Skip to main content
4 votes
Accepted

Residue at infinity is the coefficient of $z$ of the Laurent expansion?

The main point is that we calculate the residue of a meromorphic differential ($1$-form) rather than of a meromorphic function. This is the notion that stays well-defined if you change coordinates. So ...
Ted Shifrin's user avatar
2 votes

How to find the series expansion or asymptotic behavior of $Q(x)=\int_{0}^{+\infty}\frac{e^{-t}}{x-t}dt, x\in(0,+\infty)$?

We can compute every thing for $$Q(x,y)=\int_{0}^{+\infty}\frac{(x-t)\,e^{-t}}{(x-t)^2+y^2}\,dt$$ First, the antiderivative $$\int\frac{(x-t)\,e^{-t}}{(x-t)^2+y^2}\,dt=-e^{-x}\int \frac{e^{-u}\, u}{u^...
Claude Leibovici's user avatar
1 vote
Accepted

Expand $f(z) = \frac{z-\sin z}{z}$ when $0<|z|<\infty$ as Laurent series?

As suggest comments use that : $$ \dfrac{z-\sum_{n=0}^\infty (-1)^n \dfrac{z^{2n+1}}{(n+1)!}}{z}= \sum_{n=1}^\infty (-1)^n \dfrac{z^{2n}}{(n+1)!} $$ Which gives the Laurent Series development around $...
EDX's user avatar
  • 2,282
1 vote

How to find the series expansion or asymptotic behavior of $Q(x)=\int_{0}^{+\infty}\frac{e^{-t}}{x-t}dt, x\in(0,+\infty)$?

$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} ...
Felix Marin's user avatar
  • 92.3k
1 vote
Accepted

Question Regarding the Existence of a Laurent Series

By directly computing you get for $0 \neq |z| < 2$ $\begin{align*} \frac{z+4}{z(z+2)} &= \frac{1}{z} + \frac{2}{z(z+2)} = \frac{1}{z} + \frac{1}{z} - \frac{1}{z+2} = \frac{2}{z} - \frac{1}{2}\...
julio_es_sui_glace's user avatar

Only top scored, non community-wiki answers of a minimum length are eligible