சுழற்சி (இயற்பியல்)
அணுக்களின் நிறமாலையை அறிவது மிகவும் கடினமான ஒன்று. இதை அறிவதற்கு சில கடினமான வியுகங்களை உருவாக்க வேண்டியதாக உள்ளது. அவ்வாறு ஏற்பட்ட ஒரு கடினமான அனுமானமே துகள்களின் தற்சுழற்சி (spin) ஆகும்.
செய்முறை வல்லுநர்களின் மூலம் இதன் ஆரம்பம் ஏற்பட்டது. அவர்கள் காந்த புலத்தை ஒளியின் குறுக்கே வைத்து சோதனை செய்தனர். அப்பொழுது நிரமளைகளில் இருந்த நிற வரிகள் தனித்தனியாக பிரிவதைக் கண்டனர்.இந்த விளைவை ஹாலோந்த் நாட்டைச் சேர்ந்த ஜீமான் என்பவர் 1896-ம் ஆண்டு சோதனை மூலம் கண்டறிந்தார். இதற்கு ஜீமான் விளைவு அல்லது சீமன் விளைவு என்று பெயரிடப்பட்டது. ஆனால் இந்தப் பிரிதலுக்கான காரணம் என்ன? என்று அவருக்கு விளங்கவில்லை. இதனை விளக்க டச்சு இயற்பியல் அறிஞ்சர் லாரன்ஸ் ஒரு விளக்கத்தினை கொடுத்தார். அப்பொழுது போர் அணு மாதிரி (Bohr atom model) இல்லாத காலம். போர் தனது அணு மாதிரி விளக்குவதற்கு சுமார் பதினைந்து ஆண்டுகளுக்கு முற்பட்டது. லாரன்ஸின் இந்த விளக்கம், சோடியம் நிறமாலையில் ஏற்பட்ட D1 மற்றும் D2 நிற வரிகளை விளக்க முடியவில்லை. இதனை முரணிய அல்லது முரண்பாடான ஜீமான் விளைவு என்று அழைக்கப்பட்டது.
போர் தனது அணு மாதிரியை முதன்முதலாக உலகிற்கு விளக்கிய போது அனைவரும் இந்த ஜீமான் விளைவை எவ்வாறு இந்த அணு மாதிரி விளக்கும் என்று எதிர்பார்த்து இருந்தனர். போர் அணு மாதிரிபடி எதிர்மின்துகள்கள் ஒரு குறிப்பிட்ட பாதையில் மட்டுமே அணுக்கருவை சுற்ற முடியும். இந்தச் சுழற்சியின் காரணத்தால் ஒரு சுற்றுப்பாதை கோண உந்தம் ( Orbital Angular Momentum ) ஏற்படுகிறது. மேலும் எதிர்மின்துகள்கள் மின் ஆற்றலைப் பெற்றிருக்கும் காரணத்தால் இதன் ஓட்டம் ஒரு காந்த புலத்தை உருவாகுகிறது. இந்தக் காந்தப் புலம் ஒரு சுற்றுப்பாதை காந்தத்திருப்புதிறனை (Orbital Magnetic Moment) ஏற்படுத்துகிறது. இந்தச் சுற்றுப்பாதை கோண உந்தம் மற்றும் சுற்றுப்பாதை காந்தத்திருப்புதிறன் ஆற்றல் மட்டங்களில் எண்ணிக்கையை மேலும் அதிகமாகியது. ஆற்றல் மட்டங்களின் எண்ணிக்கை அதிகமான காரணத்தால், ஒரு ஆற்றல் மட்டத்திலிருந்து அடுத்த மட்டங்களுக்குத் தாவும் எண்ணிக்கையும் அதிகமானது. இருப்பினும், முரண்பாடான ஜீமான் விளைவு ஏற்பட இந்த ஆற்றல் மட்டங்கள் போதுமானதாக இல்லை. மேலும் சில ஆற்றல் மட்டங்கள் தேவைப்பட்டன. இதனை விளக்க உலேன்பேக் (Uhlenbeck) மற்றும் கௌட்ச்மித் (Goudsmit) ஒரு புதிய விளக்கத்தினை கொடுத்தனர். அதுதான் எதிர்மின்துகள்களின் தற்சுழற்சி (electron spin) என்பது ஆகும்.
பொதுவாக இந்த தற்சுழற்சியை பூமி தன்னைதானே சுழல்வது போன்று, என்று கூறுவது வழக்கம். ஆனால் எதிர்மின்துகள்களின் தற்சுழற்சி அவ்வளவு எளியது அல்ல. மேலும் அவர்கள் இதனைக் கூர்ந்து உற்று நோக்கும் பொழுது துகள்களின் இயக்கம் கடினமானதாகவும், ஆனால் இந்த எதிர்மின்துகள்கள் அதிகப்படியான கோண உந்தம் (extra Angular Momentum) கொண்டுள்ளதும் தெரியவந்தது. இது ஒரு அதிகப்படியான உரிமை அளவெண் (Degree of Freedom) கொடுப்பதைத் தவிர தன்னைத்தானே சுழல்வதில்லை. ஆனால் "சுழற்சி" என்ற இந்தச் சொல் ஏற்கனவே அணுவைப் பற்றி விளக்கும் பொழுது வழக்கத்தில் இருந்த காரணத்தால் அதே சொல்லை உபயோகித்தனர். எதிர்மின்துகளின் இந்தச் சுழற்சி இரண்டு அளவுகள் மட்டுமே கொள்ளும். அவையாவன + 1/2 மற்றும் - 1/2. இது போன்று அரை (1/2) அளவுகள் சுழற்சி கொண்ட துகள்கள் பெர்மியான் (Fermion) என்று அழைக்கப்படுகின்றன. ஒளி துகள்களின் (Photon) சுழற்சி எண் ஒன்று (±1) ஆகும் [1]:88. இது போன்று முழு அளவுகள் சுழற்சி கொண்ட துகள்கள் போசான் (Boson) என்று அழைக்கப்படுகின்றன.
இது போன்று குறிப்பிட்ட எண்களை மட்டும் அளவைகளாகக் கொண்ட இயக்கம் பாரம்பரிய அல்லது பழைய இயக்கவியலில் (Classical mechanics) அல்லாத ஒன்று. பழைய இயக்கவியலிலை பொறுத்தமட்டில் ஒரு இயக்கத்தில் அளவைகளின் மாற்றம் என்பது தொடர்ச்சியான ஒன்று, குறிப்பிட்ட எண்கள் மட்டும் அல்ல! கடைசியாகத் துகள்களின் தற்சுழற்சி என்பது துகள் தன்னைதானே சுற்றுவது அல்ல அது ஒரு அதிகப்படியான உரிமை அளவெண் ஆகும்.
துகள்கள் | சுழற்சி | போசோன் | பெர்மியோன் |
---|---|---|---|
எலேக்ட்ரான் (electron) | 1/2 | X | |
பாசிடிரன் (positron) | 1/2 | X | |
நியுற்றினோ (neutrino) | 1/2 | X | |
புரோட்டன் (proton) | 1/2 | X | |
நியுட்ரான் (neutron) | 1/2 | X | |
μ-மேசான் (μ-meson) | 1/2 | X | |
ஒமேகா (omega) | 3/2 | X | |
π-மேசான் (π-meson) | 0 | X | |
K-மேசான் (K-meson) | 0 | X | |
போட்டன் (photon) | 1 | X | |
க்ராவிடன் (graviton) | 2 | X |
சுழற்சியை ஒரு பந்து சுழல்வது போல கற்பனை செய்வது உதவாத காரணத்தால், இந்த சுழற்சியை அறிய பல அறிஞர்கள் முற்பட்டனர். ஸ்டீபன் ஹாகிங் இதை பின்வருமாறு விளக்குகிறார்.
•
துகள் சுழற்சி=0
துகள் சுழற்சியை பூஜியம் (spin=0) என்று எடுத்துக்கொண்டால் அது ஒரு புள்ளி (•)போன்று தோன்றும். எந்த திசையில் இருந்து இதை பார்த்தாலும் அந்த துகள் ஒரே மாதிரியாக தோன்றும்.
மாறாக இந்த சுழற்சியை ஒன்று (spin=1) என்று கொண்டால் அது ஒரு அம்பு (arrow) போன்று எண்ணலாம். இதற்கு நாம் சீட்டு கட்டில் உள்ள ஸ்பேடு சீட்டை (♠) நினைவு கொள்ளலாம். இந்த பூவை (ஸ்பேடை) வெவ்வேறு திசையிலிருந்து பார்த்தால் வெவ்வேறாக தெரியும். இந்த பூ வை (♠) 360° சுழல செய்தால் மட்டுமே அதன் பூ (♠) அமைப்பை மீண்டும் பெறமுடியும். இதற்கு மாறாக 90° அல்லது 180° சுற்றினால் நமக்கு பூ (♠) அமைப்பு பக்கவாட்டிலோ அல்லது தலைகீழகவோ தோன்றும் அல்லவா? சுழற்சி ஒன்று என்பது ஒரு முழு சுற்றுசுற்றுவது போலாகும்.
இதே போன்று சுழற்சியை இரண்டு (spin=2) என கொண்டால் இதற்கு அர்டீன் சீட்டை (♥) கொள்ளலாம். இந்த பூவை (அர்டீனை) 180° சுழல செய்தால், அதன் பூ (♥) அமைப்பை அந்த சீட்டு மீண்டும் பெறமுடியும். இதற்கு மாறாக 90° அல்லது 270° சுற்றினால் நமக்கு பூ (♥) அமைப்பு பக்கவாட்டில் தெரியும். இதே போன்று அதிக சுழற்சி எண்கள் கொண்ட துகள்கள் வெவ்வேறு குறிபிட்ட கோணத்தில் சுழல்வதால் அதன் இயல்பு அமைப்பை பெறுகின்றன.
மேலும் துகள்களின் சுழற்சி அரை (spin=1/2) என்று கொண்டால், இதற்கு நம்மிடத்தில் உதாரணம் இல்லை. ஆனால் சுழல் கோணம் 720° சுழலும் பொழுது இந்த துகள் தன் இயல்பு நிலையை பெருகின்றன. அதாவது இரண்டு முறை சுழன்றால் அந்த துகள் தன் இயல்பு நிலையை அடையும். சுருங்க சொன்னால் ஒரு துகள் சுழலும் பொழுது எந்த கோணத்தில் அந்த துகள் தன்னுடைய இயல்பு அமைப்பை அல்லது சமச்சீர் தன்மையை பெறுகின்றனவோ அதை கொண்டு அந்த துகளின் சுழற்சி நிர்ணயிக்கபடுகிறது. அதாவது சுழற்சி அந்த துகளின் சமச்சீர் தன்மையை பற்றியது ஆகும்.
மேற்கோள்
[தொகு]- G. Venkataraman. Quantum Revolution I THE BREAKTHROUGH, Page No: 40-43. Universities Press, 1997