login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A029855
Number of rooted trees where root has degree 4.
2
1, 1, 3, 7, 19, 46, 124, 320, 858, 2282, 6161, 16647, 45352, 123861, 340000, 936098, 2586518, 7166394, 19911638, 55456892, 154814055, 433081632, 1213901668, 3408659401, 9587879987, 27011564035, 76212078500
OFFSET
5,3
COMMENTS
Fourth column of A033185. - Michael Somos, Aug 20 2018
REFERENCES
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 53.
LINKS
Eric Weisstein's World of Mathematics, Frequency Representation
Eric Weisstein's World of Mathematics, Rooted Tree
FORMULA
a(n)= Sum_(P){ Prod_(1^a1 2^a2 3^a3 ...){ binomial(f(i)+a_i -1, a_i) } }, where P is the set of the partitions of n with four parts, and f = A000081. - Washington Bomfim, Jul 10 2012
a(n) ~ c * A051491^n / n^(3/2), where c = 0.036592912312268101787903577... - Vaclav Kotesovec, Dec 26 2020
MATHEMATICA
Needs["Combinatorica`"];
nn=30; s[n_, k_]:=s[n, k]=a[n+1-k]+If[n<2k, 0, s[n-k, k]]; a[1]=1; a[n_]:=a[n]=Sum[a[i]s[n-1, i]i, {i, 1, n-1}]/(n-1); rt=Table[a[i], {i, 1, nn}]; Drop[Take[CoefficientList[CycleIndex[SymmetricGroup[4], s]/.Table[s[j]->Table[Sum[rt[[i]]x^(k*i), {i, 1, nn}], {k, 1, nn}][[j]], {j, 1, nn}], x], nn], 4] (* Geoffrey Critzer, Oct 14 2012, after code by Robert A. Russell in A000081 *)
PROG
(PARI)
max_n = 200; f=vector(max_n); \\ f[n] = A000081[n], n=1..max_n
sum2(k) = {local(s); s=0; fordiv(k, d, s += d*f[d]); return(s)};
Init_f()={f[1]=1;
for(n =1, max_n -2, s=0; for(k=1, n, s+=sum2(k)*f[n-k+1]); f[n+1]=s/n)};
S=0; P=[0, 1, 1, 1, 1, 0];
visit4() = {i = 3; k = 2; p = P[2]; Pr = 1;
while(1, while(P[i]==p, i++); c=i-k; Pr*=binomial(f[P[k]]+c-1, c);
if(P[i] == 0, S += Pr; return); p = P[i]; k = i; i++)};
\\ F. Ruskey partition generator
Part(n, k, s, t) = { P[t] = s;
if((k == 1) || (n == k), visit4(), L = max(1, ceil((n - s)/(k - 1)));
for(j = L, min(s, n-s-k+2), Part(n-s, k-1, j, t+1))); P[t] = 1; };
\\
a(n) = {S=0; n--; Part(2*n, 4+1, n, 1); return(S)}
Init_f(); for(n=5, max_n, print(n, " ", a(n))) \\ b-file format
\\ # Washington Bomfim, Jul 10 2012
CROSSREFS
Cf. A000226 (root degree 3), A000081, A033185.
Sequence in context: A185696 A141344 A280756 * A209397 A377003 A110014
KEYWORD
nonn
STATUS
approved