Przejdź do zawartości

Dylatacja

Z Wikipedii, wolnej encyklopedii

Dylatacjaprzekształcenie geometryczne, przeprowadzające dowolną prostą na prostą do niej równoległą. Inaczej mówiąc, jest to kolineacja, w której każda prosta jest równoległa do swojego obrazu[1].

Własności

[edytuj | edytuj kod]
  • Dwa dane odcinki i leżące na prostych równoległych, określają dokładnie jedną dylatację dla której obrazem punktu jest punkt a obrazem punktu jest punkt [2].
  • Odwrotność dylatacji jest dylatacją [3].
  • Dylatacja jest przekształceniem tożsamościowym (czyli identycznością). Dylatacja jest półobrotem, czyli symetrią środkową (dokoła środka odcinka AB). Jeżeli czworokąt jest równoległobokiem, to dylatacja jest translacją (czyli przesunięciem równoległym)[3].
  • Jeżeli dylatacja ma punkt stały, to obrazem prostej przechodzącej przez ten punkt jest ta sama prosta.
  • Każda dylatacja, która nie jest przesunięciem równoległym ma punkt stały, a jeśli nie jest identycznością, to jest to jedyny jej punkt stały[3].
  • Jeżeli punkt i jego obraz dylatacyjny nie pokrywają się (tzn. nie jest stały), to obrazem prostej jest ona sama.
  • Jeżeli dwie proste pokrywają się ze swoimi obrazami, to ich przecięcie (o ile istnieje) jest punktem stałym.

Z własności tych wynika klasyfikacja dylatacji ze względu na liczbę punktów stałych:

  • Jeżeli dylatacja ma co najmniej dwa różne punkty stałe, to jest identycznością,
  • Jeżeli dylatacja ma dokładnie jeden punkt stały, to jest jednokładnością,
  • Jeżeli dylatacja nie ma punktu stałego, to jest translacją.

Zbiór dylatacji jest grupą ze względu na ich składanie i podgrupą grupy podobieństw parzystych.

Niezmiennik definiujący grupę dylatacji:

  • kierunek wektora.

Ważniejsze niezmienniki dylatacji:

  • orientacja,
  • stosunek długości wektorów,
  • stosunek pól figur,
  • stosunek objętości figur,
  • współliniowość punktów.

Zobacz też

[edytuj | edytuj kod]

Przypisy

[edytuj | edytuj kod]
  1. H.S.M. Coxeter: Wstęp do geometrii dawnej i nowej. Warszawa: PWN, 1967, s. 212.
  2. H.S.M. Coxeter: Wstęp do geometrii dawnej i nowej. Warszawa: PWN, 1967, s. 85, 212.
  3. a b c H.S.M. Coxeter: Wstęp do geometrii dawnej i nowej. Warszawa: PWN, 1967, s. 85.

Bibliografia

[edytuj | edytuj kod]
  • Marek Kordos, Lesław Włodzimierz Szczerba: Geometria dla nauczycieli. Warszawa: PWN, 1976.
  • H.S.M. Coxeter: Wstęp do geometrii dawnej i nowej. Warszawa: PWN, 1967.
  • M. Berger: Геометрия (tłum. ros.). Moskwa: Мир, 1984.
  • A.M. Комиссарук: Аффинная геометрия. Минсκ: Вышэйшая школа, 1977.