login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246985
Expansion of (1-8*x+14*x^2)/((1-2*x)*(1-3*x)*(1-6*x)).
1
1, 3, 11, 49, 251, 1393, 8051, 47449, 282251, 1686433, 10097891, 60526249, 362976251, 2177317873, 13062296531, 78368963449, 470199366251, 2821153019713, 16926788715971, 101560344351049, 609360902796251, 3656161927895953, 21936961102828211, 131621735227521049, 789730317205170251, 4738381620767930593
OFFSET
0,2
COMMENTS
From Álvar Ibeas, Mar 25 2015: (Start)
Number of isomorphism classes of 3-fold coverings of a connected graph with circuit rank n [Kwak and Lee].
Number of orbits of the conjugacy action of Sym(3) on Sym(3)^n [Kwak and Lee].
(End)
LINKS
J. H. Kwak and J. Lee, Isomorphism classes of graph bundles. Can. J. Math., 42(4), 1990, pp. 747-761.
FORMULA
G.f.: (1-8*x+14*x^2)/((1-2*x)*(1-3*x)*(1-6*x)).
a(n) = 11*a(n-1) - 36*a(n-2) + 36*a(n-3) for n>2. [Bruno Berselli, Mar 25 2015]
a(n) = 2^(n-1) + 3^(n-1) + 6^(n-1). - Álvar Ibeas, Mar 25 2015
MATHEMATICA
Table[2^(n - 1) + 3^(n - 1) + 6^(n - 1), {n, 0, 30}] (* Bruno Berselli, Mar 25 2015 *)
LinearRecurrence[{11, -36, 36}, {1, 3, 11}, 30] (* Harvey P. Dale, Jan 17 2019 *)
PROG
(Magma) [n le 3 select 2*Factorial(n)-1 else 11*Self(n-1)-36*Self(n-2)+36*Self(n-3): n in [1..30]];
(PARI) Vec((1-8*x+14*x^2)/((1-2*x)*(1-3*x)*(1-6*x)) + O(x^30)) \\ Michel Marcus, Jan 14 2016
CROSSREFS
Apart from first term, same as A074528. Third row of A160449.
Sequence in context: A333514 A268414 A074528 * A326521 A340813 A004211
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Sep 15 2014
EXTENSIONS
Signature corrected and Ibeas formula adapted to the offset by Bruno Berselli, Mar 25 2015
STATUS
approved