login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A029857
Number of rooted trees with 3-colored leaves.
8
3, 3, 9, 28, 94, 328, 1197, 4486, 17235, 67429, 267932, 1078003, 4383784, 17987897, 74385984, 309694232, 1297037177, 5460726214, 23098296648, 98113995068, 418335662448, 1789814398035, 7681522429474, 33061825858259, 142674028869587, 617180102839217
OFFSET
1,1
FORMULA
Shifts left under Euler transform.
a(n) ~ c * d^n / n^(3/2), where d = 4.58859196701042554480382685... and c = 0.5102557157321640697473838... - Vaclav Kotesovec, Mar 29 2014
G.f. A(x) satisfies: A(x) = 2*x + x * exp( Sum_{k>=1} A(x^k) / k ). - Ilya Gutkovskiy, May 19 2023
MAPLE
with(numtheory): a:= proc(n) option remember; local d, j; if n<=1 then 3*n else (add(d*a(d), d=divisors(n-1)) +add(add(d*a(d), d=divisors(j)) *a(n-j), j=1..n-2))/ (n-1) fi end: seq(a(n), n=1..30); # Alois P. Heinz, Sep 06 2008
MATHEMATICA
a[n_] := a[n] = If[n<=1, 3*n, (Sum[d*a[d], {d, Divisors[n-1]}] + Sum[Sum[ d*a[d], {d, Divisors[j]}]*a[n-j], {j, 1, n-2}])/(n-1)]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Feb 21 2016 *)
CROSSREFS
KEYWORD
nonn,easy,eigen
STATUS
approved