Exercise:
Using signs of inequality alone (not using signs of absolute value) specify the values of $x$ which satisfy the following relations. Discuss all cases. $$|x^2-a|<b$$
Solution:
$LHS \geq 0$, so: $|x^2-a|<b \text{ when } b > 0 \tag{0}$
$-b<x^2-a<b \text{ when } b > 0 \tag{1}$
$a-b<x^2<a+b \text{ when } b > 0 \tag{2}$
$a-b<x^2 \text{ when } b > 0 \tag{2.1}$ $x^2<a+b \text{ when } b > 0 \tag{2.2}$
$0 \leq a-b<x^2 \text{ when } b > 0 \tag{2.1.1}$
$a-b < x^2 \text{ when } 0 < b \leq a \tag{2.1.2}$
$\sqrt{a-b} < |x| \text{ when } 0 <b \leq a \tag{2.1.3}$
$\sqrt{a-b} < x \text{, } x < -\sqrt{a-b} \text{, when } 0 < b \leq a \tag{2.1.4}$
$|x|<\sqrt{a+b} \text{ when } a \geq -b, b > 0 \tag{2.2.1}$
$-\sqrt{a+b}<x<\sqrt{a+b} \text{ when } a \geq -b, b > 0 \tag{2.2.2}$
Answer:
Formulation 1
$$\sqrt{a-b} < x \text{, } x < -\sqrt{a-b} \text{, when } b \leq a$$ $$\text{and}$$ $$-\sqrt{a+b}<x<\sqrt{a+b}$$ $$\text{all when } a > -b, b > 0$$
Formulation 2
$$-\sqrt{a+b}<x<-\sqrt{a-b}, \sqrt{a-b}<x<\sqrt{a+b} \text{, when } b\leq a$$ $$-\sqrt{a+b}<x<\sqrt{a+b} \text{ when } b > a$$ $$\text{all when } a > -b, b > 0$$
Request:
Is my answer correct? If not, where in my solution did I go wrong?
Update: I just noticed (graphically) that $b > 0$ for there to be a range of $x$. Where do I prove (algebraically ) that this is so?
Another Update: Ignore the previous update. Thanks to @JeanMarie comment, I realized that this isn't necessarily so.
Yet Another Update: Ignore the previous update, and pay attention to the first. Thanks to @dxiv comment, I realized that this is necessarily so.
An Update Once Again: I've updated my attempt with the input given my @dxiv and @JeanMarie. How is it now?