Let $(X,\mathcal{M},\mu)$ a measurable space, $\mu$ positive measure.
For all $n\in \mathbb{N}$, let $A_n,B_n\in \mathcal{M}$ s.t. $A_n\subseteq B_n$ and $\mu(B_n\setminus A_n)=0$.
I want to deduce $$\mu\left(\bigcup_{n\in\mathbb{N}}B_n \setminus \bigcup_{n\in\mathbb{N}}A_n \right)=0$$
I have that: $$\bigcup_{n\in\mathbb{N}}B_n \setminus \bigcup_{n\in\mathbb{N}}A_n =\bigcup_{n\in\mathbb{N}}B_n \cap\bigcap_{n\in\mathbb{N}}(X\setminus A_n)\overset{(\ast)}{=}\bigcup_{n\in\mathbb{N}}(B_n\setminus A_n)$$
and then I can conclude using the sigma sub additivity of $\mu$. But $(\ast)$ is correct? Is there a simpler way to see it? I think that $(\ast)$ is wrong but I don't know how to obtain $\mu(B_n\setminus A_n)$ somewhere.