$$\begin{align} x+y+z&=1 \\ x^2+y^2+z^2&=2 \\ xyz-xy-xz-yz&=3 \end{align}$$
My Attempt:
$(x+y+z)^2=x^2+2xy+2xz+y^2+2yz+z^2=1$
$xyz-xy-xz-yz=3$
$xy+xz+yz+3=xyz$
$xyz-3=xy+xz+yz$
$1=x^2+2xy+2xz+y^2+2yz+z^2$
$1=2+2xy+2xz+2yz$
$1=2+2xyz-6$
$5=2xyz$
$\frac{5}{2}=xyz$
$xyz-3=xy+xz+yz$
$-\frac{1}{2}=xy+xz+yz$
$f(x)=f(y)=f(z)=0$
$f(t)=(t-x)(t-y)(t-z)$
$=t^3-(x+y+z)t^2+(xy+xz+yz)t-xyz$
$=t^3-t^2-\frac{t}{2}-\frac{5}{2}$
all roots of f(x) are the solutions
Are there any ways to get solutions other than the cubic formula?