login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A333514
Number of self-avoiding closed paths on an n X 4 grid which pass through four corners ((0,0), (0,3), (n-1,3), (n-1,0)).
2
1, 3, 11, 49, 229, 1081, 5123, 24323, 115567, 549253, 2610697, 12409597, 58988239, 280398495, 1332867179, 6335755801, 30116890013, 143160058769, 680508623307, 3234784886251, 15376488953815, 73091850448509, 347440733910081, 1651552982759797, 7850625988903223
OFFSET
2,2
COMMENTS
Also number of self-avoiding closed paths on a 4 X n grid which pass through four corners ((0,0), (0,n-1), (3,n-1), (3,0)).
FORMULA
G.f.: x^2*(1-4*x+2*x^2+x^3)/(1-7*x+12*x^2-7*x^3+3*x^4+2*x^5).
a(n) = 7*a(n-1) - 12*a(n-2) + 7*a(n-3) - 3*a(n-4) - 2*a(n-5) for n > 6.
EXAMPLE
a(2) = 1;
+--*--*--+
| |
+--*--*--+
a(3) = 3;
+--*--*--+ +--*--*--+ +--* *--+
| | | | | | | |
* *--* * * * * *--* *
| | | | | | | |
+--* *--+ +--*--*--+ +--*--*--+
a(4) = 11;
+--*--*--+ +--*--*--+ +--*--*--+
| | | | | |
*--*--* * *--* *--* *--* *
| | | | | |
*--*--* * *--* *--* *--* *
| | | | | |
+--*--*--+ +--*--*--+ +--*--*--+
+--*--*--+ +--*--*--+ +--*--*--+
| | | | | |
* *--*--* * *--* * * *--*
| | | | | | | |
* *--*--* * * * * * *--*
| | | | | | | |
+--*--*--+ +--* *--+ +--*--*--+
+--*--*--+ +--*--*--+ +--* *--+
| | | | | | | |
* * * * * *--* *
| | | | | |
* *--* * * * * *--* *
| | | | | | | | | |
+--* *--+ +--*--*--+ +--* *--+
+--* *--+ +--* *--+
| | | | | | | |
* *--* * * * * *
| | | | | |
* * * *--* *
| | | |
+--*--*--+ +--*--*--+
PROG
(PARI) N=40; x='x+O('x^N); Vec(x^2*(1-4*x+2*x^2+x^3)/(1-7*x+12*x^2-7*x^3+3*x^4+2*x^5))
(Python)
# Using graphillion
from graphillion import GraphSet
import graphillion.tutorial as tl
def A333513(n, k):
universe = tl.grid(n - 1, k - 1)
GraphSet.set_universe(universe)
cycles = GraphSet.cycles()
for i in [1, k, k * (n - 1) + 1, k * n]:
cycles = cycles.including(i)
return cycles.len()
def A333514(n):
return A333513(4, n)
print([A333514(n) for n in range(2, 15)])
CROSSREFS
Column k=4 of A333513.
Sequence in context: A025539 A172440 A254536 * A268414 A074528 A246985
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 25 2020
STATUS
approved