwhv ROV/ 4<:705338
Vhohfwhg Vshflfdwlrqv
+vwdqgdug huuruv lq sduhqwkhvhv,
Irupxodwlrqv
V
Sulflqj wr Pdunhw
Sdvv0wkurxjk
Shuvlvwhqfh
Krprjhqhlw|
V
4<:705333
4<:705338
4<:705333
4<:705338
3183
3186
3187
318;
+3139,
+313<,
+3143,
+3145,
3185
317<
3173
3175
+3139,
+3143,
+313:,
+313<,
3166
318;
0
+3139,
+313<,
4136
4136
413:
413<
+313;,
+3147,
+3146,
+3148,
Irupxodwlrqv
V = Htxdwlrq +7, zlwk jhrphwulf phdvxuh ri iruhljq sulfhv dqg JGS0jrrgv gh dwru iru X1V1 sulfhv1
V = Htxdwlrq +8, zlwk Glylvld phdvxuh ri iruhljq sulfhv dqg SSL iru X1V1 sulfhv1
Vxp ri sulflqj wr pdunhw dqg sdvv0wkurxjk frh!flhqwv> vwdqgdug huuru frpsxwhg zlwkrxw wdnlqj
lqwr dffrxqw wkh fryduldqfh ri wkh hvwlpdwhv1
18
U.S. Weighted Average Relative Prices*
120
Index with
1972 = 100
Geometric−
110
Trade weights
Divisia
Trade weights
Non−oil weights
100
Non−oil weights
90
80
1970
1975
1980
500 Index with
1985
1990
1995
2000
2005
2000
2005
Measures of Dollar Foreign Prices
1972 = 100
Divisia
400
Non−oil weights
Trade weights
300
Geometric−
Trade weights
Non−oil weights
200
100
1970
1975
1980
1985
1990
1995
* Series re−scaled to 100 in first common date
Iljxuh 4= X1V1 Lqwhuqdwlrqdo Uhodwlyh Sulfhv dqg Djjuhjdwh Iruhljq0JGS Gh dwruv
19
Levels
Measures of U.S. Prices
Overall GDP deflator
GDP−goods deflator
PPI
140
120
Series re−scaled to 100
in First Data Common Date
100
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
Growth Rates
0.15
0.10
0.05
0.00
1950
1955
Iljxuh 5= Dowhuqdwlyh Phdvxuhv ri X1V1 Sulfhv
20
Core Import Price Index
Foreign Dollar Price − Geometric*
GDP Deflator − Goods and Services
150
100
100
50
50
1970
1980
1990
2000
1970
Core Import Price Index
Foreign Dollar Price − Geometric*
GDP Deflator − Goods
150
100
50
50
1980
* Non−oil weights
1990
2000
1980
1970
1980
Iljxuh 6= Lpsruw Sulfhv/ Grphvwlf dqg Iruhljq Sulfh Ohyhov
21
1990
2000
Core Import Price Index
Foreign Dollar Price − Divisia*
GDP Deflator − Goods
150
100
1970
Core Import Price Index
Foreign Dollar Price − Divisia*
GDP Deflator − Goods and Services
150
1990
2000
1.20
Pricing to Market ( )
Sensitivity to Measure of Foreign Prices
1974-2005
1.00
Geometric
Divisia
0.80
0.60
0.40
0.20
Not
significant
0.00
G&S,
nonoil
G&S, Goods, Goods, PPI,
broad nonoil broad nonoil
PPI,
broad
G&S,
nonoil
Level eq.
G&S, Goods, Goods, PPI,
broad nonoil broad nonoil
PPI,
broad
Growth Eq.
0.60
Geometric
0.50
Exchange-rate Pass-through ( )
Sensitivity to Measure of Foreign Prices
1974-2005
Divisia
0.40
0.30
0.20
0.10
0.00
G&S,
nonoil
G&S, Goods, Goods, PPI,
broad nonoil broad nonoil
PPI,
broad
G&S,
nonoil
Level eq.
G&S, Goods, Goods, PPI,
broad nonoil broad nonoil
Growth eq.
Iljxuh 7= Orqj0uxq Frh!flhqw Hvwlpdwhv Vhqvlwlylw| wr Hvwlpdwlrq Ghvljq
22
PPI,
broad
Geometric Foreign Price
0.60
Level Eq.
Growth Eq.
0.50
1974-2000
1974-2005
0.40
0.30
0.20
0.10
0.00
PPI,
G&S, G&S, Goods, Goods, PPI,
nonoil broad nonoil broad nonoil broad
G&S, G&S, Goods, Goods, PPI,
PPI,
nonoil broad nonoil broad nonoil broad
Divisa Foreign Price
0.60
Level Eq.
Growth Eq.
0.50
0.40
0.30
0.20
0.10
0.00
G&S, G&S, Goods, Goods, PPI,
PPI,
nonoil broad nonoil broad nonoil broad
G&S, G&S, Goods, Goods, PPI,
PPI,
nonoil broad nonoil broad nonoil broad
e Dowhuqdwlyh Vdpsoh Shulrgv
Iljxuh 8= Orqj0uxq Hvwlpdwhv ri H{fkdqjh0udwh Sdvv0wkurxjk +,=
23
Geometric Foreign Price
1.20
Growth Eq.
Level Eq.
1.00
1974-2000
1974-2005
0.80
0.60
0.40
0.20
0.00
PPI,
G&S, G&S, Goods, Goods, PPI,
nonoil broad nonoil broad nonoil broad
G&S, G&S, Goods, Goods, PPI,
PPI,
nonoil broad nonoil broad nonoil broad
Divisia Foreign Price
1.20
Level Eq.
Growth Eq.
1.00
0.80
0.60
0.40
n
0.20
n
n
n
0.00
G&S, G&S, Goods, Goods, PPI,
PPI,
nonoil broad nonoil broad nonoil broad
G&S, G&S, Goods, Goods, PPI,
PPI,
nonoil broad nonoil broad nonoil broad
Iljxuh 9= Orqj0uxq Hvwlpdwhv ri Sulflqj0wr0Pdunhw +e
,= Dowhuqdwlyh Vdpsoh Shulrgv +q ghqrwhv qrw
vwdvwlfdoo| vljqlfdqw,1
24
0.60
Hypothetical Response of U.S. Import Prices (percent change)
to a One Percent Sustained Depreciation of the Dollar
Level Specification, 1974-2000
Geometric Foreign Price
0.50
Growth-rate Specification, 1974-2005
Divisia Foreign Price
0.40
0.30
Level Specification, 1974-2005
Geometric Foreign Price
0.20
0.10
Years After Shock
0.00
1
2
3
4
5
6
7
8
9
10
11
Iljxuh := Vkruw0 dqg Orqj0uxq H{fkdqjh0udwh Sdvv0wkurxjk= Dowhuqdwlyh Irupxodwlrqv
25
12
Import Prices (logs)
4.90
4.85
Summary Measures
Level Equation
Growth Equation
4.80
Mean Forecast Error
5.8%
−6.2%
Growth Equation
with Divisia
Foreign Price
RMSE
5.8%
8.1%
4.75
4.70
Actual
4.65
Level Equation
with Geometric
Foreign Price
4.60
4.55
4.50
1999
2000
2001
2002
2003
2004
2005
Iljxuh ;= <8( Frqghqfh Edqgv iru H{0srvw G|qdplf H{wudsrodwlrqv ri Lpsruw Sulfhv
26
2006
0.7
Pass−through Coefficient
Rolling Regression − Window of 15 years
Equation in Growth Rates
0.6
0.5
0.4
0.45
0.3
0.2
0.17
0.1
0.0
1990
1995
2000
2005
Iljxuh <= Hvwlpdwhg Vkruw0uxq H{fkdqjh0Udwh Sdvv0wkurxjk= Jurzwk0Udwh Prgho zlwk Uroolqj Uhjuhv0
vlrqv
27
0.75
^
β’
0.5
^
~
ρ
0.50
0.0
0.25
−0.5
0.00
−1.0
1990
1995
2000
2005
1990
1995
2000
2005
0.50
0.25
0.00
−0.25
^
^ ^
~
~
β =−β ρ
−0.50
1990
1995
2000
2005
Iljxuh 43= Uroolqj Uhjuhvvlrq Hvwlpdwhv ri Huuru0Fruuhfwlrq Prgho
0.60
0.50
0.40
0.30
0.20
0.10
0.00
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
e
h
Iljxuh 44= Orqj0uxq Hvwlpdwh ri H{fkdqjh0Udwh Sdvv0wkurxjk ri HuuruFruuhfwlrq Prgho= 0 e
h
28
0.60
Hypothetical Response of U.S. Import Prices (percent change)
to a One Percent Sustained Depreciation of the Dollar
Level Specification, 1974-2000
Geometric Foreign Price
0.50
Growth-rate Specification, 1974-2005
Divisia Foreign Price
0.40
ECM, 1991-2005
Divisia Foreign Price
0.30
Level Specification, 1974-2005
Geometric Foreign Price
Growth-rate Specification
Rolling Regressions (last), 1991-2005
Divisia Foreign Price
0.20
0.10
Years After Shock
0.00
1
2
3
4
5
6
7
8
9
10
11
12
Iljxuh 45= Vkruw0 dqg Orqj0uxq H{fkdqjh0udwh Sdvv0wkurxjk= Dowhuqdwlyh Irupxodwlrqv dqg Vdpsoh0
vhohfwlrq Phwkrgv
29