Przejdź do zawartości

Twierdzenie Stokesa

Z Wikipedii, wolnej encyklopedii
George Gabriel Stokes (1819–1903)

Twierdzenie Stokesa – twierdzenie mówiące, że cyrkulacja pola wektorowego po zamkniętym i zorientowanym konturze gładkim jest równa strumieniowi rotacji pola przez dowolną powierzchnię ograniczoną tym konturem. Twierdzenie to odgrywa ważną rolę w teorii pól. Używane jest w mechanice płynów, równaniach Maxwella i wielu innych. Twierdzenia Greena i Ostrogradskiego-Gaussa można traktować jako szczególne przypadki twierdzenia Stokesa[1].

Twierdzenie Stoksa ma źródła w pracach Ampère'a z 1826 roku. W jego standardowej postaci została opracowana przez Williama Thomsona jeszcze przed 1850 rokiem i przekazana G. G. Stokesowi, który opublikował je jako problem w egzaminach nagrody Smitha(inne języki) w 1854 roku. Nie jest wiadome, czy ktoś rozwiązał problem, ale jednym z uczestników był Maxwell, to właśnie on uzyskał informacje, że Stokes otrzymał twierdzenie od Thomsona. Pierwszy dowód twierdzenia został opublikowany przez Hermanna Hankela(inne języki) w 1861[1].

Twierdzenie Stokesa w przestrzeni

[edytuj | edytuj kod]

Jeżeli jest płatem powierzchni w a jego gładkim, zorientowanym dodatnio konturem, to dla dowolnego pola wektorowego (gdzie ) mamy[2]:

Dowód

[edytuj | edytuj kod]

Niech gdzie oraz Wówczas, wykorzystując regułę łańcuchową oraz wzór na całkę krzywoliniową (tu krzywą jest ), otrzymujemy równość:

(Analogiczne wzory zachodzą dla składowych i ).

A więc z twierdzenia Greena mamy:

Po prawej stronie powyższej równości stosujemy wzór na pochodną iloczynu oraz regułę łańcuchową i otrzymujemy:

Gdy przeprowadzimy analogiczne rozumowania dla składowych i i wyniki zsumujemy, otrzymamy:

gdzie

Jednak prawa strona powyższego równanie jest strumieniem pola wektorowego przez płat Co daje tezę.

Najogólniejsza wersja twierdzenia Stokesa

[edytuj | edytuj kod]

Twierdzenie Stokesa można wypowiedzieć najogólniej dla -wymiarowych powierzchni gładkich.

Załóżmy, że jest orientowalną powierzchnią gładką, jest zbiorem zwartym oraz oraz że brzeg jest -wymiarową powierzchnią gładką. Jeżeli jest zbiorem otwartym zawierającym powierzchnię jest formą klasy a jest orientacją powierzchni to

gdzie orientacja powierzchni dana jest wzorem

dla a

jest taką funkcją, że jest wektorem zewnętrznym do zbioru w punkcie jest wektorem normalnym do powierzchni w punkcie dla każdego

Wnioski

[edytuj | edytuj kod]

Wzór Gaussa-Ostrogradskiego

[edytuj | edytuj kod]

Załóżmy, że jest zbiorem otwartym, zbiorem zwartym, który jest równy domknięciu swojego wnętrza oraz takim, brzeg jest -wymiarową powierzchnią gładką oraz

jest funkcją o własnościach

  • jest wektorem zewnętrznym do w punkcie
  • jest wektorem normalnym do w punkcie leżącym na brzegu

Jeżeli jest funkcją klasy to

gdzie oznacza operator dywergencji.

Wzór Greena-Riemanna

[edytuj | edytuj kod]
 Osobny artykuł: Twierdzenie Greena.

Załóżmy, że jest zbiorem otwartym, jest zbiorem zwartym takim, że oraz brzeg jest krzywą gładką (to znaczy powierzchnią gładką 1-wymiarową), a ponadto

jest funkcją o własnościach

  • jest wektorem stycznym do krzywej w punkcie

gdzie jest funkcją taką jak w poprzednim twierdzeniu (przy ). Jeżeli jest funkcją klasy to

Przypisy

[edytuj | edytuj kod]
  1. a b Hans Niels Jahnke: A history of analysis. Providence, RI: American Mathematical Society, 2003, s. 207-208. ISBN 0-8218-2623-9. OCLC 51607350.
  2. Stokesa twierdzenie, [w:] Encyklopedia PWN [online], Wydawnictwo Naukowe PWN [dostęp 2021-10-02].

Linki zewnętrzne

[edytuj | edytuj kod]