Natalio Krasnogor, Marı́a Belén Melián-Batista, José Andrés Moreno-Pérez,
J. Marcos Moreno-Vega, and David Alejandro Pelta (Eds.)
Nature Inspired Cooperative Strategies for Optimization (NICSO 2008)
Studies in Computational Intelligence, Volume 236
Editor-in-Chief
Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail:
[email protected]
Further volumes of this series can be found on our
homepage: springer.com
Vol. 215. Habib M. Ammari
Opportunities and Challenges of Connected k-Covered
Wireless Sensor Networks, 2009
ISBN 978-3-642-01876-3
Vol. 226. Ernesto Damiani, Jechang Jeong, Robert J. Howlett,
and Lakhmi C. Jain (Eds.)
New Directions in Intelligent Interactive Multimedia Systems
and Services - 2, 2009
ISBN 978-3-642-02936-3
Vol. 216. Matthew Taylor
Transfer in Reinforcement Learning Domains, 2009
ISBN 978-3-642-01881-7
Vol. 227. Jeng-Shyang Pan, Hsiang-Cheh Huang, and
Lakhmi C. Jain (Eds.)
Information Hiding and Applications, 2009
ISBN 978-3-642-02334-7
Vol. 217. Horia-Nicolai Teodorescu, Junzo Watada, and
Lakhmi C. Jain (Eds.)
Intelligent Systems and Technologies, 2009
ISBN 978-3-642-01884-8
Vol. 228. Lidia Ogiela and Marek R. Ogiela
Cognitive Techniques in Visual Data Interpretation, 2009
ISBN 978-3-642-02692-8
Vol. 218. Maria do Carmo Nicoletti and Lakhmi C. Jain (Eds.)
Computational Intelligence Techniques for Bioprocess
Modelling, Supervision and Control, 2009
ISBN 978-3-642-01887-9
Vol. 229. Giovanna Castellano, Lakhmi C. Jain, and
Anna Maria Fanelli (Eds.)
Web Personalization in Intelligent Environments, 2009
ISBN 978-3-642-02793-2
Vol. 219. Maja Hadzic, Elizabeth Chang,
Pornpit Wongthongtham, and Tharam Dillon
Ontology-Based Multi-Agent Systems, 2009
ISBN 978-3-642-01903-6
Vol. 230. Uday K. Chakraborty (Ed.)
Computational Intelligence in Flow Shop and Job Shop
Scheduling, 2009
ISBN 978-3-642-02835-9
Vol. 220. Bettina Berendt, Dunja Mladenic,
Marco de de Gemmis, Giovanni Semeraro,
Myra Spiliopoulou, Gerd Stumme, Vojtech Svatek, and
Filip Zelezny (Eds.)
Knowledge Discovery Enhanced with Semantic and Social
Information, 2009
ISBN 978-3-642-01890-9
Vol. 231. Mislav Grgic, Kresimir Delac, and Mohammed
Ghanbari (Eds.)
Recent Advances in Multimedia Signal Processing and
Communications, 2009
ISBN 978-3-642-02899-1
Vol. 221. Tassilo Pellegrini, Sören Auer, Klaus Tochtermann,
and Sebastian Schaffert (Eds.)
Networked Knowledge - Networked Media, 2009
ISBN 978-3-642-02183-1
Vol. 222. Elisabeth Rakus-Andersson, Ronald R. Yager,
Nikhil Ichalkaranje, and Lakhmi C. Jain (Eds.)
Recent Advances in Decision Making, 2009
ISBN 978-3-642-02186-2
Vol. 223. Zbigniew W. Ras and Agnieszka Dardzinska (Eds.)
Advances in Data Management, 2009
ISBN 978-3-642-02189-3
Vol. 224. Amandeep S. Sidhu and Tharam S. Dillon (Eds.)
Biomedical Data and Applications, 2009
ISBN 978-3-642-02192-3
Vol. 225. Danuta Zakrzewska, Ernestina Menasalvas, and
Liliana Byczkowska-Lipinska (Eds.)
Methods and Supporting Technologies for Data Analysis, 2009
ISBN 978-3-642-02195-4
Vol. 232. Feng-Hsing Wang, Jeng-Shyang Pan, and
Lakhmi C. Jain
Innovations in Digital Watermarking Techniques, 2009
ISBN 978-3-642-03186-1
Vol. 233. Takayuki Ito, Minjie Zhang, Valentin Robu,
Shaheen Fatima, and Tokuro Matsuo (Eds.)
Advances in Agent-Based Complex Automated Negotiations,
2009
ISBN 978-3-642-03189-2
Vol. 234. Aruna Chakraborty and Amit Konar
Emotional Intelligence, 2009
ISBN 978-3-540-68606-4
Vol. 235. Reiner Onken and Axel Schulte
System-Ergonomic Design of Cognitive Automation, 2009
ISBN 978-3-642-03134-2
Vol. 236. Natalio Krasnogor, Marı́a Belén Melián-Batista,
José Andrés Moreno-Pérez, J. Marcos Moreno-Vega, and
David Alejandro Pelta
Nature Inspired Cooperative Strategies for Optimization, 2009
ISBN 978-3-642-03210-3
Natalio Krasnogor, Marı́a Belén Melián-Batista,
José Andrés Moreno-Pérez, J. Marcos Moreno-Vega,
and David Alejandro Pelta (Eds.)
Nature Inspired Cooperative
Strategies for Optimization
(NICSO 2008)
123
Natalio Krasnogor
J. Marcos Moreno-Vega
School of Computer Sciences
and Information Technology
Jubilee Campus
University of Nottingham
Nottingham, NG81BB, UK
E-mail: Natalio.Krasnogor@
nottingham.ac.uk
DEIOC, Facultad de Matemáticas
Universidad de La Laguna
38271 La Laguna, Tenerife
Spain
E-mail:
[email protected]
Marı́a Belén Melián-Batista
Dpto. Estadı́stica, I.O. y Computación
Facultad de Matemáticas
y Fı́sica 4a¯ Planta
Universidad de La Laguna
Campus de Anchieta,
s/n 38206 La Laguna,
Tenerife, Spain
E-mail:
[email protected]
David Alejandro Pelta
Department of Computer Science
and Artificial Intelligence
E.T.S.I Informática y de
Telecomunicación
C/ Periodista Daniel Saucedo
Aranda s/n
University of Granada
18071 Granada,
Spain
E-mail:
[email protected]
José Andrés Moreno Pérez
DEIOC, Facultad de Matemáticas
Universidad de La Laguna
38271 La Laguna, Tenerife, Spain
E-mail:
[email protected]
ISBN 978-3-642-03210-3
e-ISBN 978-3-642-03211-0
DOI 10.1007/978-3-642-03211-0
Studies in Computational Intelligence
ISSN 1860-949X
Library of Congress Control Number: Applied for
c 2009 Springer-Verlag Berlin Heidelberg
This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this
publication or parts thereof is permitted only under the provisions of the German Copyright Law of
September 9, 1965, in its current version, and permission for use must always be obtained from Springer.
Violations are liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India.
Printed in acid-free paper
987654321
springer.com
Preface
The inspiration from Biology and the Natural Evolution process has become
a research area within computer science. For instance, the description of the
artificial neuron given by McCulloch and Pitts was inspired from biological
observations of neural mechanisms; the power of evolution in nature in the
diverse species that make up our world has been related to a particular form
of problem solving based on the idea of survival of the fittest; similarly, artificial immune systems, ant colony optimisation, automated self-assembling
programming, membrane computing, etc. also have their roots in natural
phenomena.
The first and second editions of the International Workshop on Nature
Inspired Cooperative Strategies for Optimization (NICSO), were held in
Granada, Spain, 2006, and in Acireale, Italy, 2007, respectively. As in these
two previous editions, the aim of NICSO 2008, held in Tenerife, Spain, was
to provide a forum were the latest ideas and state of the art research related
to nature inspired cooperative strategies for problem solving were discussed.
The contributions collected in this book were strictly peer reviewed by
at least three members of the international programme committee, to whom
we are indebted for their support and assistance. The topics covered by the
contributions include nature-inspired techniques like Genetic Algorithms, Ant
Colonies, Amorphous Computing, Artificial Immune Systems, Evolutionary
Robotics, Evolvable Systems, Membrane Computing, Quantum Computing,
Software Self Assembly, Swarm Intelligence, etc.
NICSO 2008 had three plenary lectures given by Prof. Maurice Clerc,
Three questions about Particle Swarm Optimisation (PSO), Günther Raidl,
Cooperative Hybrids for Combinatorial Optimization, and Thomas Stützle,
Ant Colony: A Review.
As Workshop Chairs we wish to thank the support given by several people
and institutions. We want to thank the University of La Laguna, the Canary Government (TF129) and the Spanish Government (TIN2008-00667-E)
for their financial support. D. José A. Moreno Pérez also acknowledges support from projects TIN2005-08404-C04-03, TIN2008-06872-C04-01 (Spanish
VI
Preface
Government). Belén Melián and J. Marcos Moreno-Vega acknowledge support from project PI2007/019 (Canary Government). D. Pelta acknowledges
the support from project P07-TIC02970 (Andalusian Government).
Our experience with NICSO 2006, 2007 and 2008 demonstrates that there
is an emerging and thriving community of scholars doing research on Nature
Inspired Cooperative Strategies for Optimization. It is to these scholars, both
authors and reviewers, to whom the organisers are indebted for the success
of the NICSO series.
November 2008
Natalio Krasnogor
UK
Belén Melián
Spain
José A. Moreno
Spain
J. Marcos Moreno-Vega
Spain
David Pelta
Spain
Organization
Workshop Co-chairs
Natalio Krasnogor
Belén Melián
José A. Moreno
J. Marcos Moreno-Vega
David A. Pelta
University
University
University
University
University
of Nottingham, UK
of La Laguna, Spain
of La Laguna, Spain
of La Laguna, Spain
of Granada, Spain
University
University
University
University
University
University
University
University
University
University
of
of
of
of
of
of
of
of
of
of
Organizing Committee
J. David Beltrán
Julio Brito
Clara Campos
Juan Pedro Castro
José Luis González Ávila
F. Javier Martínez
Belén Melián
José A. Moreno
J. Marcos Moreno-Vega
Jonatan Ramos Bonilla
La Laguna, Spain
La Laguna, Spain
La Laguna, Spain
Nottingham, UK
La Laguna, Spain
La Laguna, Spain
La Laguna, Spain
La Laguna, Spain
La Laguna, Spain
La Laguna, Spain
Program Committee
Enrique Alba Torres
Francisco Almeida
Davide Anguita
Cecilio Angulo
Paolo Arena
Jaume Bacardit
Roberto Battiti
University of Malaga, Spain
University of La Laguna, Spain
University of Genova, Italy
Technical University of Catalunya, Spain
University of Catania, Italy
University of Nottingham, UK
University of Trento, Italy
VIII
José Manuel Cadenas
José Alejandro Castillo
Carlos Coello Coello
Emilio Corchado
Vincenzo Cutello
Marco Dorigo
Gianluigi Folino
Xiao-Zhi Gao
Blas Galván
Ignacio José García del Amo
Marian Gheorghe
Jean-Louis Giavitto
Steven Gustafson
Francisco Herrera
Oliver Korb
Natalio Krasnogor
María Teresa Lamata
Evelyne Lutton
Vincenzo Manca
Max Manfrin
Vittorio Maniezzo
Juan José Merelo
Belén Melián
José A. Moreno
J. Marcos Moreno-Vega
Gabriela Ochoa
Gheorghe Paun
Mario Pavone
David A. Pelta
Stefano Pizzuti
Vitorino Ramos
Emmanuel Sapin
Giuseppe Scollo
James Smaldon
Jim Smith
Thomas Stibor
German Terrazas
Jon Timmis
José Luis Verdegay
Pawel Widera
Gabriel Winter
Organization
University of Murcia, Spain
ININ, Mexico
CINVESTAV-IPN, Mexico
University of Burgos, Spain
University of Catania, Spain
Université Libre de Bruxelles, Belgium
ICAR, Italy
Helsinki University of Technology, Finland
University of Las Palmas de G.C., Spain
University of Granada, Spain
University of Sheffield, UK
Université d’Evry, France
General Electric , USA
University of Granada, Spain
Universität Konstanz, Germany
University of Nottingham, UK
University of Granada, Spain
INRIA, France
University of Verona, Italy
Université Libre de Bruxelles, Belgium
University of Bologna, Italy
University of Granada, Spain
University of La Laguna, Spain
University of La Laguna, Spain
University of La Laguna, Spain
University of Nottingham, UK
Institute of Math. of the Romanian Academy
University of Catania, Italy
University of Granada, Spain
ENEA, Italy
Technical University of Lisbon, Portugal
University of the West of England, UK
University of Catania, Italy
University of Nottingham, UK
University of the West of England, UK
Technische Universität Darmstad, Germany
University of Nottingham, UK
University of York, UK
University of Granada, Spain
University of Nottingham, UK
University of Las Palmas de G.C., Spain
Plenary Lectures
Maurice Clerc
Three questions about Particle Swarm Optimisation (PSO)
PSO is now a well known 13 years old seriously researched method. So, in
this talk, instead of presenting the algorithm or its obvious applications, I
will focus on a few questions, which I hope the audience will find interesting.
Is it possible to get rid of all tuning-dependent parameters? (The results
still need to be acceptable, of course) Any PSO variant with suggested default values for the user-defined parameters can be seen as a “parameter-less”
one ... if the user modifies nothing. For example, in Standard PSO 2007 the
suggested values have been estimated by mathematical analysis. Just using
those values usually leads to reasonable results. On the other hand, a variant
like TRIBES is explicitly designed so that the user need not do anything except define the problem: all “parameters”, including neighbourhood topology
and strategies to use are modified during the run. However, such a completely
adaptive approach is slow. As a compromise, several variants have been suggested that lie in between, containing a few user-defined parameters, and a
few adaptation rules.
PSO was originally designed for continuous problems. My problem is a
binary one. How can I adapt the algorithm? There are now a lot of “binary”
PSOs, designed after the variant suggested by Kennedy and Eberhart. However, all of those perform very well on some problems and very poorly on
some others. So, a possible robust approach is to combine two of them. For
example, one combination that works on many problems is the following.
Randomly divide the set of particles into two sets. For the first set, simply
consider the binary problem like a one dimensional quasi-continuous one. For
the second set, use a variant of the pivot method, i.e. just look “around” a
good position.
X
Plenary Lectures
On some problems, PSO completely fails. Why? Classical PSO can get
trapped into a local minimum, or may even prematurely converge to an
uninteresting point. These phenomena have been well studied, and several
solutions have been found, like using probability distributions with infinite
supports (Gaussian, Cauchy, Levy, etc.), defining a stop/restart strategy or
generating new particles. Here, I discuss something not so well known: the
class of problems for which “nearer is better” in probability. PSO works well
on this class, which seems to contain most, if not all, practical problems.
More generally, this notion is useful in explaining the behaviour of a lot
of stochastic optimisation algorithms, so it is worthy of a careful analysis.
Furthermore, it helps to explain certain interesting points; for example, why
using less information can lead to better result, or why most algorithms are
centre biased (which is not necessarily a bad thing).
Günther Raidl
Institute of Computer Graphics and Algorithm
Vienna University of Technology
Vienna, Austria
Cooperative Hybrids for Combinatorial Optimization
We consider approaches for (approximately) solving combinatorial optimization problems that are based on nature inspired components and collaboration among different subsystems.
Classical, pure nature inspired optimization techniques, such es genetic
algorithms or ant colony optimization, are said to be robust methods yielding
reasonably good solutions for a large spectrum of applications.
Especially on many combinatorial problems, however, these rather simple
algorithms often have their limits and cannot compete with more sophisticated state-of-the-art approaches that exploit problem-specific knowledge in
better ways.
Frequently, nature inspired strategies are therefore combined with other
techniques to cooperative hybrid systems. The aim is to exploit the individual
advantages of the different approaches, yielding a better overall system, thus,
to benefit from synergy.
This talk gives a survey on such approaches and illustrates the various
concepts by referring to concrete examples. Especially, we will consider simple sequential combinations, asynchronous teams (A-Teams), multi-agent approaches as TECHS, and selected more complex combinations of nature inspired approaches with integer linear programming methods.
Plenary Lectures
XI
Thomas Stützle
Institut de Recherches Interdisciplinaries et de Développements en
Intelligence Artificielle (IRIDIA)
Université Libre de Bruxelles (ULB)
Brussels, Belgium
Ant Colony Optimization: A Review
Ant Colony Optimization (ACO) is swarm intelligence technique that has
been inspired by the foraging behavior of some ant species. Since it was
proposed in 1991, it has attracted a large number of researchers and in the
meantime it has reached a significant level of maturity. In fact, ACO is now
a well-established, nature-inspired technique for tackling a wide variety of
computationally hard problems.
This talk will give a review of past and current developments in ACO.
It will start with an explanation of the inspiring source of ACO and the
steps taken in the development of the main variants of ACO algorithms.
We will then consider several of the most important recent developments.
In particular, we will shortly review the main application areas of ACO,
highlight recent developments on the algorithmic side including hybrids with
other algorithmic techniques, and give an overview of the current status of
theoretical results on ACO algorithms.
Dario Floreano
Laboratory of Intelligent Systems (LIS)
Ecole Polytechnique Federale Lausanne (EPFL)
Switzerland
Artificial Evolution of Truly Cooperative Robots
Cooperation is widely spread in nature and takes several forms, ranging from
behavioral coordination to sacrifice of one’s own life for the benefit of the
society. This latter form of cooperation is known as “true cooperation”, or
“altruism”, and is found only in few cases in nature. Truly cooperative robots
would be very useful in conditions where unpredictable events in the mission
may require a cost by one or more individual robots for the success of the
entire mission. However, the interactions among robots sharing the same environment can affect in unexpected ways the behavior of individual robots,
making very difficult the design of rules that produce stable cooperative
behavior.
XII
Plenary Lectures
It is thus interesting to examine under which conditions stable cooperative
behavior evolves in nature and how those conditions can be translated into
evolutionary algorithms that are applicable to a wide range of robots. In
this talk I will quickly review biological theories of evolution of cooperative
behavior and focus on the theories of kin selection and group selection. I
will show how these two theories can be mapped into different evolutionary
algorithms and compare their efficiency in producing control systems for a
swarm of sugar-cube robots in a number of cooperative tasks that vary in
the degree of requested cooperation. I will then describe an example where
the most efficient algorithm is used to evolve a control system for a swarm
of aerial robots that must establish a radio network between persons on the
ground.
In another set of experiments I describe how those evolutionary conditions
can be tested for the emergence of communication where colonies of “expressive” robots are exposed to food and danger sources that cannot be uniquely
be identified at distance. Here, communication of the source type brings an
advantage to the colony at the expense of the individuals that decide to tell
which is the food or poison. The results shed light on the conditions that may
have favored the evolution of altruistic cooperation and communication.
Finally, I will describe work in progress for a real-world application of
a swarm of flying robots that are expected to locate and establish an ad
hoc radio network among rescuers deployed in a catastrophic scenario. The
stringent mission requirements along with the unpredictable location of the
rescuers on the ground made it very difficult to come up with suitable control
rules. We solved the problem by using the evolutionary methods that we
distilled from the previously described research in order to come up with
efficient and extremely simple control systems that satisfy the basic mission
requirements.
Work performed in collaboration with Sara Mitri (LIS-EPFL), Sabine Hauert
(LIS-EPFL), Severin Leven (LIS-EPFL), and Laurent Keller (Department of Evolutionary Biology, University of Lausanne).
Contents
1
2
Exploration in Stochastic Algorithms: An Application
on MAX–MIN Ant System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Paola Pellegrini, Daniela Favaretto, Elena Moretti
1.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2
The Relevance of Understanding Exploration in
Stochastic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3
Exploration: A Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.4
The Case of Ant Colony Optimization . . . . . . . . . . . . . . . . . .
1.5
Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.6
Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sensitive Ants: Inducing Diversity in the Colony . . . . . . . . .
C.-M. Pintea, C. Chira, D. Dumitrescu
2.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2
Ant Colony Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3
Inducing Heterogeneity in Ant Systems . . . . . . . . . . . . . . . . .
2.4
The Sensitive Ant Search Model . . . . . . . . . . . . . . . . . . . . . . .
2.4.1
Renormalized Transition Probabilities in SAM . . . .
2.4.2
Virtual State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4.3
Heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4.4
Virtual State Decision Rule . . . . . . . . . . . . . . . . . . . .
2.5
Solving TSP Using SAM: Numerical Results and
Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5.1
SAM Algorithm for Solving TSP . . . . . . . . . . . . . . . .
2.5.2
Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.6
Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1
1
2
3
4
5
10
11
15
15
16
17
18
18
19
19
20
20
20
21
23
24
XIV
3
4
5
Contents
Decentralised Communication and Connectivity in Ant
Trail Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Duncan E. Jackson, Mesude Bicak, Mike Holcombe
3.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2
Methodology and Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.1
Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.2
Model Parameters and Scale . . . . . . . . . . . . . . . . . . .
3.2.3
Process Overview and Scheduling . . . . . . . . . . . . . . .
3.2.4
Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3
Experimental Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3.1
Homogeneous vs. Heterogeneous U-Turning
Populations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4
Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5
Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Detection of Non-structured Roads Using Visible and
Infrared Images and an Ant Colony Optimization
Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Rafael Arnay, Leopoldo Acosta, Marta Sigut, Jonay T. Toledo
4.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2
Vehicle Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3
Applying an Ant Colony Optimization . . . . . . . . . . . . . . . . . .
4.3.1
Colony Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.2
The Point of Attraction . . . . . . . . . . . . . . . . . . . . . . . .
4.3.3
Movement Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.4
Pheromone Update . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.5
Agent Organization . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.6
Solution Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.7
Road Pattern Update . . . . . . . . . . . . . . . . . . . . . . . . .
4.4
Information Complementation between Thermal Vision
and the Visible Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.5
Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A Nature Inspired Approach for the Uncapacitated
Plant Cycle Location Problem . . . . . . . . . . . . . . . . . . . . . . . . . . .
Belén Melián-Batista, J. Marcos Moreno-Vega, Nitesh Vaswani,
Rayco Yumar
5.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2
Uncapacitated Plant-Cycle Location Problem . . . . . . . . . . . .
5.2.1
Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3
Solution Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3.1
Application of the HBMO to the UPCLP . . . . . . . .
25
25
28
28
28
31
31
31
31
32
33
35
37
37
38
41
42
43
43
43
43
44
44
46
46
47
49
49
50
50
52
55
Contents
5.4
Computational Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.5
Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6
7
8
Particle Swarm Topologies for Resource Constrained
Project Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Jens Czogalla, Andreas Fink
6.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2
The Resource Constrained Project Scheduling Problem . . .
6.3
Discrete Particle Swarm Optimization with Different
Population Topologies for the RCPSP . . . . . . . . . . . . . . . . . .
6.4
Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.5
Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Discrete Particle Swarm Optimization Algorithm for
Data Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
R. Karthi, S. Arumugam, K. Ramesh Kumar
7.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.2
Data Clustering Formulation . . . . . . . . . . . . . . . . . . . . . . . . . .
7.3
General Structure of Proposed DPSOA Algorithm . . . . . . . .
7.3.1
Definition of Particle . . . . . . . . . . . . . . . . . . . . . . . . . .
7.3.2
Initialization of Particles in DPSC Algorithm . . . . .
7.3.3
Generation of Velocity of Particles . . . . . . . . . . . . . .
7.3.4
Construction of a Particle Sequence . . . . . . . . . . . . .
7.3.5
Search Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.4
Performance Analysis of DPSOA Algorithm . . . . . . . . . . . . .
7.4.1
Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . .
7.4.2
Run Length Distribution (RLD) . . . . . . . . . . . . . . . .
7.5
Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A Simple Distributed Particle Swarm Optimization for
Dynamic and Noisy Environments . . . . . . . . . . . . . . . . . . . . . . .
Xiaohui Cui, Jesse St. Charles, Thomas E. Potok
8.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.2
Classic Particle Swarm Models . . . . . . . . . . . . . . . . . . . . . . . . .
8.3
Related Work in PSO for Dynamic Environment . . . . . . . . .
8.4
Simple Distributed PSO Approach . . . . . . . . . . . . . . . . . . . . .
8.5
Dynamic Environment Generator . . . . . . . . . . . . . . . . . . . . . . .
8.5.1
Environment Landscape . . . . . . . . . . . . . . . . . . . . . . .
8.5.2
Dynamics Generator . . . . . . . . . . . . . . . . . . . . . . . . . .
8.5.3
Measurement for Tracking Optimum Result . . . . . .
8.6
Experiment Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.7
Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
XV
56
59
59
61
61
62
62
67
71
71
75
75
76
78
79
80
80
81
82
84
84
86
87
88
89
89
90
92
93
94
94
94
95
96
97
XVI
Contents
8.8
Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
9
Exploring Feasible and Infeasible Regions in the
Vehicle Routing Problem with Time Windows Using
a Multi-objective Particle Swarm Optimization
Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Juan P. Castro, Dario Landa-Silva, José A. Moreno Pérez
9.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.2
Particle Swarm Optimization . . . . . . . . . . . . . . . . . . . . . . . . . .
9.2.1
Multi-objective Particle Swarm Optimization . . . . .
9.2.2
Discrete Particle Swarm Optimization . . . . . . . . . . .
9.2.3
Jumping Frog Optimization . . . . . . . . . . . . . . . . . . . .
9.3
Proposed MOJFO Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . .
9.3.1
Solution Representation and Initilization . . . . . . . . .
9.3.2
Constraints and Objectives . . . . . . . . . . . . . . . . . . . . .
9.4
Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.5
Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10 Two-Swarm PSO for Competitive Location Problems . . . .
Clara M. Campos Rodrı́guez, José A. Moreno Pérez,
Hartmut Noltemeier, Dolores R. Santos Peñate
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.2 Multiple Competitive Location Problems . . . . . . . . . . . . . . . .
10.3 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.4 Particle Swarm Optimization . . . . . . . . . . . . . . . . . . . . . . . . . .
10.5 The Two-Swarm PSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.6 Analysis of the Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11 Aerodynamic Wing Optimisation Using SOMA
Evolutionary Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Miroslav Červenka, Vojtěch Křesálek
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.2 Self-Organising Migrating Algorithm . . . . . . . . . . . . . . . . . . . .
11.2.1 Parameters and Terminology . . . . . . . . . . . . . . . . . . .
11.2.2 Population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.2.3 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.2.4 Crossover/Migration . . . . . . . . . . . . . . . . . . . . . . . . . .
11.3 Wing Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.3.1 Optimised Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
103
103
104
105
106
107
107
108
109
110
112
113
115
116
117
118
119
121
124
125
125
127
127
128
129
130
130
131
131
132
134
Contents
XVII
11.4.1 VUT-100 Cobra Wing Optimisation . . . . . . . . . . . . . 135
11.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
12 Experimental Analysis of a Variable Size Monopopulation Cooperative-Coevolution Strategy . . . . . . . . . . . .
Olivier Barrière, Evelyne Lutton
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.2 Cooperative-Coevolution Learning on Agrifood Data . . . . . .
12.2.1 The Test-Problem: Phase Estimation of a
Camembert-Cheese Ripening Process . . . . . . . . . . . .
12.2.2 Phase Estimation Using a Parisian GP . . . . . . . . . .
12.3 Variable Size Population Strategies . . . . . . . . . . . . . . . . . . . . .
12.3.1 Population Size Decrease Scheme . . . . . . . . . . . . . . .
12.3.2 Partial Restart Scheme: Deflating and Inflating
the Population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.4.1 Experimental Protocol . . . . . . . . . . . . . . . . . . . . . . . . .
12.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13 Genetic Algorithm for Tardiness Minimization in
Flowshop with Blocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Tiago de O. Januario, José Elias C. Arroyo,
Mayron César O. Moreira
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13.2 Proposed Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . .
13.2.1 Representation of a Solution and Generation of
the Initial Population . . . . . . . . . . . . . . . . . . . . . . . . . .
13.2.2 Selection, Crossover and Mutation . . . . . . . . . . . . . .
13.2.3 Local Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13.2.4 Diversification of the Population . . . . . . . . . . . . . . . .
13.2.5 Post-optimization Using Path Relinking . . . . . . . . .
13.2.6 Steps of the Genetic Algorithm . . . . . . . . . . . . . . . . .
13.3 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13.3.1 Computational Results . . . . . . . . . . . . . . . . . . . . . . . .
13.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14 Landscape Mapping by Multi-population Genetic
Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Yuebin B. Guo, Kwok Yip Szeto
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
139
139
141
141
142
144
144
146
147
147
148
149
150
153
153
154
155
156
157
157
157
158
159
159
162
163
165
166
167
168
XVIII
Contents
14.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
15 An Interactive Simulated Annealing Multi-agents
Platform to Solve Hierarchical Scheduling Problems
with Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Souhail Dhouib, Sana Kouraı̈chi, Taı̈cir loukil, Habib Chabchoub
15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.2 Taboo Central Memory (TCM) . . . . . . . . . . . . . . . . . . . . . . . .
15.3 Multi-agents Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.4 Interactive Simulated Annealing Multi-agents (ISAM)
Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.5.1 ISAM Platform to Solve Lexicographic Goal
Programming Problems . . . . . . . . . . . . . . . . . . . . . . . .
15.5.2 ISAM Platform to Solve Single Machine Total
Weighted Tardiness (SMTWT) Problems . . . . . . . .
15.5.3 ISAM Platform to Solve Hierarchical
Multicriteria Scheduling Problems . . . . . . . . . . . . . . .
15.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16 Genetic Algorithm and Advanced Tournament
Selection Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Radomil Matoušek
16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16.2 Standard and Elite Tournament Selection . . . . . . . . . . . . . . .
16.3 Probabilities of Selections . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16.3.1 Probability of Tournament Selection . . . . . . . . . . . . .
16.3.2 Probability of Elite Tournament Selection . . . . . . . .
16.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17 Terrain-Based Memetic Algorithms for Vector
Quantizer Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Carlos R.B. Azevedo, Flávia E.A.G. Azevedo,
Waslon T.A. Lopes, Francisco Madeiro
17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17.2 Vector Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17.2.1 The K-Means Algorithm . . . . . . . . . . . . . . . . . . . . . . .
17.2.2 The Accelerated K-Means . . . . . . . . . . . . . . . . . . . . .
17.3 Adaptation in Evolutionary Algorithms . . . . . . . . . . . . . . . . .
17.3.1 Adaptation and Spatially Distributed EAs . . . . . . .
17.4 Proposed Terrain-Based Memetic Algorithms . . . . . . . . . . . .
17.4.1 Stationary TBMA . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17.4.2 Motioner TBMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
177
178
179
180
181
182
182
183
185
186
187
189
189
190
192
193
194
196
196
197
197
198
199
199
200
200
202
203
203
Contents
XIX
17.5 Simulation Results and Discussion . . . . . . . . . . . . . . . . . . . . . .
17.6 Conclusion and Future Works . . . . . . . . . . . . . . . . . . . . . . . . . .
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
204
208
209
209
18 Cooperating Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Magnus Jändel
18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18.2 Setting the Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18.3 Back-Propagation Neural Networks . . . . . . . . . . . . . . . . . . . . .
18.3.1 Brain Cloning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18.4 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18.4.1 Brain Surgery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18.5 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18.5.1 Hallucinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18.7 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
213
19 Evolutionary Multimodal Optimization for Nash
Equilibria Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Rodica Ioana Lung, Dan Dumitrescu
19.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19.2 Theoretical Aspects Related to the Computation of Nash
Equilibira . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19.3 Evolutionary Multimodal Optimization . . . . . . . . . . . . . . . . .
19.4 Deflection Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19.5 Roaming Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19.5.1 Roaming Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . .
19.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19.6.1 Test Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19.6.2 Experimental Set-Up . . . . . . . . . . . . . . . . . . . . . . . . . .
19.6.3 Dealing with Constraints . . . . . . . . . . . . . . . . . . . . . . .
19.6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
20 On the Computational Properties of the MultiObjective Neural Estimation of Distribution
Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Luis Martı́, Jesús Garcı́a, Antonio Berlanga, José M. Molina
20.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
20.2 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
20.3 Multi–objective Neural EDA . . . . . . . . . . . . . . . . . . . . . . . . . . .
20.3.1 Model–Building with Growing Neural Gas . . . . . . .
20.3.2 MONEDA Algorithmics . . . . . . . . . . . . . . . . . . . . . . .
213
215
216
216
217
218
218
219
220
223
224
227
227
228
229
230
231
231
233
233
234
234
235
236
237
239
239
241
242
242
244
XX
Contents
20.4 Measuring Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
20.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
20.6 Final Remarks and Future Work . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
245
245
249
250
21 Optimal Time Delay in the Control of Epidemic . . . . . . . . .
Zhenggang Wang, Kwok Yip Szeto, Frederick Chi-Ching Leung
21.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
21.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
21.3 Results of Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
21.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
253
22 Parallel Hypervolume-Guided Hyperheuristic for
Adapting the Multi-objective Evolutionary Island
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Coromoto León, Gara Miranda, Eduardo Segredo,
Carlos Segura
22.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
22.2 Island-Based Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
22.3 Hyperheuristic Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
22.4 Hypervolume-Guided Model . . . . . . . . . . . . . . . . . . . . . . . . . . .
22.4.1 Scoring and Selection Strategy . . . . . . . . . . . . . . . . . .
22.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
22.6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
23 A Cooperative Strategy for Guiding the Corridor
Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Marco Caserta, Stefan Voß
23.1 The Corridor Method: An Introduction . . . . . . . . . . . . . . . . .
23.2 The Blocks Relocation Problem . . . . . . . . . . . . . . . . . . . . . . . .
23.3 The Cooperative Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . .
23.3.1 Corridor Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . .
23.3.2 Neighborhood Design and Exploration . . . . . . . . . . .
23.3.3 Move Evaluation and Selection . . . . . . . . . . . . . . . . .
23.3.4 Trajectory Fathoming . . . . . . . . . . . . . . . . . . . . . . . . .
23.4 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
23.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
253
254
256
258
259
261
261
262
263
264
265
267
270
271
273
273
275
277
279
280
281
282
283
285
286
24 On the Performance of Homogeneous and
Heterogeneous Cooperative Search Strategies . . . . . . . . . . . . 287
A.D. Masegosa, D. Pelta, I.G. del Amo, J.L. Verdegay
24.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
24.2 A Basic Cooperative Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 289
Contents
24.2.1 The Information Management Strategy . . . . . . . . . .
The Uncapacitated Single Allocation p-Hub Median
Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
24.4 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
24.4.1 Neighborhood Operator . . . . . . . . . . . . . . . . . . . . . . . .
24.5 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
24.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
XXI
289
24.3
290
291
292
293
298
299
List of Contributors
Leopoldo Acosta
Dep. Systems Engineering and
Automatics
University of La Laguna
La Laguna, CP: 38204, Spain
[email protected]
I.G. del Amo
Dept. of Computer Science and
Artificial Intelligence
University of Granada
E-18071 Granada, Spain
[email protected]
Rafael Arnay
Dep. Systems Engineering and
Automatics
University of La Laguna
La Laguna, CP: 38204, Spain
[email protected]
José Elias C. Arroyo
Departamento de Informática
Universidade Federal de Viçosa
Campus Universitário da UFV,
3657000-00, Centro Viçosa, MG,
Brasil
[email protected]
S. Arumugam
Chief Executive Officer
Nandha College of Engineering,
Erode, India
[email protected]
Olivier Barrière
INRIA Saclay - Ile-de-France
Parc Orsay Université
4, rue Jacques Monod, 91893 ORSAY
Cedex, France
[email protected]
Antonio Berlanga
Group of Applied Artificial
Intelligence
Universidad Carlos III de Madrid
Av. de la Universidad Carlos III, 22.
Colmenarejo
28270 Madrid, Spain
[email protected]
Mesude Bicak
Department of Computer Science
University of Sheffield
Sheffield S1 4DP, UK
Clara M. Campos Rodríguez
Dpto. de Economía Financiera y
Contabilidad
Universidad de La Laguna, Spain
[email protected]
XXIV
Marco Caserta
Institute of Information
Systems (IWI)
University of Hamburg
Von-Melle-Park 5, 20146
Hamburg, Germany
[email protected]
Juan P. Castro
Automated Scheduling,
Optimisation and Planning
Research Group (ASAP)
University of Nottingham (UK)
[email protected]
Miroslav Červenka
Department of Applied Informatics
Tomas Bata University
Nad stráněmi 4511,
760 05 Zlín, Czech Republic
[email protected]
Habib Chabchoub
Research unit of G.I.A.D.
Economic and Management
University of Sfax- Tunisia
[email protected]
Jesse St. Charles
Department of Computer Science
and Engineering
University of Tennessee
Chattanooga TN 37403
[email protected]
Frederick Chi-Ching Leung
Department of Zoology
University of Hong Kong
Pokfulam Road, Hong Kong SAR,
China
[email protected]
C. Chira
Babes-Bolyai University
List of Contributors
400084 Cluj-Napoca, Romania
[email protected]
Xiaohui Cui
Computational Sciences and
Engineering Division
Oak Ridge National Laboratory
Oak Ridge, TN 37831-6085
[email protected]
Jens Czogalla
Helmut-Schmidt-University
UniBw Hamburg, Holstenhofweg 85,
22043 Hamburg, Germany
[email protected]
Souhail Dhouib
Research unit of L.O.G.I.Q.
Superior Institute of Industrial
Management of Sfax-Tunisia
[email protected]
D. Dumitrescu
Babes-Bolyai University
400084 Cluj-Napoca, Romania
ddumitr.ubbcluj.ro
Daniela Favaretto
Department of Applied Mathematics
Dorsoduro 3825/E,
I-30123 Venezia, Italy
[email protected]
Andreas Fink
Helmut-Schmidt-University
UniBw Hamburg, Holstenhofweg 85,
22043 Hamburg, Germany
[email protected]
Jesús García
Group of Applied Artificial
Intelligence
Universidad Carlos III de Madrid
Av. de la Universidad Carlos III,
22. Colmenarejo
List of Contributors
28270 Madrid, Spain
[email protected]
Yuebin B. Guo
Department of Physics
The Hong Kong University of
Science and Technology
Hong Kong, China
[email protected]
Mike Holcombe
Department of Computer Science
University of Sheffield
Sheffield S1 4DP, UK
Duncan E. Jackson
Department of Computer Science
University of Sheffield
Sheffield S1 4DP, UK
[email protected]
Tiago de O. Januario
Departamento de Informática
Universidade Federal de Viçosa
Campus Universitário da UFV,
3657000-00, Centro Viçosa,
MG, Brasil
[email protected]
Magnus Jändel
Division of Biometry and Systems
Analysis, SLU, Uppsala,
Sweden Mobile Life at Stockholm
University,
Sweden Agora for Biosystems,
Sigtuna, Sweden
[email protected]
R. Karthi
Asst Professor, Department of
Computer Science
Amrita Vishwa Vidyapeetham,
India Ettimadai, India, Pin - 641105
[email protected]
Sana Kouraïchi
Research unit of L.O.G.I.Q.
XXV
Superior Institute of
Industrial Management of
Sfax-Tunisia
[email protected]
K. Ramesh Kumar
Professor, Department of
Mechanical Engineering
Amrita Vishwa Vidyapeetham, India
k_rameshumar@
ettimadai.amrita.edu
Vojtěch Křesálek
Department of Eletrotechnics
and Measurements
Tomas Bata University
Nad stráněmi 4511,
760 05 Zlín, Czech Republic
Dario Landa-Silva
Automated Scheduling,
Optimisation and Planning Research
Group (ASAP)
University of Nottingham (UK)
[email protected]
Coromoto León
Dpto. Estadística,
I.O.y Computación
Universidad de La Laguna
38271, Tenerife, Spain
[email protected]
Taïcir loukil
Research unit of L.O.G.I.Q.
Superior Institute of Industrial
Management of Sfax-Tunisia
[email protected]
Rodica Ioana Lung
Babes-Bolyai University of
Cluj Napoca
XXVI
Cluj-Napoca, Romania
[email protected]
Evelyne Lutton
INRIA Saclay - Ile-de-France
Parc Orsay Université
4, rue Jacques Monod,
91893 ORSAY Cedex, France
[email protected]
Luis Martí
Group of Applied
Artificial Intelligence
Universidad Carlos III de Madrid
Av. de la Universidad Carlos III,
22. Colmenarejo
28270 Madrid, Spain
[email protected]
A.D. Masegosa
Dept. of Computer Science and
Artificial Intelligence
University of Granada
E-18071 Granada, Spain
[email protected]
Radomil Matoušek
Department of Applied
Computer Science
Faculty of Mechanical Engineering
Brno University of Technology
Technická 2, Brno 616 69,
Czech Republic
[email protected]
List of Contributors
Universidad de La Laguna
38271, Tenerife, Spain
[email protected]
José M. Molina
Group of Applied Artificial
Intelligence
Universidad Carlos III de Madrid
Av. de la Universidad Carlos III,
22. Colmenarejo
28270 Madrid, Spain
[email protected]
Mayron César O. Moreira
Departamento de Informática
Universidade Federal de Viçosa
Campus Universitário da UFV,
3657000-00, Centro Viçosa,
MG, Brasil
[email protected]
J. Marcos Moreno-Vega
Dpto. de Estadística,
I.O. y Computación
Escuela Técnica Superior de
Ingeniería Informática
Universidad de La Laguna
38271 La Laguna,
Tenerife, Spain
[email protected]
Belén Melián-Batista
Dpto. de Estadística,
I.O. y Computación
Escuela Técnica Superior de
Ingeniería Informática
Universidad de La Laguna
38271 La Laguna, Tenerife, Spain
[email protected]
José A. Moreno Pérez
Group of Intelligent Computing
Dpto. de Estadística,
I.O. y Computación
Instituto Universitario de
Desarrollo Regional
Escuela Técnica Superior de
Ingeniería Informática
Universidad de La Laguna
38271 La Laguna, Tenerife, Spain
[email protected]
Gara Miranda
Dpto. Estadística,
I.O.y Computación
Elena Moretti
Department of Applied Mathematics
Dorsoduro 3825/E,
List of Contributors
I-30123 Venezia, Italy
[email protected]
Hartmut Noltemeier
Lehrstuhl für Informatik I
Universität Würzburg, Germany
[email protected]
XXVII
Carlos Segura
Dpto. Estadística,
I.O.y Computación
Universidad de La Laguna
38271, Tenerife, Spain
[email protected]
Paola Pellegrini
Department of Applied
Mathematics
Dorsoduro 3825/E,
I-30123 Venezia, Italy
[email protected]
Marta Sigut
Dep. Systems Engineering and
Automatics
University of La Laguna
La Laguna, CP: 38204,
Spain
[email protected]
D. Pelta
Dept. of Computer Science and
Artificial Intelligence
University of Granada
E-18071 Granada, Spain
[email protected]
Kwok Yip Szeto
Department of Physics
The Hong Kong University of
Science and Technology
Hong Kong, China
[email protected]
C.-M. Pintea
Babes-Bolyai University
400084 Cluj-Napoca, Romania
[email protected]
Jonay T. Toledo
Dep. Systems Engineering and
Automatics
University of La Laguna
La Laguna, CP: 38204, Spain
[email protected]
Thomas E. Potok
Computational Sciences and
Engineering Division
Oak Ridge National Laboratory
Oak Ridge, TN 37831-6085
[email protected]
Dolores R. Santos Peñate
Dpto. de Métodos Cuantitativos en
Economía y Gestión
Universidad de Las Palmas de G.C.,
Spain
[email protected]
Eduardo Segredo
Dpto. Estadística,
I.O.y Computación
Universidad de La Laguna
38271, Tenerife, Spain
[email protected]
Nitesh Vaswani
Dpto. de Estadística,
I.O. y Computación
Escuela Técnica Superior de
Ingeniería Informática
Universidad de La Laguna
38271 La Laguna, Tenerife, Spain
[email protected]
J.L. Verdegay
Dept. of Computer Science and
Artificial Intelligence
University of Granada
E-18071 Granada, Spain
[email protected]
Stefan Voß
Institute of Information
XXVIII
Systems (IWI)
University of Hamburg
Von-Melle-Park 5,
20146 Hamburg, Germany
[email protected]
Zhenggang Wang
Department of Physics
The Hong Kong
University of Science and
Technology
List of Contributors
Hong Kong, China
[email protected]
Rayco Yumar
Dpto. de Estadística,
I.O.y Computación
Escuela Técnica Superior de
Ingeniería Informática
Universidad de La Laguna
38271 La Laguna,
Tenerife, Spain
[email protected]