Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M1085 N0414 #91 Dec 27 2022 08:33:34
%S 1,2,4,8,7,5,10,11,13,8,7,14,19,20,22,26,25,14,19,29,31,26,25,41,37,
%T 29,40,35,43,41,37,47,58,62,61,59,64,56,67,71,61,50,46,56,58,62,70,68,
%U 73,65,76,80,79,77,82,92,85,80,70,77
%N Sum of digits of 2^n.
%C Same digital roots as A065075 (sum of digits of the sum of the preceding numbers) and A004207 (sum of digits of all previous terms); they enter into the cycle {1 2 4 8 7 5}. - _Alexandre Wajnberg_, Dec 11 2005
%C It is believed that a(n) ~ n*9*log_10(2)/2, but this is an open problem. - _N. J. A. Sloane_, Apr 21 2013
%C The Radcliffe preprint shows that a(n) > log_4(n). - _M. F. Hasler_, May 18 2017
%C Sierpiński shows that if n >= A137284(k-1) then a(n) >= k (Problem 209). - _David Radcliffe_, Dec 26 2022
%D Archimedeans Problems Drive, Eureka, 26 (1963), 12.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Zak Seidov, <a href="/A001370/b001370.txt">Table of n, a(n) for n = 0..10000</a>
%H David Radcliffe, <a href="/A001370/a001370_1.pdf">The growth of digital sums of powers of two</a>. Preprint, 2015.
%H David G. Radcliffe, <a href="http://arxiv.org/abs/1605.02839">The growth of digital sums of powers of two</a>, arXiv:1605.02839 [math.NT], 2016.
%H W. Sierpiński, <a href="https://www.isinj.com/mt-usamo/250%20Problems%20in%20Elementary%20Number%20Theory%20-%20Sierpinski%20(1970).pdf">250 Problems in Elementary Number Theory</a>, 1970.
%H C. L. Stewart, <a href="http://gdz.sub.uni-goettingen.de/dms/resolveppn/?PPN=GDZPPN002197707">On the representation of an integer in two different bases</a>, Journal für die reine und angewandte Mathematik 319 (1980): 63-72.
%F a(n) = A007953(A000079(n)). - _Michel Marcus_, Nov 01 2013
%p seq(convert(convert(2^n,base,10),`+`),n=0..1000); # _Robert Israel_, Mar 29 2015
%t Table[Total[IntegerDigits[2^n]], {n, 0, 55}] (* _Vincenzo Librandi_, Oct 08 2013 *)
%o (PARI) a(n)=sumdigits(2^n); \\ _Michel Marcus_, Nov 01 2013
%o (Python) [sum(map(int, str(2**n))) for n in range(56)] # _David Radcliffe_, Mar 29 2015
%o (Haskell)
%o a001370 = a007953 . a000079 -- _Reinhard Zumkeller_, Aug 14 2015
%Y Cf. sum of digits of k^n: A004166 (k=3), A065713 (k=4), A066001(k=5), A066002 (k=6), A066003(k=7), A066004 (k=8), A065999 (k=9), A066005 (k=11), A066006 (k=12).
%Y Cf. A007953, A000079, A261009, A011754, A137284.
%K base,easy,nonn
%O 0,2
%A _N. J. A. Sloane_, _Simon Plouffe_