OFFSET
0,2
COMMENTS
From Peter Bala, Nov 01 2013: (Start)
Let phi = (1/2)*(1 + sqrt(5)) denote the golden ratio A001622. This sequence gives the simple continued fraction expansion of the constant c := 2*Sum_{n>=1} 1/3^floor(n*phi) (= 4*Sum_{n>=1} floor(n/phi)/3^n) = 0.768597560593155198508 ... = 1/(1 + 1/(3 + 1/(3 + 1/(9 + 1/(27 + 1/(243 + 1/(6561 + ...))))))). The constant c is known to be transcendental (see Adams and Davison 1977). Cf. A014565.
Furthermore, for k = 0,1,2,... if we put X(k) = sum {n >= 1} 1/3^(n*Fibonacci(k) + Fibonacci(k+1)*floor(n*phi)) then the real number X(k+1)/X(k) has the simple continued fraction expansion [0; a(k+1), a(k+2), a(k+3), ...] (apply Bowman 1988, Corollary 1). (End)
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..17
W. W. Adams and J. L. Davison, A remarkable class of continued fractions, Proc. Amer. Math. Soc. 65 (1977), 194-198.
P. G. Anderson, T. C. Brown, and P. J.-S. Shiue, A simple proof of a remarkable continued fraction identity, Proc. Amer. Math. Soc. 123 (1995), 2005-2009.
D. Bowman, A new generalization of Davison's theorem, Fib. Quart. Volume 26 (1988), 40-45
FORMULA
a(n) = 3^Fibonacci(n).
MAPLE
a[-1]:=1: a[0]:=3: a[1]:=3: for n from 2 to 13 do a[n]:=a[n-1]*a[n-2] od: seq(a[n], n=-1..10); # Zerinvary Lajos, Mar 19 2009
MATHEMATICA
3^Fibonacci[Range[0, 13]] (* Vladimir Joseph Stephan Orlovsky, Jan 21 2012 *)
RecurrenceTable[{a[0]==1, a[1]==3, a[n]==a[n-1]a[n-2]}, a, {n, 15}] (* Harvey P. Dale, Jan 21 2021 *)
PROG
(Haskell)a010098 n = a010098_list !! n
a010098_list = 1 : 3 : zipWith (*) a010098_list (tail a010098_list)
-- Reinhard Zumkeller, Jul 06 2014
(Magma) [3^Fibonacci(n): n in [0..12]]; // G. C. Greubel, Jul 29 2024
(SageMath) [3^fibonacci(n) for n in range(13)] # G. C. Greubel, Jul 29 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved