login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A001370
Sum of digits of 2^n.
(Formerly M1085 N0414)
43
1, 2, 4, 8, 7, 5, 10, 11, 13, 8, 7, 14, 19, 20, 22, 26, 25, 14, 19, 29, 31, 26, 25, 41, 37, 29, 40, 35, 43, 41, 37, 47, 58, 62, 61, 59, 64, 56, 67, 71, 61, 50, 46, 56, 58, 62, 70, 68, 73, 65, 76, 80, 79, 77, 82, 92, 85, 80, 70, 77
OFFSET
0,2
COMMENTS
Same digital roots as A065075 (sum of digits of the sum of the preceding numbers) and A004207 (sum of digits of all previous terms); they enter into the cycle {1 2 4 8 7 5}. - Alexandre Wajnberg, Dec 11 2005
It is believed that a(n) ~ n*9*log_10(2)/2, but this is an open problem. - N. J. A. Sloane, Apr 21 2013
The Radcliffe preprint shows that a(n) > log_4(n). - M. F. Hasler, May 18 2017
Sierpiński shows that if n >= A137284(k-1) then a(n) >= k (Problem 209). - David Radcliffe, Dec 26 2022
REFERENCES
Archimedeans Problems Drive, Eureka, 26 (1963), 12.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
David Radcliffe, The growth of digital sums of powers of two. Preprint, 2015.
David G. Radcliffe, The growth of digital sums of powers of two, arXiv:1605.02839 [math.NT], 2016.
C. L. Stewart, On the representation of an integer in two different bases, Journal für die reine und angewandte Mathematik 319 (1980): 63-72.
FORMULA
a(n) = A007953(A000079(n)). - Michel Marcus, Nov 01 2013
MAPLE
seq(convert(convert(2^n, base, 10), `+`), n=0..1000); # Robert Israel, Mar 29 2015
MATHEMATICA
Table[Total[IntegerDigits[2^n]], {n, 0, 55}] (* Vincenzo Librandi, Oct 08 2013 *)
PROG
(PARI) a(n)=sumdigits(2^n); \\ Michel Marcus, Nov 01 2013
(Python) [sum(map(int, str(2**n))) for n in range(56)] # David Radcliffe, Mar 29 2015
(Haskell)
a001370 = a007953 . a000079 -- Reinhard Zumkeller, Aug 14 2015
CROSSREFS
Cf. sum of digits of k^n: A004166 (k=3), A065713 (k=4), A066001(k=5), A066002 (k=6), A066003(k=7), A066004 (k=8), A065999 (k=9), A066005 (k=11), A066006 (k=12).
Sequence in context: A225746 A021406 A065075 * A195715 A343629 A039794
KEYWORD
base,easy,nonn
STATUS
approved