login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A018241
Number of simple allowable sequences on 1..n.
3
1, 1, 2, 32, 4608, 7028736, 132089118720, 34998332896051200, 147462169661142781132800, 11008782516353752266715850342400, 16061608070479103314001351327405309952000, 500842967990688435516159987675099451681186775040000
OFFSET
1,3
REFERENCES
J. E. Goodman and J. O'Rourke, editors, Handbook of Discrete and Computational Geometry, CRC Press, 1997, p. 102.
G. Kreweras, Sur un problème de scrutin à plus de deux candidats, Publications de l'Institut de Statistique de l'Université de Paris, 26 (1981), 69-87.
LINKS
G. Kreweras, Sur un problème de scrutin à plus de deux candidats, Publications de l'Institut de Statistique de l'Université de Paris, 26 (1981), 69-87. [Annotated scanned copy]
R. P. Stanley, On the number of reduced decompositions of elements of Coxeter groups, European J. Combin., 5 (1984), 359-372.
FORMULA
a(n) = (n-2)!*C(n,2)! / (1^{n-1} * 3^{n-2} * ... * (2n-3)^1).
a(n) ~ Pi * exp(n^2/4 - 3*n/2 + 7/24) * n^(n^2/2 + n/2 - 13/24) / (A^(1/2) * 2^(n^2 - n/2 - 19/24)), where A = 1.2824271291... is the Glaisher-Kinkelin constant (see A074962). - Vaclav Kotesovec, Nov 13 2014
MAPLE
A018241 := proc(n) local i; (n-2)!*binomial(n, 2)!/product( (2*i+1)^(n-i-1), i=0..n-2 ); end;
MATHEMATICA
a[n_] := (n*(n-1)/2)!*(n-2)! / Product[ (2i+1)^(n-i-1), {i, 0, n-2}]; a[1] = 1; Table[ a[n], {n, 1, 11}] (* Jean-François Alcover, Jan 25 2012 *)
CROSSREFS
KEYWORD
nonn,easy,nice
STATUS
approved