perlapi - autogenerated documentation for the perl public API
This file contains the documentation of the perl public API generated by embed.pl, specifically a listing of functions, macros, flags, and variables that may be used by extension writers. The interfaces of any functions that are not listed here are subject to change without notice. For this reason, blindly using functions listed in proto.h is to be avoided when writing extensions.
Note that all Perl API global variables must be referenced with the PL_
prefix. Some macros are provided for compatibility with the older, unadorned names, but this support may be disabled in a future release.
The listing is alphabetical, case insensitive.
A backward-compatible version of GIMME_V
which can only return G_SCALAR
or G_ARRAY
; in a void context, it returns G_SCALAR
. Deprecated. Use GIMME_V
instead.
U32 GIMME
The XSUB-writer's equivalent to Perl's wantarray
. Returns G_VOID
, G_SCALAR
or G_ARRAY
for void, scalar or list context, respectively.
U32 GIMME_V
Used to indicate list context. See GIMME_V
, GIMME
and perlcall.
Indicates that arguments returned from a callback should be discarded. See perlcall.
Used to force a Perl eval
wrapper around a callback. See perlcall.
Indicates that no arguments are being sent to a callback. See perlcall.
Used to indicate scalar context. See GIMME_V
, GIMME
, and perlcall.
Used to indicate void context. See GIMME_V
and perlcall.
Same as av_len()
. Deprecated, use av_len()
instead.
int AvFILL(AV* av)
Clears an array, making it empty. Does not free the memory used by the array itself.
void av_clear(AV* ar)
Deletes the element indexed by key
from the array. Returns the deleted element. flags
is currently ignored.
SV* av_delete(AV* ar, I32 key, I32 flags)
Returns true if the element indexed by key
has been initialized.
This relies on the fact that uninitialized array elements are set to &PL_sv_undef
.
bool av_exists(AV* ar, I32 key)
Pre-extend an array. The key
is the index to which the array should be extended.
void av_extend(AV* ar, I32 key)
Returns the SV at the specified index in the array. The key
is the index. If lval
is set then the fetch will be part of a store. Check that the return value is non-null before dereferencing it to a SV*
.
See "Understanding the Magic of Tied Hashes and Arrays" in perlguts for more information on how to use this function on tied arrays.
SV** av_fetch(AV* ar, I32 key, I32 lval)
Ensure than an array has a given number of elements, equivalent to Perl's $#array = $fill;
.
void av_fill(AV* ar, I32 fill)
Returns the highest index in the array. Returns -1 if the array is empty.
I32 av_len(AV* ar)
Creates a new AV and populates it with a list of SVs. The SVs are copied into the array, so they may be freed after the call to av_make. The new AV will have a reference count of 1.
AV* av_make(I32 size, SV** svp)
Pops an SV off the end of the array. Returns &PL_sv_undef
if the array is empty.
SV* av_pop(AV* ar)
Pushes an SV onto the end of the array. The array will grow automatically to accommodate the addition.
void av_push(AV* ar, SV* val)
Shifts an SV off the beginning of the array.
SV* av_shift(AV* ar)
Stores an SV in an array. The array index is specified as key
. The return value will be NULL if the operation failed or if the value did not need to be actually stored within the array (as in the case of tied arrays). Otherwise it can be dereferenced to get the original SV*
. Note that the caller is responsible for suitably incrementing the reference count of val
before the call, and decrementing it if the function returned NULL.
See "Understanding the Magic of Tied Hashes and Arrays" in perlguts for more information on how to use this function on tied arrays.
SV** av_store(AV* ar, I32 key, SV* val)
Undefines the array. Frees the memory used by the array itself.
void av_undef(AV* ar)
Unshift the given number of undef
values onto the beginning of the array. The array will grow automatically to accommodate the addition. You must then use av_store
to assign values to these new elements.
void av_unshift(AV* ar, I32 num)
Returns the AV of the specified Perl array. If create
is set and the Perl variable does not exist then it will be created. If create
is not set and the variable does not exist then NULL is returned.
NOTE: the perl_ form of this function is deprecated.
AV* get_av(const char* name, I32 create)
Creates a new AV. The reference count is set to 1.
AV* newAV()
Null AV pointer.
Sort an array. Here is an example:
sortsv(AvARRAY(av), av_len(av)+1, Perl_sv_cmp_locale);
See lib/sort.pm for details about controlling the sorting algorithm.
void sortsv(SV ** array, size_t num_elts, SVCOMPARE_t cmp)
Performs a callback to the specified Perl sub. See perlcall.
NOTE: the perl_ form of this function is deprecated.
I32 call_argv(const char* sub_name, I32 flags, char** argv)
Performs a callback to the specified Perl method. The blessed object must be on the stack. See perlcall.
NOTE: the perl_ form of this function is deprecated.
I32 call_method(const char* methname, I32 flags)
Performs a callback to the specified Perl sub. See perlcall.
NOTE: the perl_ form of this function is deprecated.
I32 call_pv(const char* sub_name, I32 flags)
Performs a callback to the Perl sub whose name is in the SV. See perlcall.
NOTE: the perl_ form of this function is deprecated.
I32 call_sv(SV* sv, I32 flags)
Opening bracket on a callback. See LEAVE
and perlcall.
ENTER;
Tells Perl to eval
the given string and return an SV* result.
NOTE: the perl_ form of this function is deprecated.
SV* eval_pv(const char* p, I32 croak_on_error)
Tells Perl to eval
the string in the SV.
NOTE: the perl_ form of this function is deprecated.
I32 eval_sv(SV* sv, I32 flags)
Closing bracket for temporaries on a callback. See SAVETMPS
and perlcall.
FREETMPS;
Closing bracket on a callback. See ENTER
and perlcall.
LEAVE;
Opening bracket for temporaries on a callback. See FREETMPS
and perlcall.
SAVETMPS;
Returns a boolean indicating whether the C char
is an ASCII alphanumeric character (including underscore) or digit.
bool isALNUM(char ch)
Returns a boolean indicating whether the C char
is an ASCII alphabetic character.
bool isALPHA(char ch)
Returns a boolean indicating whether the C char
is an ASCII digit.
bool isDIGIT(char ch)
Returns a boolean indicating whether the C char
is a lowercase character.
bool isLOWER(char ch)
Returns a boolean indicating whether the C char
is whitespace.
bool isSPACE(char ch)
Returns a boolean indicating whether the C char
is an uppercase character.
bool isUPPER(char ch)
Converts the specified character to lowercase.
char toLOWER(char ch)
Converts the specified character to uppercase.
char toUPPER(char ch)
Create and return a new interpreter by cloning the current one.
PerlInterpreter* perl_clone(PerlInterpreter* interp, UV flags)
Returns the stash of the CV.
HV* CvSTASH(CV* cv)
Returns the CV of the specified Perl subroutine. If create
is set and the Perl subroutine does not exist then it will be declared (which has the same effect as saying sub name;
). If create
is not set and the subroutine does not exist then NULL is returned.
NOTE: the perl_ form of this function is deprecated.
CV* get_cv(const char* name, I32 create)
Null CV pointer.
Loads the module whose name is pointed to by the string part of name. Note that the actual module name, not its filename, should be given. Eg, "Foo::Bar" instead of "Foo/Bar.pm". flags can be any of PERL_LOADMOD_DENY, PERL_LOADMOD_NOIMPORT, or PERL_LOADMOD_IMPORT_OPS (or 0 for no flags). ver, if specified, provides version semantics similar to use Foo::Bar VERSION
. The optional trailing SV* arguments can be used to specify arguments to the module's import() method, similar to use Foo::Bar VERSION LIST
.
void load_module(U32 flags, SV* name, SV* ver, ...)
Stub that provides thread hook for perl_destruct when there are no threads.
int nothreadhook()
Allocates a new Perl interpreter. See perlembed.
PerlInterpreter* perl_alloc()
Initializes a new Perl interpreter. See perlembed.
void perl_construct(PerlInterpreter* interp)
Shuts down a Perl interpreter. See perlembed.
int perl_destruct(PerlInterpreter* interp)
Releases a Perl interpreter. See perlembed.
void perl_free(PerlInterpreter* interp)
Tells a Perl interpreter to parse a Perl script. See perlembed.
int perl_parse(PerlInterpreter* interp, XSINIT_t xsinit, int argc, char** argv, char** env)
Tells a Perl interpreter to run. See perlembed.
int perl_run(PerlInterpreter* interp)
Tells Perl to require
the file named by the string argument. It is analogous to the Perl code eval "require '$file'"
. It's even implemented that way; consider using Perl_load_module instead.
NOTE: the perl_ form of this function is deprecated.
void require_pv(const char* pv)
The engine implementing pack() Perl function.
void pack_cat(SV *cat, char *pat, char *patend, SV **beglist, SV **endlist, SV ***next_in_list, U32 flags)
The engine implementing unpack() Perl function.
I32 unpack_str(char *pat, char *patend, char *s, char *strbeg, char *strend, char **new_s, I32 ocnt, U32 flags)
PL_modglobal
is a general purpose, interpreter global HV for use by extensions that need to keep information on a per-interpreter basis. In a pinch, it can also be used as a symbol table for extensions to share data among each other. It is a good idea to use keys prefixed by the package name of the extension that owns the data.
HV* PL_modglobal
A convenience variable which is typically used with SvPV
when one doesn't care about the length of the string. It is usually more efficient to either declare a local variable and use that instead or to use the SvPV_nolen
macro.
STRLEN PL_na
This is the false
SV. See PL_sv_yes
. Always refer to this as &PL_sv_no
.
SV PL_sv_no
This is the undef
SV. Always refer to this as &PL_sv_undef
.
SV PL_sv_undef
This is the true
SV. See PL_sv_no
. Always refer to this as &PL_sv_yes
.
SV PL_sv_yes
Return the SV from the GV.
SV* GvSV(GV* gv)
Returns the glob with the given name
and a defined subroutine or NULL
. The glob lives in the given stash
, or in the stashes accessible via @ISA and UNIVERSAL::.
The argument level
should be either 0 or -1. If level==0
, as a side-effect creates a glob with the given name
in the given stash
which in the case of success contains an alias for the subroutine, and sets up caching info for this glob. Similarly for all the searched stashes.
This function grants "SUPER"
token as a postfix of the stash name. The GV returned from gv_fetchmeth
may be a method cache entry, which is not visible to Perl code. So when calling call_sv
, you should not use the GV directly; instead, you should use the method's CV, which can be obtained from the GV with the GvCV
macro.
GV* gv_fetchmeth(HV* stash, const char* name, STRLEN len, I32 level)
GV* gv_fetchmethod(HV* stash, const char* name)
Returns the glob which contains the subroutine to call to invoke the method on the stash
. In fact in the presence of autoloading this may be the glob for "AUTOLOAD". In this case the corresponding variable $AUTOLOAD is already setup.
The third parameter of gv_fetchmethod_autoload
determines whether AUTOLOAD lookup is performed if the given method is not present: non-zero means yes, look for AUTOLOAD; zero means no, don't look for AUTOLOAD. Calling gv_fetchmethod
is equivalent to calling gv_fetchmethod_autoload
with a non-zero autoload
parameter.
These functions grant "SUPER"
token as a prefix of the method name. Note that if you want to keep the returned glob for a long time, you need to check for it being "AUTOLOAD", since at the later time the call may load a different subroutine due to $AUTOLOAD changing its value. Use the glob created via a side effect to do this.
These functions have the same side-effects and as gv_fetchmeth
with level==0
. name
should be writable if contains ':'
or ' ''
. The warning against passing the GV returned by gv_fetchmeth
to call_sv
apply equally to these functions.
GV* gv_fetchmethod_autoload(HV* stash, const char* name, I32 autoload)
Same as gv_fetchmeth(), but looks for autoloaded subroutines too. Returns a glob for the subroutine.
For an autoloaded subroutine without a GV, will create a GV even if level < 0
. For an autoloaded subroutine without a stub, GvCV() of the result may be zero.
GV* gv_fetchmeth_autoload(HV* stash, const char* name, STRLEN len, I32 level)
Returns a pointer to the stash for a specified package. name
should be a valid UTF-8 string. If create
is set then the package will be created if it does not already exist. If create
is not set and the package does not exist then NULL is returned.
HV* gv_stashpv(const char* name, I32 create)
Returns a pointer to the stash for a specified package, which must be a valid UTF-8 string. See gv_stashpv
.
HV* gv_stashsv(SV* sv, I32 create)
This flag, used in the length slot of hash entries and magic structures, specifies the structure contains an SV*
pointer where a char*
pointer is to be expected. (For information only--not to be used).
Null character pointer. =for hackers Found in file handy.h
Null SV pointer.
Returns the HV of the specified Perl hash. If create
is set and the Perl variable does not exist then it will be created. If create
is not set and the variable does not exist then NULL is returned.
NOTE: the perl_ form of this function is deprecated.
HV* get_hv(const char* name, I32 create)
Returns the computed hash stored in the hash entry.
U32 HeHASH(HE* he)
Returns the actual pointer stored in the key slot of the hash entry. The pointer may be either char*
or SV*
, depending on the value of HeKLEN()
. Can be assigned to. The HePV()
or HeSVKEY()
macros are usually preferable for finding the value of a key.
void* HeKEY(HE* he)
If this is negative, and amounts to HEf_SVKEY
, it indicates the entry holds an SV*
key. Otherwise, holds the actual length of the key. Can be assigned to. The HePV()
macro is usually preferable for finding key lengths.
STRLEN HeKLEN(HE* he)
Returns the key slot of the hash entry as a char*
value, doing any necessary dereferencing of possibly SV*
keys. The length of the string is placed in len
(this is a macro, so do not use &len
). If you do not care about what the length of the key is, you may use the global variable PL_na
, though this is rather less efficient than using a local variable. Remember though, that hash keys in perl are free to contain embedded nulls, so using strlen()
or similar is not a good way to find the length of hash keys. This is very similar to the SvPV()
macro described elsewhere in this document.
char* HePV(HE* he, STRLEN len)
Returns the key as an SV*
, or Nullsv
if the hash entry does not contain an SV*
key.
SV* HeSVKEY(HE* he)
Returns the key as an SV*
. Will create and return a temporary mortal SV*
if the hash entry contains only a char*
key.
SV* HeSVKEY_force(HE* he)
Sets the key to a given SV*
, taking care to set the appropriate flags to indicate the presence of an SV*
key, and returns the same SV*
.
SV* HeSVKEY_set(HE* he, SV* sv)
Returns the value slot (type SV*
) stored in the hash entry.
SV* HeVAL(HE* he)
Returns the package name of a stash. See SvSTASH
, CvSTASH
.
char* HvNAME(HV* stash)
Clears a hash, making it empty.
void hv_clear(HV* tb)
Deletes a key/value pair in the hash. The value SV is removed from the hash and returned to the caller. The klen
is the length of the key. The flags
value will normally be zero; if set to G_DISCARD then NULL will be returned.
SV* hv_delete(HV* tb, const char* key, I32 klen, I32 flags)
Deletes a key/value pair in the hash. The value SV is removed from the hash and returned to the caller. The flags
value will normally be zero; if set to G_DISCARD then NULL will be returned. hash
can be a valid precomputed hash value, or 0 to ask for it to be computed.
SV* hv_delete_ent(HV* tb, SV* key, I32 flags, U32 hash)
Returns a boolean indicating whether the specified hash key exists. The klen
is the length of the key.
bool hv_exists(HV* tb, const char* key, I32 klen)
Returns a boolean indicating whether the specified hash key exists. hash
can be a valid precomputed hash value, or 0 to ask for it to be computed.
bool hv_exists_ent(HV* tb, SV* key, U32 hash)
Returns the SV which corresponds to the specified key in the hash. The klen
is the length of the key. If lval
is set then the fetch will be part of a store. Check that the return value is non-null before dereferencing it to an SV*
.
See "Understanding the Magic of Tied Hashes and Arrays" in perlguts for more information on how to use this function on tied hashes.
SV** hv_fetch(HV* tb, const char* key, I32 klen, I32 lval)
Returns the hash entry which corresponds to the specified key in the hash. hash
must be a valid precomputed hash number for the given key
, or 0 if you want the function to compute it. IF lval
is set then the fetch will be part of a store. Make sure the return value is non-null before accessing it. The return value when tb
is a tied hash is a pointer to a static location, so be sure to make a copy of the structure if you need to store it somewhere.
See "Understanding the Magic of Tied Hashes and Arrays" in perlguts for more information on how to use this function on tied hashes.
HE* hv_fetch_ent(HV* tb, SV* key, I32 lval, U32 hash)
Prepares a starting point to traverse a hash table. Returns the number of keys in the hash (i.e. the same as HvKEYS(tb)
). The return value is currently only meaningful for hashes without tie magic.
NOTE: Before version 5.004_65, hv_iterinit
used to return the number of hash buckets that happen to be in use. If you still need that esoteric value, you can get it through the macro HvFILL(tb)
.
I32 hv_iterinit(HV* tb)
Returns the key from the current position of the hash iterator. See hv_iterinit
.
char* hv_iterkey(HE* entry, I32* retlen)
Returns the key as an SV*
from the current position of the hash iterator. The return value will always be a mortal copy of the key. Also see hv_iterinit
.
SV* hv_iterkeysv(HE* entry)
Returns entries from a hash iterator. See hv_iterinit
.
You may call hv_delete
or hv_delete_ent
on the hash entry that the iterator currently points to, without losing your place or invalidating your iterator. Note that in this case the current entry is deleted from the hash with your iterator holding the last reference to it. Your iterator is flagged to free the entry on the next call to hv_iternext
, so you must not discard your iterator immediately else the entry will leak - call hv_iternext
to trigger the resource deallocation.
HE* hv_iternext(HV* tb)
Performs an hv_iternext
, hv_iterkey
, and hv_iterval
in one operation.
SV* hv_iternextsv(HV* hv, char** key, I32* retlen)
Returns entries from a hash iterator. See hv_iterinit
and hv_iternext
. The flags
value will normally be zero; if HV_ITERNEXT_WANTPLACEHOLDERS is set the placeholders keys (for restricted hashes) will be returned in addition to normal keys. By default placeholders are automatically skipped over. Currently a placeholder is implemented with a value that is literally <&Perl_sv_undef> (a regular undef
value is a normal read-write SV for which !SvOK
is false). Note that the implementation of placeholders and restricted hashes may change, and the implementation currently is insufficiently abstracted for any change to be tidy.
NOTE: this function is experimental and may change or be removed without notice.
HE* hv_iternext_flags(HV* tb, I32 flags)
Returns the value from the current position of the hash iterator. See hv_iterkey
.
SV* hv_iterval(HV* tb, HE* entry)
Adds magic to a hash. See sv_magic
.
void hv_magic(HV* hv, GV* gv, int how)
Stores an SV in a hash. The hash key is specified as key
and klen
is the length of the key. The hash
parameter is the precomputed hash value; if it is zero then Perl will compute it. The return value will be NULL if the operation failed or if the value did not need to be actually stored within the hash (as in the case of tied hashes). Otherwise it can be dereferenced to get the original SV*
. Note that the caller is responsible for suitably incrementing the reference count of val
before the call, and decrementing it if the function returned NULL.
See "Understanding the Magic of Tied Hashes and Arrays" in perlguts for more information on how to use this function on tied hashes.
SV** hv_store(HV* tb, const char* key, I32 klen, SV* val, U32 hash)
Stores val
in a hash. The hash key is specified as key
. The hash
parameter is the precomputed hash value; if it is zero then Perl will compute it. The return value is the new hash entry so created. It will be NULL if the operation failed or if the value did not need to be actually stored within the hash (as in the case of tied hashes). Otherwise the contents of the return value can be accessed using the He?
macros described here. Note that the caller is responsible for suitably incrementing the reference count of val
before the call, and decrementing it if the function returned NULL.
See "Understanding the Magic of Tied Hashes and Arrays" in perlguts for more information on how to use this function on tied hashes.
HE* hv_store_ent(HV* tb, SV* key, SV* val, U32 hash)
Undefines the hash.
void hv_undef(HV* tb)
Creates a new HV. The reference count is set to 1.
HV* newHV()
Null HV pointer.
Clear something magical that the SV represents. See sv_magic
.
int mg_clear(SV* sv)
Copies the magic from one SV to another. See sv_magic
.
int mg_copy(SV* sv, SV* nsv, const char* key, I32 klen)
Finds the magic pointer for type matching the SV. See sv_magic
.
MAGIC* mg_find(SV* sv, int type)
Free any magic storage used by the SV. See sv_magic
.
int mg_free(SV* sv)
Do magic after a value is retrieved from the SV. See sv_magic
.
int mg_get(SV* sv)
Report on the SV's length. See sv_magic
.
U32 mg_length(SV* sv)
Turns on the magical status of an SV. See sv_magic
.
void mg_magical(SV* sv)
Do magic after a value is assigned to the SV. See sv_magic
.
int mg_set(SV* sv)
Invokes mg_get
on an SV if it has 'get' magic. This macro evaluates its argument more than once.
void SvGETMAGIC(SV* sv)
Arranges for a mutual exclusion lock to be obtained on sv if a suitable module has been loaded.
void SvLOCK(SV* sv)
Invokes mg_set
on an SV if it has 'set' magic. This macro evaluates its argument more than once.
void SvSETMAGIC(SV* sv)
Like SvSetSV
, but does any set magic required afterwards.
void SvSetMagicSV(SV* dsb, SV* ssv)
Like SvSetMagicSV
, but does any set magic required afterwards.
void SvSetMagicSV_nosteal(SV* dsv, SV* ssv)
Calls sv_setsv
if dsv is not the same as ssv. May evaluate arguments more than once.
void SvSetSV(SV* dsb, SV* ssv)
Calls a non-destructive version of sv_setsv
if dsv is not the same as ssv. May evaluate arguments more than once.
void SvSetSV_nosteal(SV* dsv, SV* ssv)
Arranges for sv to be shared between threads if a suitable module has been loaded.
void SvSHARE(SV* sv)
The XSUB-writer's interface to the C memcpy
function. The src
is the source, dest
is the destination, nitems
is the number of items, and type
is the type. May fail on overlapping copies. See also Move
.
void Copy(void* src, void* dest, int nitems, type)
The XSUB-writer's interface to the C memmove
function. The src
is the source, dest
is the destination, nitems
is the number of items, and type
is the type. Can do overlapping moves. See also Copy
.
void Move(void* src, void* dest, int nitems, type)
The XSUB-writer's interface to the C malloc
function.
void New(int id, void* ptr, int nitems, type)
The XSUB-writer's interface to the C malloc
function, with cast.
void Newc(int id, void* ptr, int nitems, type, cast)
Creates a new SV. A non-zero len
parameter indicates the number of bytes of preallocated string space the SV should have. An extra byte for a tailing NUL is also reserved. (SvPOK is not set for the SV even if string space is allocated.) The reference count for the new SV is set to 1. id
is an integer id between 0 and 1299 (used to identify leaks).
SV* NEWSV(int id, STRLEN len)
The XSUB-writer's interface to the C malloc
function. The allocated memory is zeroed with memzero
.
void Newz(int id, void* ptr, int nitems, type)
Fill up memory with a pattern (byte 0xAB over and over again) that hopefully catches attempts to access uninitialized memory.
void Poison(void* dest, int nitems, type)
The XSUB-writer's interface to the C realloc
function.
void Renew(void* ptr, int nitems, type)
The XSUB-writer's interface to the C realloc
function, with cast.
void Renewc(void* ptr, int nitems, type, cast)
The XSUB-writer's interface to the C free
function.
void Safefree(void* ptr)
Perl's version of strdup()
. Returns a pointer to a newly allocated string which is a duplicate of pv
. The size of the string is determined by strlen()
. The memory allocated for the new string can be freed with the Safefree()
function.
char* savepv(const char* pv)
Perl's version of what strndup()
would be if it existed. Returns a pointer to a newly allocated string which is a duplicate of the first len
bytes from pv
. The memory allocated for the new string can be freed with the Safefree()
function.
char* savepvn(const char* pv, I32 len)
A version of savepv()
which allocates the duplicate string in memory which is shared between threads.
char* savesharedpv(const char* pv)
This is an architecture-independent macro to copy one structure to another.
void StructCopy(type src, type dest, type)
The XSUB-writer's interface to the C memzero
function. The dest
is the destination, nitems
is the number of items, and type
is the type.
void Zero(void* dest, int nitems, type)
Analyses the string in order to make fast searches on it using fbm_instr() -- the Boyer-Moore algorithm.
void fbm_compile(SV* sv, U32 flags)
Returns the location of the SV in the string delimited by str
and strend
. It returns Nullch
if the string can't be found. The sv
does not have to be fbm_compiled, but the search will not be as fast then.
char* fbm_instr(unsigned char* big, unsigned char* bigend, SV* littlesv, U32 flags)
Takes a sprintf-style format pattern and conventional (non-SV) arguments and returns the formatted string.
(char *) Perl_form(pTHX_ const char* pat, ...)
can be used any place a string (char *) is required:
char * s = Perl_form("%d.%d",major,minor);
Uses a single private buffer so if you want to format several strings you must explicitly copy the earlier strings away (and free the copies when you are done).
char* form(const char* pat, ...)
Fill the sv with current working directory
int getcwd_sv(SV* sv)
Test two strings to see if they are equal. Returns true or false.
bool strEQ(char* s1, char* s2)
Test two strings to see if the first, s1
, is greater than or equal to the second, s2
. Returns true or false.
bool strGE(char* s1, char* s2)
Test two strings to see if the first, s1
, is greater than the second, s2
. Returns true or false.
bool strGT(char* s1, char* s2)
Test two strings to see if the first, s1
, is less than or equal to the second, s2
. Returns true or false.
bool strLE(char* s1, char* s2)
Test two strings to see if the first, s1
, is less than the second, s2
. Returns true or false.
bool strLT(char* s1, char* s2)
Test two strings to see if they are different. Returns true or false.
bool strNE(char* s1, char* s2)
Test two strings to see if they are equal. The len
parameter indicates the number of bytes to compare. Returns true or false. (A wrapper for strncmp
).
bool strnEQ(char* s1, char* s2, STRLEN len)
Test two strings to see if they are different. The len
parameter indicates the number of bytes to compare. Returns true or false. (A wrapper for strncmp
).
bool strnNE(char* s1, char* s2, STRLEN len)
converts a string representing a binary number to numeric form.
On entry start and *len give the string to scan, *flags gives conversion flags, and result should be NULL or a pointer to an NV. The scan stops at the end of the string, or the first invalid character. On return *len is set to the length scanned string, and *flags gives output flags.
If the value is <= UV_MAX it is returned as a UV, the output flags are clear, and nothing is written to *result. If the value is > UV_MAX grok_bin
returns UV_MAX, sets PERL_SCAN_GREATER_THAN_UV_MAX
in the output flags, and writes the value to *result (or the value is discarded if result is NULL).
The hex number may optionally be prefixed with "0b" or "b" unless PERL_SCAN_DISALLOW_PREFIX
is set in *flags on entry. If PERL_SCAN_ALLOW_UNDERSCORES
is set in *flags then the binary number may use '_' characters to separate digits.
UV grok_bin(char* start, STRLEN* len, I32* flags, NV *result)
converts a string representing a hex number to numeric form.
On entry start and *len give the string to scan, *flags gives conversion flags, and result should be NULL or a pointer to an NV. The scan stops at the end of the string, or the first non-hex-digit character. On return *len is set to the length scanned string, and *flags gives output flags.
If the value is <= UV_MAX it is returned as a UV, the output flags are clear, and nothing is written to *result. If the value is > UV_MAX grok_hex
returns UV_MAX, sets PERL_SCAN_GREATER_THAN_UV_MAX
in the output flags, and writes the value to *result (or the value is discarded if result is NULL).
The hex number may optionally be prefixed with "0x" or "x" unless PERL_SCAN_DISALLOW_PREFIX
is set in *flags on entry. If PERL_SCAN_ALLOW_UNDERSCORES
is set in *flags then the hex number may use '_' characters to separate digits.
UV grok_hex(char* start, STRLEN* len, I32* flags, NV *result)
Recognise (or not) a number. The type of the number is returned (0 if unrecognised), otherwise it is a bit-ORed combination of IS_NUMBER_IN_UV, IS_NUMBER_GREATER_THAN_UV_MAX, IS_NUMBER_NOT_INT, IS_NUMBER_NEG, IS_NUMBER_INFINITY, IS_NUMBER_NAN (defined in perl.h).
If the value of the number can fit an in UV, it is returned in the *valuep IS_NUMBER_IN_UV will be set to indicate that *valuep is valid, IS_NUMBER_IN_UV will never be set unless *valuep is valid, but *valuep may have been assigned to during processing even though IS_NUMBER_IN_UV is not set on return. If valuep is NULL, IS_NUMBER_IN_UV will be set for the same cases as when valuep is non-NULL, but no actual assignment (or SEGV) will occur.
IS_NUMBER_NOT_INT will be set with IS_NUMBER_IN_UV if trailing decimals were seen (in which case *valuep gives the true value truncated to an integer), and IS_NUMBER_NEG if the number is negative (in which case *valuep holds the absolute value). IS_NUMBER_IN_UV is not set if e notation was used or the number is larger than a UV.
int grok_number(const char *pv, STRLEN len, UV *valuep)
Scan and skip for a numeric decimal separator (radix).
bool grok_numeric_radix(const char **sp, const char *send)
UV grok_oct(char* start, STRLEN* len, I32* flags, NV *result)
For backwards compatibility. Use grok_bin
instead.
NV scan_bin(char* start, STRLEN len, STRLEN* retlen)
For backwards compatibility. Use grok_hex
instead.
NV scan_hex(char* start, STRLEN len, STRLEN* retlen)
For backwards compatibility. Use grok_oct
instead.
NV scan_oct(char* start, STRLEN len, STRLEN* retlen)
If cv
is a constant sub eligible for inlining. returns the constant value returned by the sub. Otherwise, returns NULL.
Constant subs can be created with newCONSTSUB
or as described in "Constant Functions" in perlsub.
SV* cv_const_sv(CV* cv)
Creates a constant sub equivalent to Perl sub FOO () { 123 }
which is eligible for inlining at compile-time.
CV* newCONSTSUB(HV* stash, char* name, SV* sv)
Used by xsubpp
to hook up XSUBs as Perl subs.
Declare a stack marker variable, mark
, for the XSUB. See MARK
and dORIGMARK
.
dMARK;
Saves the original stack mark for the XSUB. See ORIGMARK
.
dORIGMARK;
Declares a local copy of perl's stack pointer for the XSUB, available via the SP
macro. See SP
.
dSP;
Used to extend the argument stack for an XSUB's return values. Once used, guarantees that there is room for at least nitems
to be pushed onto the stack.
void EXTEND(SP, int nitems)
Stack marker variable for the XSUB. See dMARK
.
The original stack mark for the XSUB. See dORIGMARK
.
Pops an integer off the stack.
IV POPi
Pops a long off the stack.
long POPl
Pops a double off the stack.
NV POPn
Pops a string off the stack. Deprecated. New code should provide a STRLEN n_a and use POPpx.
char* POPp
Pops a string off the stack which must consist of bytes i.e. characters < 256. Requires a variable STRLEN n_a in scope.
char* POPpbytex
Pops a string off the stack. Requires a variable STRLEN n_a in scope.
char* POPpx
Pops an SV off the stack.
SV* POPs
Push an integer onto the stack. The stack must have room for this element. Handles 'set' magic. See XPUSHi
.
void PUSHi(IV iv)
Opening bracket for arguments on a callback. See PUTBACK
and perlcall.
PUSHMARK;
Push a double onto the stack. The stack must have room for this element. Handles 'set' magic. See XPUSHn
.
void PUSHn(NV nv)
Push a string onto the stack. The stack must have room for this element. The len
indicates the length of the string. Handles 'set' magic. See XPUSHp
.
void PUSHp(char* str, STRLEN len)
Push an SV onto the stack. The stack must have room for this element. Does not handle 'set' magic. See XPUSHs
.
void PUSHs(SV* sv)
Push an unsigned integer onto the stack. The stack must have room for this element. See XPUSHu
.
void PUSHu(UV uv)
Closing bracket for XSUB arguments. This is usually handled by xsubpp
. See PUSHMARK
and perlcall for other uses.
PUTBACK;
Stack pointer. This is usually handled by xsubpp
. See dSP
and SPAGAIN
.
Refetch the stack pointer. Used after a callback. See perlcall.
SPAGAIN;
Push an integer onto the stack, extending the stack if necessary. Handles 'set' magic. See PUSHi
.
void XPUSHi(IV iv)
Push a double onto the stack, extending the stack if necessary. Handles 'set' magic. See PUSHn
.
void XPUSHn(NV nv)
Push a string onto the stack, extending the stack if necessary. The len
indicates the length of the string. Handles 'set' magic. See PUSHp
.
void XPUSHp(char* str, STRLEN len)
Push an SV onto the stack, extending the stack if necessary. Does not handle 'set' magic. See PUSHs
.
void XPUSHs(SV* sv)
Push an unsigned integer onto the stack, extending the stack if necessary. See PUSHu
.
void XPUSHu(UV uv)
Return from XSUB, indicating number of items on the stack. This is usually handled by xsubpp
.
void XSRETURN(int nitems)
Return an integer from an XSUB immediately. Uses XST_mIV
.
void XSRETURN_IV(IV iv)
Return &PL_sv_no
from an XSUB immediately. Uses XST_mNO
.
XSRETURN_NO;
Return a double from an XSUB immediately. Uses XST_mNV
.
void XSRETURN_NV(NV nv)
Return a copy of a string from an XSUB immediately. Uses XST_mPV
.
void XSRETURN_PV(char* str)
Return &PL_sv_undef
from an XSUB immediately. Uses XST_mUNDEF
.
XSRETURN_UNDEF;
Return &PL_sv_yes
from an XSUB immediately. Uses XST_mYES
.
XSRETURN_YES;
Place an integer into the specified position pos
on the stack. The value is stored in a new mortal SV.
void XST_mIV(int pos, IV iv)
Place &PL_sv_no
into the specified position pos
on the stack.
void XST_mNO(int pos)
Place a double into the specified position pos
on the stack. The value is stored in a new mortal SV.
void XST_mNV(int pos, NV nv)
Place a copy of a string into the specified position pos
on the stack. The value is stored in a new mortal SV.
void XST_mPV(int pos, char* str)
Place &PL_sv_undef
into the specified position pos
on the stack.
void XST_mUNDEF(int pos)
Place &PL_sv_yes
into the specified position pos
on the stack.
void XST_mYES(int pos)
An enum of flags for Perl types. These are found in the file sv.h in the svtype
enum. Test these flags with the SvTYPE
macro.
Integer type flag for scalars. See svtype
.
Double type flag for scalars. See svtype
.
Pointer type flag for scalars. See svtype
.
Type flag for arrays. See svtype
.
Type flag for code refs. See svtype
.
Type flag for hashes. See svtype
.
Type flag for blessed scalars. See svtype
.
Returns the SV of the specified Perl scalar. If create
is set and the Perl variable does not exist then it will be created. If create
is not set and the variable does not exist then NULL is returned.
NOTE: the perl_ form of this function is deprecated.
SV* get_sv(const char* name, I32 create)
Test if the content of an SV looks like a number (or is a number). Inf
and Infinity
are treated as numbers (so will not issue a non-numeric warning), even if your atof() doesn't grok them.
I32 looks_like_number(SV* sv)
Creates an RV wrapper for an SV. The reference count for the original SV is incremented.
SV* newRV_inc(SV* sv)
Creates an RV wrapper for an SV. The reference count for the original SV is not incremented.
SV* newRV_noinc(SV *sv)
Create a new null SV, or if len > 0, create a new empty SVt_PV type SV with an initial PV allocation of len+1. Normally accessed via the NEWSV
macro.
SV* newSV(STRLEN len)
Creates a new SV and copies an integer into it. The reference count for the SV is set to 1.
SV* newSViv(IV i)
Creates a new SV and copies a floating point value into it. The reference count for the SV is set to 1.
SV* newSVnv(NV n)
Creates a new SV and copies a string into it. The reference count for the SV is set to 1. If len
is zero, Perl will compute the length using strlen(). For efficiency, consider using newSVpvn
instead.
SV* newSVpv(const char* s, STRLEN len)
Creates a new SV and initializes it with the string formatted like sprintf
.
SV* newSVpvf(const char* pat, ...)
Creates a new SV and copies a string into it. The reference count for the SV is set to 1. Note that if len
is zero, Perl will create a zero length string. You are responsible for ensuring that the source string is at least len
bytes long.
SV* newSVpvn(const char* s, STRLEN len)
Creates a new SV with its SvPVX pointing to a shared string in the string table. If the string does not already exist in the table, it is created first. Turns on READONLY and FAKE. The string's hash is stored in the UV slot of the SV; if the hash
parameter is non-zero, that value is used; otherwise the hash is computed. The idea here is that as the string table is used for shared hash keys these strings will have SvPVX == HeKEY and hash lookup will avoid string compare.
SV* newSVpvn_share(const char* s, I32 len, U32 hash)
Creates a new SV for the RV, rv
, to point to. If rv
is not an RV then it will be upgraded to one. If classname
is non-null then the new SV will be blessed in the specified package. The new SV is returned and its reference count is 1.
SV* newSVrv(SV* rv, const char* classname)
Creates a new SV which is an exact duplicate of the original SV. (Uses sv_setsv
).
SV* newSVsv(SV* old)
Creates a new SV and copies an unsigned integer into it. The reference count for the SV is set to 1.
SV* newSVuv(UV u)
Returns a pointer to the next character after the parsed vstring, as well as updating the passed in sv.
Function must be called like
sv = NEWSV(92,5);
s = new_vstring(s,sv);
The sv must already be large enough to store the vstring passed in.
char* new_vstring(char *vstr, SV *sv)
Returns the length of the string which is in the SV. See SvLEN
.
STRLEN SvCUR(SV* sv)
Set the length of the string which is in the SV. See SvCUR
.
void SvCUR_set(SV* sv, STRLEN len)
Returns a pointer to the last character in the string which is in the SV. See SvCUR
. Access the character as *(SvEND(sv)).
char* SvEND(SV* sv)
Expands the character buffer in the SV so that it has room for the indicated number of bytes (remember to reserve space for an extra trailing NUL character). Calls sv_grow
to perform the expansion if necessary. Returns a pointer to the character buffer.
char * SvGROW(SV* sv, STRLEN len)
Returns a boolean indicating whether the SV contains an integer.
bool SvIOK(SV* sv)
Returns a boolean indicating whether the SV contains an integer. Checks the private setting. Use SvIOK
.
bool SvIOKp(SV* sv)
Returns a boolean indicating whether the SV contains a signed integer.
void SvIOK_notUV(SV* sv)
Unsets the IV status of an SV.
void SvIOK_off(SV* sv)
Tells an SV that it is an integer.
void SvIOK_on(SV* sv)
Tells an SV that it is an integer and disables all other OK bits.
void SvIOK_only(SV* sv)
Tells and SV that it is an unsigned integer and disables all other OK bits.
void SvIOK_only_UV(SV* sv)
Returns a boolean indicating whether the SV contains an unsigned integer.
void SvIOK_UV(SV* sv)
Coerces the given SV to an integer and returns it. See SvIVx
for a version which guarantees to evaluate sv only once.
IV SvIV(SV* sv)
Coerces the given SV to an integer and returns it. Guarantees to evaluate sv only once. Use the more efficient SvIV
otherwise.
IV SvIVx(SV* sv)
Returns the raw value in the SV's IV slot, without checks or conversions. Only use when you are sure SvIOK is true. See also SvIV()
.
IV SvIVX(SV* sv)
Returns the size of the string buffer in the SV, not including any part attributable to SvOOK
. See SvCUR
.
STRLEN SvLEN(SV* sv)
Returns a boolean indicating whether the SV contains a number, integer or double.
bool SvNIOK(SV* sv)
Returns a boolean indicating whether the SV contains a number, integer or double. Checks the private setting. Use SvNIOK
.
bool SvNIOKp(SV* sv)
Unsets the NV/IV status of an SV.
void SvNIOK_off(SV* sv)
Returns a boolean indicating whether the SV contains a double.
bool SvNOK(SV* sv)
Returns a boolean indicating whether the SV contains a double. Checks the private setting. Use SvNOK
.
bool SvNOKp(SV* sv)
Unsets the NV status of an SV.
void SvNOK_off(SV* sv)
Tells an SV that it is a double.
void SvNOK_on(SV* sv)
Tells an SV that it is a double and disables all other OK bits.
void SvNOK_only(SV* sv)
Coerce the given SV to a double and return it. See SvNVx
for a version which guarantees to evaluate sv only once.
NV SvNV(SV* sv)
Returns the raw value in the SV's NV slot, without checks or conversions. Only use when you are sure SvNOK is true. See also SvNV()
.
NV SvNVX(SV* sv)
Coerces the given SV to a double and returns it. Guarantees to evaluate sv only once. Use the more efficient SvNV
otherwise.
NV SvNVx(SV* sv)
Returns a boolean indicating whether the value is an SV.
bool SvOK(SV* sv)
Returns a boolean indicating whether the SvIVX is a valid offset value for the SvPVX. This hack is used internally to speed up removal of characters from the beginning of a SvPV. When SvOOK is true, then the start of the allocated string buffer is really (SvPVX - SvIVX).
bool SvOOK(SV* sv)
Returns a boolean indicating whether the SV contains a character string.
bool SvPOK(SV* sv)
Returns a boolean indicating whether the SV contains a character string. Checks the private setting. Use SvPOK
.
bool SvPOKp(SV* sv)
Unsets the PV status of an SV.
void SvPOK_off(SV* sv)
Tells an SV that it is a string.
void SvPOK_on(SV* sv)
Tells an SV that it is a string and disables all other OK bits. Will also turn off the UTF8 status.
void SvPOK_only(SV* sv)
Tells an SV that it is a string and disables all other OK bits, and leaves the UTF8 status as it was.
void SvPOK_only_UTF8(SV* sv)
Returns a pointer to the string in the SV, or a stringified form of the SV if the SV does not contain a string. The SV may cache the stringified version becoming SvPOK
. Handles 'get' magic. See also SvPVx
for a version which guarantees to evaluate sv only once.
char* SvPV(SV* sv, STRLEN len)
Like SvPV
, but converts sv to byte representation first if necessary.
char* SvPVbyte(SV* sv, STRLEN len)
Like SvPV
, but converts sv to byte representation first if necessary. Guarantees to evaluate sv only once; use the more efficient SvPVbyte
otherwise.
char* SvPVbytex(SV* sv, STRLEN len)
Like SvPV_force
, but converts sv to byte representation first if necessary. Guarantees to evaluate sv only once; use the more efficient SvPVbyte_force
otherwise.
char* SvPVbytex_force(SV* sv, STRLEN len)
Like SvPV_force
, but converts sv to byte representation first if necessary.
char* SvPVbyte_force(SV* sv, STRLEN len)
Like SvPV_nolen
, but converts sv to byte representation first if necessary.
char* SvPVbyte_nolen(SV* sv)
Like SvPV
, but converts sv to utf8 first if necessary.
char* SvPVutf8(SV* sv, STRLEN len)
Like SvPV
, but converts sv to utf8 first if necessary. Guarantees to evaluate sv only once; use the more efficient SvPVutf8
otherwise.
char* SvPVutf8x(SV* sv, STRLEN len)
Like SvPV_force
, but converts sv to utf8 first if necessary. Guarantees to evaluate sv only once; use the more efficient SvPVutf8_force
otherwise.
char* SvPVutf8x_force(SV* sv, STRLEN len)
Like SvPV_force
, but converts sv to utf8 first if necessary.
char* SvPVutf8_force(SV* sv, STRLEN len)
Like SvPV_nolen
, but converts sv to utf8 first if necessary.
char* SvPVutf8_nolen(SV* sv)
A version of SvPV
which guarantees to evaluate sv only once.
char* SvPVx(SV* sv, STRLEN len)
Returns a pointer to the physical string in the SV. The SV must contain a string.
char* SvPVX(SV* sv)
Like SvPV
but will force the SV into containing just a string (SvPOK_only
). You want force if you are going to update the SvPVX
directly.
char* SvPV_force(SV* sv, STRLEN len)
Like SvPV
but will force the SV into containing just a string (SvPOK_only
). You want force if you are going to update the SvPVX
directly. Doesn't process magic.
char* SvPV_force_nomg(SV* sv, STRLEN len)
Returns a pointer to the string in the SV, or a stringified form of the SV if the SV does not contain a string. The SV may cache the stringified form becoming SvPOK
. Handles 'get' magic.
char* SvPV_nolen(SV* sv)
Returns the value of the object's reference count.
U32 SvREFCNT(SV* sv)
Decrements the reference count of the given SV.
void SvREFCNT_dec(SV* sv)
Increments the reference count of the given SV.
SV* SvREFCNT_inc(SV* sv)
Tests if the SV is an RV.
bool SvROK(SV* sv)
Unsets the RV status of an SV.
void SvROK_off(SV* sv)
Tells an SV that it is an RV.
void SvROK_on(SV* sv)
Dereferences an RV to return the SV.
SV* SvRV(SV* sv)
Returns the stash of the SV.
HV* SvSTASH(SV* sv)
Taints an SV if tainting is enabled
void SvTAINT(SV* sv)
Checks to see if an SV is tainted. Returns TRUE if it is, FALSE if not.
bool SvTAINTED(SV* sv)
Untaints an SV. Be very careful with this routine, as it short-circuits some of Perl's fundamental security features. XS module authors should not use this function unless they fully understand all the implications of unconditionally untainting the value. Untainting should be done in the standard perl fashion, via a carefully crafted regexp, rather than directly untainting variables.
void SvTAINTED_off(SV* sv)
Marks an SV as tainted.
void SvTAINTED_on(SV* sv)
Returns a boolean indicating whether Perl would evaluate the SV as true or false, defined or undefined. Does not handle 'get' magic.
bool SvTRUE(SV* sv)
Returns the type of the SV. See svtype
.
svtype SvTYPE(SV* sv)
Releases a mutual exclusion lock on sv if a suitable module has been loaded.
void SvUNLOCK(SV* sv)
Returns a boolean indicating whether the SV contains an unsigned integer.
void SvUOK(SV* sv)
Used to upgrade an SV to a more complex form. Uses sv_upgrade
to perform the upgrade if necessary. See svtype
.
void SvUPGRADE(SV* sv, svtype type)
Returns a boolean indicating whether the SV contains UTF-8 encoded data.
void SvUTF8(SV* sv)
Unsets the UTF8 status of an SV.
void SvUTF8_off(SV *sv)
Turn on the UTF8 status of an SV (the data is not changed, just the flag). Do not use frivolously.
void SvUTF8_on(SV *sv)
Coerces the given SV to an unsigned integer and returns it. See SvUVx
for a version which guarantees to evaluate sv only once.
UV SvUV(SV* sv)
Returns the raw value in the SV's UV slot, without checks or conversions. Only use when you are sure SvIOK is true. See also SvUV()
.
UV SvUVX(SV* sv)
Coerces the given SV to an unsigned integer and returns it. Guarantees to evaluate sv only once. Use the more efficient SvUV
otherwise.
UV SvUVx(SV* sv)
This function is only called on magical items, and is only used by sv_true() or its macro equivalent.
bool sv_2bool(SV* sv)
Using various gambits, try to get a CV from an SV; in addition, try if possible to set *st
and *gvp
to the stash and GV associated with it.
CV* sv_2cv(SV* sv, HV** st, GV** gvp, I32 lref)
Using various gambits, try to get an IO from an SV: the IO slot if its a GV; or the recursive result if we're an RV; or the IO slot of the symbol named after the PV if we're a string.
IO* sv_2io(SV* sv)
Return the integer value of an SV, doing any necessary string conversion, magic etc. Normally used via the SvIV(sv)
and SvIVx(sv)
macros.
IV sv_2iv(SV* sv)
Marks an existing SV as mortal. The SV will be destroyed "soon", either by an explicit call to FREETMPS, or by an implicit call at places such as statement boundaries. See also sv_newmortal
and sv_mortalcopy
.
SV* sv_2mortal(SV* sv)
Return the num value of an SV, doing any necessary string or integer conversion, magic etc. Normally used via the SvNV(sv)
and SvNVx(sv)
macros.
NV sv_2nv(SV* sv)
Return a pointer to the byte-encoded representation of the SV, and set *lp to its length. May cause the SV to be downgraded from UTF8 as a side-effect.
Usually accessed via the SvPVbyte
macro.
char* sv_2pvbyte(SV* sv, STRLEN* lp)
Return a pointer to the byte-encoded representation of the SV. May cause the SV to be downgraded from UTF8 as a side-effect.
Usually accessed via the SvPVbyte_nolen
macro.
char* sv_2pvbyte_nolen(SV* sv)
Return a pointer to the UTF8-encoded representation of the SV, and set *lp to its length. May cause the SV to be upgraded to UTF8 as a side-effect.
Usually accessed via the SvPVutf8
macro.
char* sv_2pvutf8(SV* sv, STRLEN* lp)
Return a pointer to the UTF8-encoded representation of the SV. May cause the SV to be upgraded to UTF8 as a side-effect.
Usually accessed via the SvPVutf8_nolen
macro.
char* sv_2pvutf8_nolen(SV* sv)
Returns a pointer to the string value of an SV, and sets *lp to its length. If flags includes SV_GMAGIC, does an mg_get() first. Coerces sv to a string if necessary. Normally invoked via the SvPV_flags
macro. sv_2pv()
and sv_2pv_nomg
usually end up here too.
char* sv_2pv_flags(SV* sv, STRLEN* lp, I32 flags)
Like sv_2pv()
, but doesn't return the length too. You should usually use the macro wrapper SvPV_nolen(sv)
instead. char* sv_2pv_nolen(SV* sv)
Return the unsigned integer value of an SV, doing any necessary string conversion, magic etc. Normally used via the SvUV(sv)
and SvUVx(sv)
macros.
UV sv_2uv(SV* sv)
Remove any string offset. You should normally use the SvOOK_off
macro wrapper instead.
int sv_backoff(SV* sv)
Blesses an SV into a specified package. The SV must be an RV. The package must be designated by its stash (see gv_stashpv()
). The reference count of the SV is unaffected.
SV* sv_bless(SV* sv, HV* stash)
Concatenates the string onto the end of the string which is in the SV. If the SV has the UTF8 status set, then the bytes appended should be valid UTF8. Handles 'get' magic, but not 'set' magic. See sv_catpv_mg
.
void sv_catpv(SV* sv, const char* ptr)
Processes its arguments like sprintf
and appends the formatted output to an SV. If the appended data contains "wide" characters (including, but not limited to, SVs with a UTF-8 PV formatted with %s, and characters >255 formatted with %c), the original SV might get upgraded to UTF-8. Handles 'get' magic, but not 'set' magic. SvSETMAGIC()
must typically be called after calling this function to handle 'set' magic.
void sv_catpvf(SV* sv, const char* pat, ...)
Like sv_catpvf
, but also handles 'set' magic.
void sv_catpvf_mg(SV *sv, const char* pat, ...)
Concatenates the string onto the end of the string which is in the SV. The len
indicates number of bytes to copy. If the SV has the UTF8 status set, then the bytes appended should be valid UTF8. Handles 'get' magic, but not 'set' magic. See sv_catpvn_mg
.
void sv_catpvn(SV* sv, const char* ptr, STRLEN len)
Concatenates the string onto the end of the string which is in the SV. The len
indicates number of bytes to copy. If the SV has the UTF8 status set, then the bytes appended should be valid UTF8. If flags
has SV_GMAGIC
bit set, will mg_get
on dsv
if appropriate, else not. sv_catpvn
and sv_catpvn_nomg
are implemented in terms of this function.
void sv_catpvn_flags(SV* sv, const char* ptr, STRLEN len, I32 flags)
Like sv_catpvn
, but also handles 'set' magic.
void sv_catpvn_mg(SV *sv, const char *ptr, STRLEN len)
Like sv_catpv
, but also handles 'set' magic.
void sv_catpv_mg(SV *sv, const char *ptr)
Concatenates the string from SV ssv
onto the end of the string in SV dsv
. Modifies dsv
but not ssv
. Handles 'get' magic, but not 'set' magic. See sv_catsv_mg
.
void sv_catsv(SV* dsv, SV* ssv)
Concatenates the string from SV ssv
onto the end of the string in SV dsv
. Modifies dsv
but not ssv
. If flags
has SV_GMAGIC
bit set, will mg_get
on the SVs if appropriate, else not. sv_catsv
and sv_catsv_nomg
are implemented in terms of this function.
void sv_catsv_flags(SV* dsv, SV* ssv, I32 flags)
Like sv_catsv
, but also handles 'set' magic.
void sv_catsv_mg(SV *dstr, SV *sstr)
Efficient removal of characters from the beginning of the string buffer. SvPOK(sv) must be true and the ptr
must be a pointer to somewhere inside the string buffer. The ptr
becomes the first character of the adjusted string. Uses the "OOK hack".
void sv_chop(SV* sv, char* ptr)
Clear an SV: call any destructors, free up any memory used by the body, and free the body itself. The SV's head is not freed, although its type is set to all 1's so that it won't inadvertently be assumed to be live during global destruction etc. This function should only be called when REFCNT is zero. Most of the time you'll want to call sv_free()
(or its macro wrapper SvREFCNT_dec
) instead.
void sv_clear(SV* sv)
Compares the strings in two SVs. Returns -1, 0, or 1 indicating whether the string in sv1
is less than, equal to, or greater than the string in sv2
. Is UTF-8 and 'use bytes' aware, handles get magic, and will coerce its args to strings if necessary. See also sv_cmp_locale
.
I32 sv_cmp(SV* sv1, SV* sv2)
Compares the strings in two SVs in a locale-aware manner. Is UTF-8 and 'use bytes' aware, handles get magic, and will coerce its args to strings if necessary. See also sv_cmp_locale
. See also sv_cmp
.
I32 sv_cmp_locale(SV* sv1, SV* sv2)
Add Collate Transform magic to an SV if it doesn't already have it.
Any scalar variable may carry PERL_MAGIC_collxfrm magic that contains the scalar data of the variable, but transformed to such a format that a normal memory comparison can be used to compare the data according to the locale settings.
char* sv_collxfrm(SV* sv, STRLEN* nxp)
Copies a stringified representation of the source SV into the destination SV. Automatically performs any necessary mg_get and coercion of numeric values into strings. Guaranteed to preserve UTF-8 flag even from overloaded objects. Similar in nature to sv_2pv[_flags] but operates directly on an SV instead of just the string. Mostly uses sv_2pv_flags to do its work, except when that would lose the UTF-8'ness of the PV.
void sv_copypv(SV* dsv, SV* ssv)
Auto-decrement of the value in the SV, doing string to numeric conversion if necessary. Handles 'get' magic.
void sv_dec(SV* sv)
Returns a boolean indicating whether the SV is derived from the specified class. This is the function that implements UNIVERSAL::isa
. It works for class names as well as for objects.
bool sv_derived_from(SV* sv, const char* name)
Returns a boolean indicating whether the strings in the two SVs are identical. Is UTF-8 and 'use bytes' aware, handles get magic, and will coerce its args to strings if necessary.
I32 sv_eq(SV* sv1, SV* sv2)
Undo various types of fakery on an SV: if the PV is a shared string, make a private copy; if we're a ref, stop refing; if we're a glob, downgrade to an xpvmg. See also sv_force_normal_flags
.
void sv_force_normal(SV *sv)
Undo various types of fakery on an SV: if the PV is a shared string, make a private copy; if we're a ref, stop refing; if we're a glob, downgrade to an xpvmg. The flags
parameter gets passed to sv_unref_flags()
when unrefing. sv_force_normal
calls this function with flags set to 0.
void sv_force_normal_flags(SV *sv, U32 flags)
Decrement an SV's reference count, and if it drops to zero, call sv_clear
to invoke destructors and free up any memory used by the body; finally, deallocate the SV's head itself. Normally called via a wrapper macro SvREFCNT_dec
.
void sv_free(SV* sv)
Get a line from the filehandle and store it into the SV, optionally appending to the currently-stored string.
char* sv_gets(SV* sv, PerlIO* fp, I32 append)
Expands the character buffer in the SV. If necessary, uses sv_unref
and upgrades the SV to SVt_PV
. Returns a pointer to the character buffer. Use the SvGROW
wrapper instead.
char* sv_grow(SV* sv, STRLEN newlen)
Auto-increment of the value in the SV, doing string to numeric conversion if necessary. Handles 'get' magic.
void sv_inc(SV* sv)
Inserts a string at the specified offset/length within the SV. Similar to the Perl substr() function.
void sv_insert(SV* bigsv, STRLEN offset, STRLEN len, char* little, STRLEN littlelen)
Returns a boolean indicating whether the SV is blessed into the specified class. This does not check for subtypes; use sv_derived_from
to verify an inheritance relationship.
int sv_isa(SV* sv, const char* name)
Returns a boolean indicating whether the SV is an RV pointing to a blessed object. If the SV is not an RV, or if the object is not blessed, then this will return false.
int sv_isobject(SV* sv)
A private implementation of the SvIVx
macro for compilers which can't cope with complex macro expressions. Always use the macro instead.
IV sv_iv(SV* sv)
Returns the length of the string in the SV. Handles magic and type coercion. See also SvCUR
, which gives raw access to the xpv_cur slot.
STRLEN sv_len(SV* sv)
Returns the number of characters in the string in an SV, counting wide UTF8 bytes as a single character. Handles magic and type coercion.
STRLEN sv_len_utf8(SV* sv)
Adds magic to an SV. First upgrades sv
to type SVt_PVMG
if necessary, then adds a new magic item of type how
to the head of the magic list.
void sv_magic(SV* sv, SV* obj, int how, const char* name, I32 namlen)
Adds magic to an SV, upgrading it if necessary. Applies the supplied vtable and returns pointer to the magic added.
Note that sv_magicext will allow things that sv_magic will not. In particular you can add magic to SvREADONLY SVs and and more than one instance of the same 'how'
I namelen
is greater then zero then a savepvn() copy of name
is stored, if namelen
is zero then name
is stored as-is and - as another special case - if (name && namelen == HEf_SVKEY)
then name
is assumed to contain an SV*
and has its REFCNT incremented
(This is now used as a subroutine by sv_magic.)
MAGIC * sv_magicext(SV* sv, SV* obj, int how, MGVTBL *vtbl, const char* name, I32 namlen )
Creates a new SV which is a copy of the original SV (using sv_setsv
). The new SV is marked as mortal. It will be destroyed "soon", either by an explicit call to FREETMPS, or by an implicit call at places such as statement boundaries. See also sv_newmortal
and sv_2mortal
.
SV* sv_mortalcopy(SV* oldsv)
Creates a new null SV which is mortal. The reference count of the SV is set to 1. It will be destroyed "soon", either by an explicit call to FREETMPS, or by an implicit call at places such as statement boundaries. See also sv_mortalcopy
and sv_2mortal
.
SV* sv_newmortal()
Increment an SV's reference count. Use the SvREFCNT_inc()
wrapper instead.
SV* sv_newref(SV* sv)
Dummy routine which "locks" an SV when there is no locking module present. Exists to avoid test for a NULL function pointer and because it could potentially warn under some level of strict-ness.
void sv_nolocking(SV *)
Dummy routine which "shares" an SV when there is no sharing module present. Exists to avoid test for a NULL function pointer and because it could potentially warn under some level of strict-ness.
void sv_nosharing(SV *)
Dummy routine which "unlocks" an SV when there is no locking module present. Exists to avoid test for a NULL function pointer and because it could potentially warn under some level of strict-ness.
void sv_nounlocking(SV *)
A private implementation of the SvNVx
macro for compilers which can't cope with complex macro expressions. Always use the macro instead.
NV sv_nv(SV* sv)
Converts the value pointed to by offsetp from a count of bytes from the start of the string, to a count of the equivalent number of UTF8 chars. Handles magic and type coercion.
void sv_pos_b2u(SV* sv, I32* offsetp)
Converts the value pointed to by offsetp from a count of UTF8 chars from the start of the string, to a count of the equivalent number of bytes; if lenp is non-zero, it does the same to lenp, but this time starting from the offset, rather than from the start of the string. Handles magic and type coercion.
void sv_pos_u2b(SV* sv, I32* offsetp, I32* lenp)
Use the SvPV_nolen
macro instead
char* sv_pv(SV *sv)
Use SvPVbyte_nolen
instead.
char* sv_pvbyte(SV *sv)
A private implementation of the SvPVbyte
macro for compilers which can't cope with complex macro expressions. Always use the macro instead.
char* sv_pvbyten(SV *sv, STRLEN *len)
A private implementation of the SvPVbytex_force
macro for compilers which can't cope with complex macro expressions. Always use the macro instead.
char* sv_pvbyten_force(SV* sv, STRLEN* lp)
A private implementation of the SvPV
macro for compilers which can't cope with complex macro expressions. Always use the macro instead.
char* sv_pvn(SV *sv, STRLEN *len)
Get a sensible string out of the SV somehow. A private implementation of the SvPV_force
macro for compilers which can't cope with complex macro expressions. Always use the macro instead.
char* sv_pvn_force(SV* sv, STRLEN* lp)
Get a sensible string out of the SV somehow. If flags
has SV_GMAGIC
bit set, will mg_get
on sv
if appropriate, else not. sv_pvn_force
and sv_pvn_force_nomg
are implemented in terms of this function. You normally want to use the various wrapper macros instead: see SvPV_force
and SvPV_force_nomg
char* sv_pvn_force_flags(SV* sv, STRLEN* lp, I32 flags)
Use the SvPVutf8_nolen
macro instead
char* sv_pvutf8(SV *sv)
A private implementation of the SvPVutf8
macro for compilers which can't cope with complex macro expressions. Always use the macro instead.
char* sv_pvutf8n(SV *sv, STRLEN *len)
A private implementation of the SvPVutf8_force
macro for compilers which can't cope with complex macro expressions. Always use the macro instead.
char* sv_pvutf8n_force(SV* sv, STRLEN* lp)
Returns a string describing what the SV is a reference to.
char* sv_reftype(SV* sv, int ob)
Make the first argument a copy of the second, then delete the original. The target SV physically takes over ownership of the body of the source SV and inherits its flags; however, the target keeps any magic it owns, and any magic in the source is discarded. Note that this is a rather specialist SV copying operation; most of the time you'll want to use sv_setsv
or one of its many macro front-ends.
void sv_replace(SV* sv, SV* nsv)
Dump the contents of all SVs not yet freed. (Debugging aid).
void sv_report_used()
Underlying implementation for the reset
Perl function. Note that the perl-level function is vaguely deprecated.
void sv_reset(char* s, HV* stash)
Weaken a reference: set the SvWEAKREF
flag on this RV; give the referred-to SV PERL_MAGIC_backref
magic if it hasn't already; and push a back-reference to this RV onto the array of backreferences associated with that magic.
SV* sv_rvweaken(SV *sv)
Copies an integer into the given SV, upgrading first if necessary. Does not handle 'set' magic. See also sv_setiv_mg
.
void sv_setiv(SV* sv, IV num)
Like sv_setiv
, but also handles 'set' magic.
void sv_setiv_mg(SV *sv, IV i)
Copies a double into the given SV, upgrading first if necessary. Does not handle 'set' magic. See also sv_setnv_mg
.
void sv_setnv(SV* sv, NV num)
Like sv_setnv
, but also handles 'set' magic.
void sv_setnv_mg(SV *sv, NV num)
Copies a string into an SV. The string must be null-terminated. Does not handle 'set' magic. See sv_setpv_mg
.
void sv_setpv(SV* sv, const char* ptr)
Processes its arguments like sprintf
and sets an SV to the formatted output. Does not handle 'set' magic. See sv_setpvf_mg
.
void sv_setpvf(SV* sv, const char* pat, ...)
Like sv_setpvf
, but also handles 'set' magic.
void sv_setpvf_mg(SV *sv, const char* pat, ...)
Copies a string into an SV. The len
parameter indicates the number of bytes to be copied. Does not handle 'set' magic. See sv_setpvn_mg
.
void sv_setpvn(SV* sv, const char* ptr, STRLEN len)
Like sv_setpvn
, but also handles 'set' magic.
void sv_setpvn_mg(SV *sv, const char *ptr, STRLEN len)
Like sv_setpv
, but also handles 'set' magic.
void sv_setpv_mg(SV *sv, const char *ptr)
Copies an integer into a new SV, optionally blessing the SV. The rv
argument will be upgraded to an RV. That RV will be modified to point to the new SV. The classname
argument indicates the package for the blessing. Set classname
to Nullch
to avoid the blessing. The new SV will be returned and will have a reference count of 1.
SV* sv_setref_iv(SV* rv, const char* classname, IV iv)
Copies a double into a new SV, optionally blessing the SV. The rv
argument will be upgraded to an RV. That RV will be modified to point to the new SV. The classname
argument indicates the package for the blessing. Set classname
to Nullch
to avoid the blessing. The new SV will be returned and will have a reference count of 1.
SV* sv_setref_nv(SV* rv, const char* classname, NV nv)
Copies a pointer into a new SV, optionally blessing the SV. The rv
argument will be upgraded to an RV. That RV will be modified to point to the new SV. If the pv
argument is NULL then PL_sv_undef
will be placed into the SV. The classname
argument indicates the package for the blessing. Set classname
to Nullch
to avoid the blessing. The new SV will be returned and will have a reference count of 1.
Do not use with other Perl types such as HV, AV, SV, CV, because those objects will become corrupted by the pointer copy process.
Note that sv_setref_pvn
copies the string while this copies the pointer.
SV* sv_setref_pv(SV* rv, const char* classname, void* pv)
Copies a string into a new SV, optionally blessing the SV. The length of the string must be specified with n
. The rv
argument will be upgraded to an RV. That RV will be modified to point to the new SV. The classname
argument indicates the package for the blessing. Set classname
to Nullch
to avoid the blessing. The new SV will be returned and will have a reference count of 1.
Note that sv_setref_pv
copies the pointer while this copies the string.
SV* sv_setref_pvn(SV* rv, const char* classname, char* pv, STRLEN n)
Copies an unsigned integer into a new SV, optionally blessing the SV. The rv
argument will be upgraded to an RV. That RV will be modified to point to the new SV. The classname
argument indicates the package for the blessing. Set classname
to Nullch
to avoid the blessing. The new SV will be returned and will have a reference count of 1.
SV* sv_setref_uv(SV* rv, const char* classname, UV uv)
Copies the contents of the source SV ssv
into the destination SV dsv
. The source SV may be destroyed if it is mortal, so don't use this function if the source SV needs to be reused. Does not handle 'set' magic. Loosely speaking, it performs a copy-by-value, obliterating any previous content of the destination.
You probably want to use one of the assortment of wrappers, such as SvSetSV
, SvSetSV_nosteal
, SvSetMagicSV
and SvSetMagicSV_nosteal
.
void sv_setsv(SV* dsv, SV* ssv)
Copies the contents of the source SV ssv
into the destination SV dsv
. The source SV may be destroyed if it is mortal, so don't use this function if the source SV needs to be reused. Does not handle 'set' magic. Loosely speaking, it performs a copy-by-value, obliterating any previous content of the destination. If the flags
parameter has the SV_GMAGIC
bit set, will mg_get
on ssv
if appropriate, else not. sv_setsv
and sv_setsv_nomg
are implemented in terms of this function.
You probably want to use one of the assortment of wrappers, such as SvSetSV
, SvSetSV_nosteal
, SvSetMagicSV
and SvSetMagicSV_nosteal
.
This is the primary function for copying scalars, and most other copy-ish functions and macros use this underneath.
void sv_setsv_flags(SV* dsv, SV* ssv, I32 flags)
Like sv_setsv
, but also handles 'set' magic.
void sv_setsv_mg(SV *dstr, SV *sstr)
Copies an unsigned integer into the given SV, upgrading first if necessary. Does not handle 'set' magic. See also sv_setuv_mg
.
void sv_setuv(SV* sv, UV num)
Like sv_setuv
, but also handles 'set' magic.
void sv_setuv_mg(SV *sv, UV u)
Taint an SV. Use SvTAINTED_on
instead. void sv_taint(SV* sv)
Test an SV for taintedness. Use SvTAINTED
instead. bool sv_tainted(SV* sv)
Returns true if the SV has a true value by Perl's rules. Use the SvTRUE
macro instead, which may call sv_true()
or may instead use an in-line version.
I32 sv_true(SV *sv)
Removes all magic of type type
from an SV.
int sv_unmagic(SV* sv, int type)
Unsets the RV status of the SV, and decrements the reference count of whatever was being referenced by the RV. This can almost be thought of as a reversal of newSVrv
. This is sv_unref_flags
with the flag
being zero. See SvROK_off
.
void sv_unref(SV* sv)
Unsets the RV status of the SV, and decrements the reference count of whatever was being referenced by the RV. This can almost be thought of as a reversal of newSVrv
. The cflags
argument can contain SV_IMMEDIATE_UNREF
to force the reference count to be decremented (otherwise the decrementing is conditional on the reference count being different from one or the reference being a readonly SV). See SvROK_off
.
void sv_unref_flags(SV* sv, U32 flags)
Untaint an SV. Use SvTAINTED_off
instead. void sv_untaint(SV* sv)
Upgrade an SV to a more complex form. Generally adds a new body type to the SV, then copies across as much information as possible from the old body. You generally want to use the SvUPGRADE
macro wrapper. See also svtype
.
bool sv_upgrade(SV* sv, U32 mt)
Tells an SV to use ptr
to find its string value. Normally the string is stored inside the SV but sv_usepvn allows the SV to use an outside string. The ptr
should point to memory that was allocated by malloc
. The string length, len
, must be supplied. This function will realloc the memory pointed to by ptr
, so that pointer should not be freed or used by the programmer after giving it to sv_usepvn. Does not handle 'set' magic. See sv_usepvn_mg
.
void sv_usepvn(SV* sv, char* ptr, STRLEN len)
Like sv_usepvn
, but also handles 'set' magic.
void sv_usepvn_mg(SV *sv, char *ptr, STRLEN len)
Convert the octets in the PV from UTF-8 to chars. Scan for validity and then turn off SvUTF8 if needed so that we see characters. Used as a building block for decode_utf8 in Encode.xs
NOTE: this function is experimental and may change or be removed without notice.
bool sv_utf8_decode(SV *sv)
Attempt to convert the PV of an SV from UTF8-encoded to byte encoding. This may not be possible if the PV contains non-byte encoding characters; if this is the case, either returns false or, if fail_ok
is not true, croaks.
This is not as a general purpose Unicode to byte encoding interface: use the Encode extension for that.
NOTE: this function is experimental and may change or be removed without notice.
bool sv_utf8_downgrade(SV *sv, bool fail_ok)
Convert the PV of an SV to UTF8-encoded, but then turn off the SvUTF8
flag so that it looks like octets again. Used as a building block for encode_utf8 in Encode.xs
void sv_utf8_encode(SV *sv)
Convert the PV of an SV to its UTF8-encoded form. Forces the SV to string form if it is not already. Always sets the SvUTF8 flag to avoid future validity checks even if all the bytes have hibit clear.
This is not as a general purpose byte encoding to Unicode interface: use the Encode extension for that.
STRLEN sv_utf8_upgrade(SV *sv)
Convert the PV of an SV to its UTF8-encoded form. Forces the SV to string form if it is not already. Always sets the SvUTF8 flag to avoid future validity checks even if all the bytes have hibit clear. If flags
has SV_GMAGIC
bit set, will mg_get
on sv
if appropriate, else not. sv_utf8_upgrade
and sv_utf8_upgrade_nomg
are implemented in terms of this function.
This is not as a general purpose byte encoding to Unicode interface: use the Encode extension for that.
STRLEN sv_utf8_upgrade_flags(SV *sv, I32 flags)
A private implementation of the SvUVx
macro for compilers which can't cope with complex macro expressions. Always use the macro instead.
UV sv_uv(SV* sv)
Processes its arguments like vsprintf
and appends the formatted output to an SV. Uses an array of SVs if the C style variable argument list is missing (NULL). When running with taint checks enabled, indicates via maybe_tainted
if results are untrustworthy (often due to the use of locales).
Usually used via one of its frontends sv_catpvf
and sv_catpvf_mg
.
void sv_vcatpvfn(SV* sv, const char* pat, STRLEN patlen, va_list* args, SV** svargs, I32 svmax, bool *maybe_tainted)
Works like vcatpvfn
but copies the text into the SV instead of appending it.
Usually used via one of its frontends sv_setpvf
and sv_setpvf_mg
.
void sv_vsetpvfn(SV* sv, const char* pat, STRLEN patlen, va_list* args, SV** svargs, I32 svmax, bool *maybe_tainted)
Converts a string s
of length len
from UTF8 into byte encoding. Unlike <utf8_to_bytes> but like bytes_to_utf8
, returns a pointer to the newly-created string, and updates len
to contain the new length. Returns the original string if no conversion occurs, len
is unchanged. Do nothing if is_utf8
points to 0. Sets is_utf8
to 0 if s
is converted or contains all 7bit characters.
NOTE: this function is experimental and may change or be removed without notice.
U8* bytes_from_utf8(U8 *s, STRLEN *len, bool *is_utf8)
Converts a string s
of length len
from ASCII into UTF8 encoding. Returns a pointer to the newly-created string, and sets len
to reflect the new length.
NOTE: this function is experimental and may change or be removed without notice.
U8* bytes_to_utf8(U8 *s, STRLEN *len)
Return true if the strings s1 and s2 differ case-insensitively, false if not (if they are equal case-insensitively). If u1 is true, the string s1 is assumed to be in UTF-8-encoded Unicode. If u2 is true, the string s2 is assumed to be in UTF-8-encoded Unicode. If u1 or u2 are false, the respective string is assumed to be in native 8-bit encoding.
If the pe1 and pe2 are non-NULL, the scanning pointers will be copied in there (they will point at the beginning of the next character). If the pointers behind pe1 or pe2 are non-NULL, they are the end pointers beyond which scanning will not continue under any circustances. If the byte lengths l1 and l2 are non-zero, s1+l1 and s2+l2 will be used as goal end pointers that will also stop the scan, and which qualify towards defining a successful match: all the scans that define an explicit length must reach their goal pointers for a match to succeed).
For case-insensitiveness, the "casefolding" of Unicode is used instead of upper/lowercasing both the characters, see http://www.unicode.org/unicode/reports/tr21/ (Case Mappings).
I32 ibcmp_utf8(const char* a, char **pe1, UV l1, bool u1, const char* b, char **pe2, UV l2, bool u2)
Tests if some arbitrary number of bytes begins in a valid UTF-8 character. Note that an INVARIANT (i.e. ASCII) character is a valid UTF-8 character. The actual number of bytes in the UTF-8 character will be returned if it is valid, otherwise 0.
STRLEN is_utf8_char(U8 *p)
Returns true if first len
bytes of the given string form a valid UTF8 string, false otherwise. Note that 'a valid UTF8 string' does not mean 'a string that contains UTF8' because a valid ASCII string is a valid UTF8 string.
bool is_utf8_string(U8 *s, STRLEN len)
Build to the scalar dsv a displayable version of the string spv, length len, the displayable version being at most pvlim bytes long (if longer, the rest is truncated and "..." will be appended).
The flags argument can have UNI_DISPLAY_ISPRINT set to display isPRINT()able characters as themselves, UNI_DISPLAY_BACKSLASH to display the \\[nrfta\\] as the backslashed versions (like '\n') (UNI_DISPLAY_BACKSLASH is preferred over UNI_DISPLAY_ISPRINT for \\). UNI_DISPLAY_QQ (and its alias UNI_DISPLAY_REGEX) have both UNI_DISPLAY_BACKSLASH and UNI_DISPLAY_ISPRINT turned on.
The pointer to the PV of the dsv is returned.
char* pv_uni_display(SV *dsv, U8 *spv, STRLEN len, STRLEN pvlim, UV flags)
The encoding is assumed to be an Encode object, on entry the PV of the sv is assumed to be octets in that encoding, and the sv will be converted into Unicode (and UTF-8).
If the sv already is UTF-8 (or if it is not POK), or if the encoding is not a reference, nothing is done to the sv. If the encoding is not an Encode::XS
Encoding object, bad things will happen. (See lib/encoding.pm and Encode).
The PV of the sv is returned.
char* sv_recode_to_utf8(SV* sv, SV *encoding)
Build to the scalar dsv a displayable version of the scalar sv, the displayable version being at most pvlim bytes long (if longer, the rest is truncated and "..." will be appended).
The flags argument is as in pv_uni_display().
The pointer to the PV of the dsv is returned.
char* sv_uni_display(SV *dsv, SV *ssv, STRLEN pvlim, UV flags)
The "p" contains the pointer to the UTF-8 string encoding the character that is being converted.
The "ustrp" is a pointer to the character buffer to put the conversion result to. The "lenp" is a pointer to the length of the result.
The "swashp" is a pointer to the swash to use.
Both the special and normal mappings are stored lib/unicore/To/Foo.pl, and loaded by SWASHGET, using lib/utf8_heavy.pl. The special (usually, but not always, a multicharacter mapping), is tried first.
The "special" is a string like "utf8::ToSpecLower", which means the hash %utf8::ToSpecLower. The access to the hash is through Perl_to_utf8_case().
The "normal" is a string like "ToLower" which means the swash %utf8::ToLower.
UV to_utf8_case(U8 *p, U8* ustrp, STRLEN *lenp, SV **swash, char *normal, char *special)
Convert the UTF-8 encoded character at p to its foldcase version and store that in UTF-8 in ustrp and its length in bytes in lenp. Note that the ustrp needs to be at least UTF8_MAXLEN_FOLD+1 bytes since the foldcase version may be longer than the original character (up to three characters).
The first character of the foldcased version is returned (but note, as explained above, that there may be more.)
UV to_utf8_fold(U8 *p, U8* ustrp, STRLEN *lenp)
Convert the UTF-8 encoded character at p to its lowercase version and store that in UTF-8 in ustrp and its length in bytes in lenp. Note that the ustrp needs to be at least UTF8_MAXLEN_UCLC+1 bytes since the lowercase version may be longer than the original character (up to two characters).
The first character of the lowercased version is returned (but note, as explained above, that there may be more.)
UV to_utf8_lower(U8 *p, U8* ustrp, STRLEN *lenp)
Convert the UTF-8 encoded character at p to its titlecase version and store that in UTF-8 in ustrp and its length in bytes in lenp. Note that the ustrp needs to be at least UTF8_MAXLEN_UCLC+1 bytes since the titlecase version may be longer than the original character (up to two characters).
The first character of the titlecased version is returned (but note, as explained above, that there may be more.)
UV to_utf8_title(U8 *p, U8* ustrp, STRLEN *lenp)
Convert the UTF-8 encoded character at p to its uppercase version and store that in UTF-8 in ustrp and its length in bytes in lenp. Note that the ustrp needs to be at least UTF8_MAXLEN_UCLC+1 bytes since the uppercase version may be longer than the original character (up to two characters).
The first character of the uppercased version is returned (but note, as explained above, that there may be more.)
UV to_utf8_upper(U8 *p, U8* ustrp, STRLEN *lenp)
Returns the native character value of the first character in the string s
which is assumed to be in UTF8 encoding; retlen
will be set to the length, in bytes, of that character.
Allows length and flags to be passed to low level routine.
UV utf8n_to_uvchr(U8 *s, STRLEN curlen, STRLEN* retlen, U32 flags)
Bottom level UTF-8 decode routine. Returns the unicode code point value of the first character in the string s
which is assumed to be in UTF8 encoding and no longer than curlen
; retlen
will be set to the length, in bytes, of that character.
If s
does not point to a well-formed UTF8 character, the behaviour is dependent on the value of flags
: if it contains UTF8_CHECK_ONLY, it is assumed that the caller will raise a warning, and this function will silently just set retlen
to -1
and return zero. If the flags
does not contain UTF8_CHECK_ONLY, warnings about malformations will be given, retlen
will be set to the expected length of the UTF-8 character in bytes, and zero will be returned.
The flags
can also contain various flags to allow deviations from the strict UTF-8 encoding (see utf8.h).
Most code should use utf8_to_uvchr() rather than call this directly.
UV utf8n_to_uvuni(U8 *s, STRLEN curlen, STRLEN* retlen, U32 flags)
Returns the number of UTF8 characters between the UTF-8 pointers a
and b
.
WARNING: use only if you *know* that the pointers point inside the same UTF-8 buffer.
IV utf8_distance(U8 *a, U8 *b)
Return the UTF-8 pointer s
displaced by off
characters, either forward or backward.
WARNING: do not use the following unless you *know* off
is within the UTF-8 data pointed to by s
*and* that on entry s
is aligned on the first byte of character or just after the last byte of a character.
U8* utf8_hop(U8 *s, I32 off)
Return the length of the UTF-8 char encoded string s
in characters. Stops at e
(inclusive). If e < s
or if the scan would end up past e
, croaks.
STRLEN utf8_length(U8* s, U8 *e)
Converts a string s
of length len
from UTF8 into byte encoding. Unlike bytes_to_utf8
, this over-writes the original string, and updates len to contain the new length. Returns zero on failure, setting len
to -1.
NOTE: this function is experimental and may change or be removed without notice.
U8* utf8_to_bytes(U8 *s, STRLEN *len)
Returns the native character value of the first character in the string s
which is assumed to be in UTF8 encoding; retlen
will be set to the length, in bytes, of that character.
If s
does not point to a well-formed UTF8 character, zero is returned and retlen is set, if possible, to -1.
UV utf8_to_uvchr(U8 *s, STRLEN* retlen)
Returns the Unicode code point of the first character in the string s
which is assumed to be in UTF8 encoding; retlen
will be set to the length, in bytes, of that character.
This function should only be used when returned UV is considered an index into the Unicode semantic tables (e.g. swashes).
If s
does not point to a well-formed UTF8 character, zero is returned and retlen is set, if possible, to -1.
UV utf8_to_uvuni(U8 *s, STRLEN* retlen)
Adds the UTF8 representation of the Native codepoint uv
to the end of the string d
; d
should be have at least UTF8_MAXLEN+1
free bytes available. The return value is the pointer to the byte after the end of the new character. In other words,
d = uvchr_to_utf8(d, uv);
is the recommended wide native character-aware way of saying
*(d++) = uv;
U8* uvchr_to_utf8(U8 *d, UV uv)
Adds the UTF8 representation of the Unicode codepoint uv
to the end of the string d
; d
should be have at least UTF8_MAXLEN+1
free bytes available. The return value is the pointer to the byte after the end of the new character. In other words,
d = uvuni_to_utf8_flags(d, uv, flags);
or, in most cases,
d = uvuni_to_utf8(d, uv);
(which is equivalent to)
d = uvuni_to_utf8_flags(d, uv, 0);
is the recommended Unicode-aware way of saying
*(d++) = uv;
U8* uvuni_to_utf8_flags(U8 *d, UV uv, UV flags)
xsubpp
and xsubpp
internal functionsVariable which is setup by xsubpp
to indicate the stack base offset, used by the ST
, XSprePUSH
and XSRETURN
macros. The dMARK
macro must be called prior to setup the MARK
variable.
I32 ax
Variable which is setup by xsubpp
to indicate the class name for a C++ XS constructor. This is always a char*
. See THIS
.
char* CLASS
Sets up the ax
variable. This is usually handled automatically by xsubpp
by calling dXSARGS
.
dAX;
Sets up the items
variable. This is usually handled automatically by xsubpp
by calling dXSARGS
.
dITEMS;
Sets up stack and mark pointers for an XSUB, calling dSP and dMARK. Sets up the ax
and items
variables by calling dAX
and dITEMS
. This is usually handled automatically by xsubpp
.
dXSARGS;
Sets up the ix
variable for an XSUB which has aliases. This is usually handled automatically by xsubpp
.
dXSI32;
Variable which is setup by xsubpp
to indicate the number of items on the stack. See "Variable-length Parameter Lists" in perlxs.
I32 items
Variable which is setup by xsubpp
to indicate which of an XSUB's aliases was used to invoke it. See "The ALIAS: Keyword" in perlxs.
I32 ix
Used by xsubpp
to hook up XSUBs as Perl subs. Adds Perl prototypes to the subs.
Variable which is setup by xsubpp
to hold the return value for an XSUB. This is always the proper type for the XSUB. See "The RETVAL Variable" in perlxs.
(whatever) RETVAL
Used to access elements on the XSUB's stack.
SV* ST(int ix)
Variable which is setup by xsubpp
to designate the object in a C++ XSUB. This is always the proper type for the C++ object. See CLASS
and "Using XS With C++" in perlxs.
(whatever) THIS
Macro to declare an XSUB and its C parameter list. This is handled by xsubpp
.
Return an empty list from an XSUB immediately.
XSRETURN_EMPTY;
The version identifier for an XS module. This is usually handled automatically by ExtUtils::MakeMaker
. See XS_VERSION_BOOTCHECK
.
Macro to verify that a PM module's $VERSION variable matches the XS module's XS_VERSION
variable. This is usually handled automatically by xsubpp
. See "The VERSIONCHECK: Keyword" in perlxs.
XS_VERSION_BOOTCHECK;
This is the XSUB-writer's interface to Perl's die
function. Normally use this function the same way you use the C printf
function. See warn
.
If you want to throw an exception object, assign the object to $@
and then pass Nullch
to croak():
errsv = get_sv("@", TRUE);
sv_setsv(errsv, exception_object);
croak(Nullch);
void croak(const char* pat, ...)
This is the XSUB-writer's interface to Perl's warn
function. Use this function the same way you use the C printf
function. See croak
.
void warn(const char* pat, ...)
Until May 1997, this document was maintained by Jeff Okamoto <[email protected]>. It is now maintained as part of Perl itself.
With lots of help and suggestions from Dean Roehrich, Malcolm Beattie, Andreas Koenig, Paul Hudson, Ilya Zakharevich, Paul Marquess, Neil Bowers, Matthew Green, Tim Bunce, Spider Boardman, Ulrich Pfeifer, Stephen McCamant, and Gurusamy Sarathy.
API Listing originally by Dean Roehrich <[email protected]>.
Updated to be autogenerated from comments in the source by Benjamin Stuhl.
perlguts(1), perlxs(1), perlxstut(1), perlintern(1)