login
A003056
n appears n+1 times. Also the array A(n,k) = n+k (n >= 0, k >= 0) read by antidiagonals. Also inverse of triangular numbers.
362
0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12
OFFSET
0,4
COMMENTS
Also triangle read by rows: T(n,k), n>=0, k>=0, in which n appears n+1 times in row n. - Omar E. Pol, Jul 15 2012
The PARI functions t1, t2 can be used to read a triangular array T(n,k) (n >= 0, 0 <= k <= n-1) by rows from left to right: n -> T(t1(n), t2(n)). - Michael Somos, Aug 23 2002
Number of terms in partition of n with greatest number of distinct terms. - Amarnath Murthy, May 20 2001
Summation table for (x+y) = (0+0),(0+1),(1+0),(0+2),(1+1),(2+0), ...
Also the number of triangular numbers less than or equal to n, not counting 0 as triangular. - Robert G. Wilson v, Oct 21 2005
Permutation of A116939: a(n) = A116939(A116941(n)), a(A116942(n)) = A116939(n). - Reinhard Zumkeller, Feb 27 2006
Maximal size of partitions of n into distinct parts, see A000009. - Reinhard Zumkeller, Jun 13 2009
Also number of digits of A000462(n). - Reinhard Zumkeller, Mar 27 2011
Also the maximum number of 1's contained in the list of hook-lengths of a partition of n. E.g., a(4)=2 because hooks of partitions of n=4 comprise {4,3,2,1}, {4,2,1,1}, {3,2,2,1}, {4,1,2,1}, {4,3,2,1} where the number of 1's in each is 1,2,1,2,1. Hence the maximum is 2. - T. Amdeberhan, Jun 03 2012
Fan, Yang, and Yu (2012) prove a conjecture of Amdeberhan on the generating function of a(n). - Jonathan Sondow, Dec 17 2012
Also the number of partitions of n into distinct parts p such that max(p) - min(p) <= length(p). - Clark Kimberling, Apr 18 2014
Also the maximum number of occurrences of any single value among the previous terms. - Ivan Neretin, Sep 20 2015
Where records occur gives A000217. - Omar E. Pol, Nov 05 2015
Also number of peaks in the largest Dyck path of the symmetric representation of sigma(n), n >= 1. Cf. A237593. - Omar E. Pol, Dec 19 2016
LINKS
Anna R. B. Fan, Harold R. L. Yang, and Rebecca T. Yu, On the Maximum Number of k-Hooks of Partitions of n, arXiv:1212.3505 [math.CO], 2012.
FORMULA
a(n) = floor((sqrt(1+8*n)-1)/2). - Antti Karttunen
a(n) = floor(-1/2 + sqrt(2*n+b)) with 1/4 <= b < 9/4 or a(n) = floor((sqrt(8*n+b)-1)/2) with 1 <= b < 9. - Michael A. Childers (childers_moof(AT)yahoo.com), Nov 11 2001
a(n) = f(n,0) with f(n,k) = k if n <= k, otherwise f(n-k-1, k+1). - Reinhard Zumkeller, May 23 2009
a(n) = 2*n + 1 - A001614(n+1) = n + 1 - A122797(n+1). - Reinhard Zumkeller, Feb 12 2012
a(n) = k if k*(k+1)/2 <= n < (k+1)*(k+2)/2. - Jonathan Sondow, Dec 17 2012
G.f.: (1-x)^(-1)*Sum_{n>=1} x^(n*(n+1)/2) = (Theta_2(0,x^(1/2)) - 2*x^(1/8))/(2*x^(1/8)*(1-x)) where Theta_2 is a Jacobi Theta function. - Robert Israel, May 21 2015
a(n) = floor((A000196(1+8*n)-1)/2). - Pontus von Brömssen, Dec 10 2018
a(n+1) = a(n-a(n)) + 1, a(0) = 0. - Rok Cestnik, Dec 29 2020
a(n) = A001227(n) + A238005(n), n >= 1. - Omar E. Pol, Sep 30 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = log(2)/2 (cf. A016655). - Amiram Eldar, Sep 24 2023
G.f. as array: (x + y - 2*x*y)/((1 - x)^2*(1 - y)^2). - Stefano Spezia, Dec 20 2023 [corrected by Stefano Spezia, Apr 22 2024]
EXAMPLE
G.f. = x + x^2 + 2*x^3 + 2*x^4 + 2*x^5 + 3*x^6 + 3*x^7 + 3*x^8 + 3*x^9 + 4*x^10 + ...
As triangle, the sequence starts
0;
1, 1;
2, 2, 2;
3, 3, 3, 3;
4, 4, 4, 4, 4;
5, 5, 5, 5, 5, 5;
6, 6, 6, 6, 6, 6, 6;
7, 7, 7, 7, 7, 7, 7, 7;
8, 8, 8, 8, 8, 8, 8, 8, 8;
...
MAPLE
A003056 := (n, k) -> n: # Peter Luschny, Oct 29 2011
a := [ 0 ]: for i from 1 to 15 do for j from 1 to i+1 do a := [ op(a), i ]; od: od: a;
A003056 := proc(n)
floor((sqrt(1+8*n)-1)/2) ;
end proc: # R. J. Mathar, Jul 10 2015
MATHEMATICA
f[n_] := Floor[(Sqrt[1 + 8n] - 1)/2]; Table[ f[n], {n, 0, 87}] (* Robert G. Wilson v, Oct 21 2005 *)
Table[x, {x, 0, 13}, {y, 0, x}] // Flatten
T[ n_, k_] := If[ n >= k >= 0, n, 0]; (* Michael Somos, Dec 22 2016 *)
Flatten[Table[PadRight[{}, n+1, n], {n, 0, 12}]] (* Harvey P. Dale, Jul 03 2021 *)
PROG
(PARI) A003056(n)=(sqrtint(8*n+1)-1)\2 \\ M. F. Hasler, Oct 08 2011
(PARI) t1(n)=floor(-1/2+sqrt(2+2*n)) /* A003056 */
(PARI) t2(n)=n-binomial(floor(1/2+sqrt(2+2*n)), 2) /* A002262 */
(Haskell)
a003056 = floor . (/ 2) . (subtract 1) .
sqrt . (+ 1) . (* 8) . fromIntegral
a003056_row n = replicate (n + 1) n
a003056_tabl = map a003056_row [0..]
a003056_list = concat $ a003056_tabl
-- Reinhard Zumkeller, Aug 02 2014, Oct 17 2010
(Magma) [Floor((Sqrt(1+8*n)-1)/2): n in [0..80]]; // Vincenzo Librandi, Oct 23 2011
(Python)
from math import isqrt
def A003056(n): return (k:=isqrt(m:=n+1<<1))+int((m<<2)>(k<<2)*(k+1)+1)-1 # Chai Wah Wu, Jul 26 2022
CROSSREFS
a(n) = A002024(n+1)-1.
Cf. A000196, A000217, A000462, A001227, A001462, A001614, A004247 (multiplication table), A006463 (partial sums), A016655, A050600, A050602, A048645, A122797, A131507, A238005.
Partial sums of A073424.
Sequence in context: A083291 A169894 A357930 * A117707 A163352 A087834
KEYWORD
nonn,easy,nice,tabl
EXTENSIONS
Definition clarified by N. J. A. Sloane, Dec 08 2020
STATUS
approved