login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A010098
a(n) = a(n-1)*a(n-2) with a(0)=1, a(1)=3.
13
1, 3, 3, 9, 27, 243, 6561, 1594323, 10460353203, 16677181699666569, 174449211009120179071170507, 2909321189362570808630465826492242446680483, 507528786056415600719754159741696356908742250191663887263627442114881
OFFSET
0,2
COMMENTS
From Peter Bala, Nov 01 2013: (Start)
Let phi = (1/2)*(1 + sqrt(5)) denote the golden ratio A001622. This sequence gives the simple continued fraction expansion of the constant c := 2*Sum_{n>=1} 1/3^floor(n*phi) (= 4*Sum_{n>=1} floor(n/phi)/3^n) = 0.768597560593155198508 ... = 1/(1 + 1/(3 + 1/(3 + 1/(9 + 1/(27 + 1/(243 + 1/(6561 + ...))))))). The constant c is known to be transcendental (see Adams and Davison 1977). Cf. A014565.
Furthermore, for k = 0,1,2,... if we put X(k) = sum {n >= 1} 1/3^(n*Fibonacci(k) + Fibonacci(k+1)*floor(n*phi)) then the real number X(k+1)/X(k) has the simple continued fraction expansion [0; a(k+1), a(k+2), a(k+3), ...] (apply Bowman 1988, Corollary 1). (End)
LINKS
W. W. Adams and J. L. Davison, A remarkable class of continued fractions, Proc. Amer. Math. Soc. 65 (1977), 194-198.
P. G. Anderson, T. C. Brown, and P. J.-S. Shiue, A simple proof of a remarkable continued fraction identity, Proc. Amer. Math. Soc. 123 (1995), 2005-2009.
D. Bowman, A new generalization of Davison's theorem, Fib. Quart. Volume 26 (1988), 40-45
FORMULA
a(n) = 3^Fibonacci(n).
a(n+1) = A000304(n+3) / A000301(n). - Reinhard Zumkeller, Jul 06 2014
MAPLE
a[-1]:=1: a[0]:=3: a[1]:=3: for n from 2 to 13 do a[n]:=a[n-1]*a[n-2] od: seq(a[n], n=-1..10); # Zerinvary Lajos, Mar 19 2009
MATHEMATICA
3^Fibonacci[Range[0, 13]] (* Vladimir Joseph Stephan Orlovsky, Jan 21 2012 *)
RecurrenceTable[{a[0]==1, a[1]==3, a[n]==a[n-1]a[n-2]}, a, {n, 15}] (* Harvey P. Dale, Jan 21 2021 *)
PROG
(Haskell)a010098 n = a010098_list !! n
a010098_list = 1 : 3 : zipWith (*) a010098_list (tail a010098_list)
-- Reinhard Zumkeller, Jul 06 2014
(Magma) [3^Fibonacci(n): n in [0..12]]; // G. C. Greubel, Jul 29 2024
(SageMath) [3^fibonacci(n) for n in range(13)] # G. C. Greubel, Jul 29 2024
KEYWORD
nonn
STATUS
approved