Academia.eduAcademia.edu

Decision-making in a neural network model of the basal ganglia

2016, HAL (Le Centre pour la Communication Scientifique Directe)

HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Decision-making in a neural network model of the basal ganglia Charlotte Héricé, Radwa Khalil, Maria Moftah, Thomas Boraud, Martin Guthrie, André Garenne To cite this version: Charlotte Héricé, Radwa Khalil, Maria Moftah, Thomas Boraud, Martin Guthrie, et al.. Decisionmaking in a neural network model of the basal ganglia. Sixth International Symposium on Biology of Decision Making (SBDM 2016), May 2016, Paris France. ฀hal-01368504฀ HAL Id: hal-01368504 https://hal.inria.fr/hal-01368504 Submitted on 19 Sep 2016 HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Decision-making in a neural network model of the basal ganglia Charlotte HÉRICÉ 1, 2, 3, Radwa KHALIL 1, Marie MOFTAH 4 , Thomas BORAUD 1, 2, Martin GUTHRIE 1, 2 and André GARENNE 1, 2, 3 Contact: [email protected] [email protected] INTRODUCTION BEHAVIORAL TASK Basal ganglia (BG) are known to host mechanisms of action selection and its adaptation to a changing environment. Their architecture consist of several parallel functional loops connecting back to distinct areas of cortex (motor, cognitive and limbic) and processing different modalities of decision making. The picture of parallel loops is complicated by partial convergence and divergence connections that implies that the various loops are interacting. We submit the model to a protocol2,3 for BG involvement in decision-making with monkeys in conditions of uncertainty. There are 4 different cue shapes, each with its own reward probability and 4 possible positions. At each trial : 1. Random presentation of 2 cue shapes (at random positions) 2. Choice made by the monkey and the model 3. Reward given or not according to the reward probability of the shape A previous BG model1 was built of interacting bloc-diagram based on rate-models. It was able to learn optimized action selection during a probabilistic reward task. The aim of the present work is to refine and extend these results to a cellsynapse level through a bottomup approach. Start of trial Targets presentation 4 targets protocol P(R) = 1 P(R) = 0.67 P(R) = 0.33 P(R) = 0 → Probabilistic learning task →T h e m o n k e y a n d t h e model both have to learn to chose the optimum cue shape (the one with the best reward probability). Go signal On target Back home 2 targets protocol P(R) = 0.75 P(R) = 0.25 Reward Delivery Omission 72 possible conditions Delivery Tim e Hold 1-1 .5 s → Highlighting of the structure-function relationship and circuitry emerging properties. → Investigation of cell-scale mechanisms impact on the whole model capacities (learning and decision-making). Hold 1-1 .5 s Omission Mov Hold eme nt 0.5 Mov -1 s NETWORK ARCHITECTURE eme nt Hold 0.8 -1.2 s RESULTS Average Firing Rate (Hz) - Exploration: An expected emergent property of the network is a divergence in the cortical activations of cognitive and motor sub-populations. In the absence of learning the network is still able to make a decision. This is equivalent to decision-making during the exploration phase of reinforcement learning. A. → With the time course of the average firing rate (A), we are able to see the evolution of motor and cognitive cortex for example. → A decision is made when a difference in the activities more than 40 Hz is observed. → The higher activity represents the choice We have presented here, for the first time, a biophysically based, spiking neuron model of the BG that is able to perform 2 levels action selection. This model is closely based on the known anatomy and physiology of the basal ganglia and demonstrates a reasonable mechanism of network level action selection. This cellular and synaptic level of description bridges the gap between top-down mesoscopic level of description1 and a bottom-up approach relying on emerging properties of neuronal networks dynamics. Our model is also able to predicts some important behavioral characteristics like localized lesion consequences on learning impairment and intrinsic dynamics, reversal learning and extinction protocol. Good Choices Good Decisions Before learning After learning Before learning D. REFERENCES M. Guthrie et al. Interaction between cognitive and motor cortico-basal ganglia loops during decision making: a computational study, 2013 J. NeuroPhysiology 2 B. Pasquereau et al. Shaping of Motor Responses by Incentive Values through the Basal Ganglia, 2007 J. Neuroscience 3 C. Piron et al. The GPi in goal-oriented and routine behaviors: resolving a long-standing paradox, 2015 Movement Disorders Average Firing Rate (Hz) After learning Trial During training, the model learns to create a dynamic link between the cognitive and motor sensory component of a cue. This can be assessed by the learning curves profile of the model (C). Before learning After learning → The average reward and GC rate gradually increase along the session (C). → The optimum cue shape direction is preferentially selected (B). → The movement onset delay is decreased by the learning (D). INSTITUTES Institut des Maladies Neurodégénératives, CNRS UMR 5293, Bordeaux, France 2 University of Bordeaux, Bordeaux, France 3 Team Mnemosyne INRIA Bordeaux Sud-Ouest, Bordeaux, France 4 Zoology Department, Faculty of Science of Alexandria University, Alexandria, Egypt 1 1 Time (ms) Success rate (%) CONCLUSION Motor decision - Exploitation: A Good Choice (GC) is made when the optimal shape is selected and a Good Decision (GD) when the associated direction is selected too. Both are improved during a standard learning session (B). C. B. Success rate (%) Spiking neurons: Leaky Integrate-and-Fire (LIF) neurons and voltage jump synapses. - Learning: adaptation of the cognitive corticostriatal projections strength modulated by a phasic dopamine release (≈ reward prediction error). Symmetry breaking delay (ms) - Cognitive decision