login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209397
L.g.f.: Sum_{n>=1} a(n)*x^n/n = Sum_{n>=1} x^n/n * exp( Sum_{k>=1} a(k)*x^(n*k)/k ).
5
1, 3, 7, 19, 46, 129, 337, 939, 2581, 7238, 20263, 57337, 162319, 461961, 1317217, 3767035, 10792400, 30983565, 89084845, 256531814, 739658815, 2135234247, 6170505666, 17849457873, 51679366171, 149750711581, 434260829464, 1260198317509, 3659410074933
OFFSET
1,2
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..2136 (first 500 terms from Paul D. Hanna)
FORMULA
a(n) = Sum_{d|n} d*A000081(d).
L.g.f.: Sum_{n>=1} -A000081(n) * log(1-x^n).
L.g.f.: log( G(x)/x ) = Sum_{n>=1} G(x^n)/n where G(x) is the g.f. of A000081, which is the number of rooted trees with n nodes.
a(n) ~ c * d^n / sqrt(n), where d = A051491 = 2.9557652856519949747148..., c = A187770 = 0.4399240125710253040409... . - Vaclav Kotesovec, Oct 30 2014
EXAMPLE
L.g.f.: L(x) = x + 3*x^2/2 + 7*x^3/3 + 19*x^4/4 + 46*x^5/5 + 129*x^6/6 +...
Let G(x) be the g.f. of A000081, then
exp(L(x)) = G(x)/x where G(x) = x*exp( Sum_{n>=1} G(x^n)/n ) begins:
G(x) = x + x^2 + 2*x^3 + 4*x^4 + 9*x^5 + 20*x^6 + 48*x^7 + 115*x^8 + 286*x^9 + 719*x^10 + 1842*x^11 + 4766*x^12 + 12486*x^13 + 32973*x^14 +...
PROG
(PARI) {a(n)=local(L=vector(n, i, 1)); for(i=1, n, L=Vec(deriv(sum(m=1, n, x^m/m*exp(sum(k=1, n\m, L[k]*x^(m*k)/k)+x*O(x^n)))))); L[n]}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A141344 A280756 A029855 * A377003 A110014 A026581
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 07 2012
STATUS
approved