4
votes
Accepted
Residue at infinity is the coefficient of $z$ of the Laurent expansion?
The main point is that we calculate the residue of a meromorphic differential ($1$-form) rather than of a meromorphic function. This is the notion that stays well-defined if you change coordinates. So ...
2
votes
How to find the series expansion or asymptotic behavior of $Q(x)=\int_{0}^{+\infty}\frac{e^{-t}}{x-t}dt, x\in(0,+\infty)$?
We can compute every thing for
$$Q(x,y)=\int_{0}^{+\infty}\frac{(x-t)\,e^{-t}}{(x-t)^2+y^2}\,dt$$
First, the antiderivative
$$\int\frac{(x-t)\,e^{-t}}{(x-t)^2+y^2}\,dt=-e^{-x}\int \frac{e^{-u}\, u}{u^...
1
vote
Accepted
Expand $f(z) = \frac{z-\sin z}{z}$ when $0<|z|<\infty$ as Laurent series?
As suggest comments use that :
$$ \dfrac{z-\sum_{n=0}^\infty (-1)^n \dfrac{z^{2n+1}}{(n+1)!}}{z}= \sum_{n=1}^\infty (-1)^n \dfrac{z^{2n}}{(n+1)!} $$
Which gives the Laurent Series development around $...
1
vote
How to find the series expansion or asymptotic behavior of $Q(x)=\int_{0}^{+\infty}\frac{e^{-t}}{x-t}dt, x\in(0,+\infty)$?
$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
...
1
vote
Accepted
Question Regarding the Existence of a Laurent Series
By directly computing you get for $0 \neq |z| < 2$
$\begin{align*}
\frac{z+4}{z(z+2)} &= \frac{1}{z} + \frac{2}{z(z+2)} = \frac{1}{z} + \frac{1}{z} - \frac{1}{z+2} = \frac{2}{z} - \frac{1}{2}\...
Only top scored, non community-wiki answers of a minimum length are eligible
Related Tags
laurent-series × 1876complex-analysis × 1467
taylor-expansion × 232
power-series × 216
sequences-and-series × 206
residue-calculus × 188
singularity × 122
complex-numbers × 104
analysis × 63
complex-integration × 61
calculus × 55
contour-integration × 45
convergence-divergence × 43
solution-verification × 42
limits × 33
abstract-algebra × 32
integration × 29
real-analysis × 22
polynomials × 21
analytic-functions × 17
asymptotics × 16
cauchy-integral-formula × 16
singularity-theory × 16
analyticity × 15
ordinary-differential-equations × 14