Kąty Eulera
Kąty Eulera – układ trzech kątów, za pomocą których można jednoznacznie określić wzajemną orientację dwóch kartezjańskich układów współrzędnych o jednakowej skrętności w trójwymiarowej przestrzeni euklidesowej[1]. Nazwa pochodzi od nazwiska szwajcarskiego matematyka Leonharda Eulera.
Definicja formalna
[edytuj | edytuj kod]Definicja kątów Eulera opiera się na spostrzeżeniu, że dowolnie zorientowany układ współrzędnych można otrzymać z danego układu przez złożenie trzech obrotów wokół osi układu. Istnieje kilka takich kombinacji obrotów; wybór konkretnej z nich jest kwestią konwencji.
(1) Załóżmy najpierw, że osie i nie są równoległe, a zatem płaszczyzna jest dobrze określona. Wówczas jedynym obrotem, który przekształca oś na oś jest obrót o odpowiedni kąt wokół linii węzłów tj. prostej prostopadłej do płaszczyzny w punkcie Linia węzłów, jako prostopadła do obu osi i jest prostą, wzdłuż której przecinają się płaszczyzny i Tak więc układ można nałożyć na dokonując kolejno następujących trzech obrotów:
- obrót wokół osi taki by oś pokryła się z linią węzłów
- obrót wokół osi taki by oś pokryła się z osią
- obrót wokół osi taki by oś pokryła się z osią (wtedy też oś pokryje się z osią ).
Zauważmy, że powyższe warunki wyznaczają dwie różne sekwencje obrotów, gdyż w kroku 1. istnieją dwa obroty (o kąty różniące się o ) prowadzące do ustawienia osi wzdłuż linii węzłów w, lecz nadające jej przeciwne zwroty. Wybieramy zwrot zgodny ze zwrotem iloczynu wektorowego wersorów osi i (przyjmując go za zwrot osi węzłów). Obrót 2. będzie więc zawsze obrotem o kąt z zakresu
Poszczególne kąty Eulera parametryzują powyższe trzy obroty; definiujemy je zatem następująco:
- – kąt mierzony od osi do osi węzłów w kierunku wyznaczonym osią jest to kąt obrotu 1.
- – kąt mierzony od osi do w kierunku wyznaczonym osią węzłów jest to kąt obrotu 2.
- – kąt mierzony od osi węzłów do osi w kierunku wyznaczonym osią jest to kąt obrotu 3.
W ten sposób każdemu obrotowi układu współrzędnych w przestrzeni, nie zachowującemu zwrotu ani kierunku osi można wzajemnie jednoznacznie przypisać uporządkowaną trójkę kątów
(2) Osobnej uwagi wymaga sytuacja, gdy osie i są równoległe (identyczne lub o przeciwnych zwrotach). Płaszczyzna i linia węzłów nie są wówczas jednoznacznie określone; oś można przekształcić na oś w wyniku obrotu (o kąt lub zależnie od zwrotu osi ) wokół dowolnej prostej przechodzącej przez punkt i leżącej w płaszczyźnie Mamy zatem lub a ustawienie osi jest jednoznacznie wyznaczone odpowiednio przez sumę lub różnicę kątów i
Związek z macierzą obrotu
[edytuj | edytuj kod]Macierze obrotów 1., 2. i 3. mają we współrzędnych postacie:
toteż macierz wypadkowego obrotu prowadzącego od układu do przedstawia się następująco:
Jest to specjalna macierz ortogonalna, tj. macierz ortogonalna o wyznaczniku równym jedności.
Zobacz też
[edytuj | edytuj kod]Przypisy
[edytuj | edytuj kod]- ↑ Eulera kąty, [w:] Encyklopedia PWN [online], Wydawnictwo Naukowe PWN [dostęp 2022-06-27] .
Bibliografia
[edytuj | edytuj kod]- Grzegorz Białkowski, Mechanika klasyczna, Państwowe Wydawnictwo Naukowe, Warszawa 1975.