Histone modifications affect timing of oligodendrocyte progenitor differentiation in the developi... more Histone modifications affect timing of oligodendrocyte progenitor differentiation in the developing rat brain
Two weeks prior to this time, she had had one episode of tarry stool. There had been a 5 kg weigh... more Two weeks prior to this time, she had had one episode of tarry stool. There had been a 5 kg weight loss during the first trimester. There was no history of smoking or of alcohol use and no history of abdominal surgery. Family history of uterine cancer, prostate cancer, leukemia, but no gastrointestinal cancer was noted. Physical examination revealed diffuse abdominal tenderness, more localized to the LLQ. Laboratory results showed a WBC of 12.3X109/L with 89% neutrophils. The hemoglobin was 10.0 with an MCV of 78.1 and RDW of 16.9. Comprehensive metabolic profile was normal. Fetal growth ultrasound revealed normal fetus without distress. The patient was discharged to home on the same day, following IV hydration and pain control, with oral ampicillin prescribed for a diagnosis of urinary tract infection. She returned on the subsequent day with persistent LLQ pain. MRI without gadolinium revealed prominent wall thickening in the sigmoid colon. After receiving metronidazole for a presu...
Differentiation of oligodendrocyte progenitor cells (OPCs) into mature oligodendrocytes is regula... more Differentiation of oligodendrocyte progenitor cells (OPCs) into mature oligodendrocytes is regulated by the interplay between extrinsic signals and intrinsic epigenetic determinants. In this study, we analyze the effect that the extracellular ligands sonic hedgehog (Shh) and bone morphogenetic protein 4 (BMP4), have on histone acetylation and gene expression in cultured OPCs. Shh treatment favored the progression toward oligodendrocytes by decreasing histone acetylation and inducing peripheral chromatin condensation. BMP4 treatment, in contrast, inhibited the progression toward oligodendrocytes and favored astrogliogenesis by favoring global histone acetylation and retaining euchromatin. Pharmacological treatment or silencing of histone deacetylase 1 (Hdac1) or histone deacetylase 2 (Hdac2) in OPCs did not affect BMP4-dependent astrogliogenesis, while it prevented Shh-induced oligodendrocyte differentiation and favored the expression of astrocytic genes. Transcriptional profiling of...
Nitric oxide (NO) release upon microglial cell activation has been implicated in the tissue injur... more Nitric oxide (NO) release upon microglial cell activation has been implicated in the tissue injury and cell death in many neurodegenerative diseases. Recent studies have indicated the ability of interferon-gamma (IFNgamma) and lipopolysaccharides (LPS) to independently induce type II nitric oxide synthase (iNOS) expression and NO production in BV-2 microglial cells. However, a detailed comparison between the signaling pathways activating iNOS by these two agents has not been accomplished. Analysis of PKC isoforms revealed mainly the presence of PKCdelta, iota and lambda in BV-2 cells. Although both IFNgamma and LPS could specifically enhance the tyrosine phosphorylation of PKCdelta, treatment with IFNgamma induced a steady increase of phospho-PKCdelta for up to 1h, whereas treatment with LPS elevated phospho-PKCdelta levels only transiently, with peak activity at 5 min. Rottlerin, a specific inhibitor for PKCdelta, dose-dependently inhibited IFNgamma- and LPS-induced NO production. Despite the common involvement of PKCdelta, IFNgamma- but not LPS-induced NO production involved extracellular signal-regulated kinases (ERK1/2) cascade and IFNgamma-induced phosphorylation of ERK1/2 was mediated through PKC. On the other hand, LPS- but not IFNgamma-induced NO production was through stimulation of NF-kappaB activation and nuclear translocation to interact with DNA. These results demonstrated distinct signaling pathways for induction of iNOS by IFNgamma and LPS in BV-2 microglial cells.
In this study, we address the hypothesis that aging modifies the intrinsic properties of oligoden... more In this study, we address the hypothesis that aging modifies the intrinsic properties of oligodendrocytes, the myelin-forming cells of the brain. According to our model, an "epigenetic memory" is stored in the chromatin of the oligodendrocyte lineage cells and is responsible for the maintenance of a mature phenotype, characterized by low levels of expression of transcriptional inhibitors. We report here an age-related decline of histone deacetylation and methylation, the molecular mechanisms responsible for the establishment and maintenance of this "epigenetic memory" of the differentiated state. We further show that lack of histone methylation and increased acetylation in mature oligodendrocytes are associated with global changes in gene expression, that include the re-expression of bHLH inhibitors (i.e. Hes5 and Id4) and precursor markers (i.e. Sox2). These changes characteristic of the "aging" oligodendrocytes can be recapitulated in vitro, by treati...
Mice lacking the expression of proteolipid protein (PLP)/DM20 in oligodendrocytes provide a genui... more Mice lacking the expression of proteolipid protein (PLP)/DM20 in oligodendrocytes provide a genuine model for spastic paraplegia (SPG-2). Their axons are well myelinated but exhibit impaired axonal transport and progressive degeneration, which is difficult to attribute to the absence of a single myelin protein. We hypothesized that secondary molecular changes in PLP null myelin contribute to the loss of PLP/DM20-dependent neuroprotection and provide more insight into glia-axonal interactions in this disease model. By gel-based proteome analysis, we identified >160 proteins in purified myelin membranes, which allowed us to systematically monitor the CNS myelin proteome of adult PLP null mice, before the onset of disease. We identified three proteins of the septin family to be reduced in abundance, but the nicotinamide adenine dinucleotide (NAD + )-dependent deacetylase sirtuin 2 (SIRT2) was virtually absent. SIRT2 is expressed throughout the oligodendrocyte lineage, and immunoelectron microscopy revealed its association with myelin. Loss of SIRT2 in PLP null was posttranscriptional, suggesting that PLP/DM20 is required for its transport into the myelin compartment. Because normal SIRT2 activity is controlled by the NAD + /NADH ratio, its function may be coupled to the axo-glial metabolism and the long-term support of axons by oligodendrocytes.
Timely differentiation of progenitor cells is critical for development. In this study we asked wh... more Timely differentiation of progenitor cells is critical for development. In this study we asked whether global epigenetic mechanisms regulate timing of progenitor cell differentiation into myelin-forming oligodendrocytes in vivo. Histone deacetylation was essential during a specific temporal window of development and was dependent on the enzymatic activity of histone deacetylases, whose expression was detected in the developing corpus callosum. During the first 10 postnatal days, administration of valproic acid (VPA), the specific inhibitor for histone deacetylase activity, resulted in significant hypomyelination with delayed expression of late differentiation markers and retained expression of progenitor markers. Differentiation resumed in VPA-injected rats if a recovery period was allowed. Administration of VPA after myelination onset had no effect on myelin gene expression and was consistent with changes of nucleosomal histones from reversible deacetylation to more stable methylation and chromatin compaction. Together, these data identify global modifications of nucleosomal histones critical for timing of oligodendrocyte differentiation and myelination in the developing corpus callosum.
Histone deacetylase 1 (HDAC1) is a nuclear enzyme involved in transcriptional repression. We dete... more Histone deacetylase 1 (HDAC1) is a nuclear enzyme involved in transcriptional repression. We detected cytosolic HDAC1 in damaged axons in brains of humans with multiple sclerosis and of mice with cuprizone-induced demyelination, in ex vivo models of demyelination and in cultured neurons exposed to glutamate and tumor necrosis factor-alpha. Nuclear export of HDAC1 was mediated by the interaction with the nuclear receptor CRM-1 and led to impaired mitochondrial transport. The formation of complexes between exported HDAC1 and members of the kinesin family of motor proteins hindered the interaction with cargo molecules, thereby inhibiting mitochondrial movement and inducing localized beading. This effect was prevented by inhibiting HDAC1 nuclear export with leptomycin B, treating neurons with pharmacological inhibitors of HDAC activity or silencing HDAC1 but not other HDAC isoforms. Together these data identify nuclear export of HDAC1 as a critical event for impaired mitochondrial transport in damaged neurons.
The efficiency of remyelination decreases with age, but the molecular mechanisms responsible for ... more The efficiency of remyelination decreases with age, but the molecular mechanisms responsible for this decline remain only partially understood. In this study, we show that remyelination is regulated by age-dependent epigenetic control of gene expression. In demyelinated young brains, new myelin synthesis is preceded by downregulation of oligodendrocyte differentiation inhibitors and neural stem cell markers, and this is associated with recruitment of histone deacetylases (HDACs) to promoter regions. In demyelinated old brains, HDAC recruitment is inefficient, and this allows the accumulation of transcriptional inhibitors and prevents the subsequent surge in myelin gene expression. Defective remyelination can be recapitulated in vivo in mice receiving systemic administration of pharmacological HDAC inhibitors during cuprizone treatment and is consistent with in vitro results showing defective differentiation of oligodendrocyte progenitors after silencing specific HDAC isoforms. Thus, we suggest that inefficient epigenetic modulation of the oligodendrocyte differentiation program contributes to the age-dependent decline in remyelination efficiency.
Under normal and pathological conditions, brain cells release nucleotides that regulate a wide ra... more Under normal and pathological conditions, brain cells release nucleotides that regulate a wide range of cellular responses due to activation of P2 nucleotide receptors. In this study, the effect of extracellular nucleotides on IFNc-induced NO release in murine BV-2 microglial cells was investigated. BV-2 cells expressed mRNA for metabotropic P2Y and ionotropic P2X receptors. Among the P2 receptor agonists tested, ATP, ADP, 2¢,3¢-O-(4-benzoylbenzoyl)-ATP (BzATP), and 2-methylthio-ATP (2-MeSATP), but not UTP, enhanced IFNc-induced iNOS expression and NO production, suggesting that the uridine nucleotide receptors P2Y 2 and P2Y 6 are not involved in this response. U0126, an antagonist for MEK1/2, a kinase that phosphorylates the extracellular signal-regulated kinases ERK1/2, decreased IFNc-induced NO production. BzATP, a potent P2X 7 receptor agonist, was more effective than ATP, ADP, or 2-MeSATP at enhancing IFNc-induced ERK1/2 phosphorylation. Consistent with activation of the P2X 7 receptor, periodate-oxidized ATP, a P2X 7 receptor antagonist, and suramin, a non-specific P2 receptor antagonist, inhibited the effect of ATP or BzATP on IFNc-induced NO production, whereas pyridoxal-phosphate-6-azophenyl-2¢,4¢-disulfonic acid (PPADS), an antagonist of several P2X receptor subtypes, was ineffective. These results suggest that activation of P2X 7 receptors may contribute to inflammatory responses in microglial cells seen in neurodegenerative diseases.
The role of epigenetics in modulating gene expression in the development of organs and tissues an... more The role of epigenetics in modulating gene expression in the development of organs and tissues and in disease states is becoming increasingly evident. Epigenetics refers to the several mechanisms modulating inheritable changes in gene expression that are independent of modifications of the primary DNA sequence and include post-translational modifications of nucleosomal histones, changes in DNA methylation, and the role of microRNA. This review focuses on the epigenetic regulation of gene expression in oligodendroglial lineage cells. The biological effects that post-translational modifications of critical residues in the N-terminal tails of nucleosomal histones have on oligodendroglial cells are reviewed, and the implications for disease and repair are critically discussed.
Male Yucatan swine were allocated to four groups (n ؍ 5-6 pigs per group): low fat (3%) fed con... more Male Yucatan swine were allocated to four groups (n ؍ 5-6 pigs per group): low fat (3%) fed control, high fat/2% cholesterol (CH) fed (HF), high fat/CH fed with alloxan-induced diabetes (DF) and DF pigs that were treated with atorvastatin (80 mg/day; DF ؉ A). Pigs were fed two meals per day and daily insulin injections were used in diabetic pigs to maintain plasma glucose between 250 and 350 mg/dl. Diabetic dyslipidemic (DF) pigs exhibited greater coronary atherosclerosis and increased collagen deposition in internal mammary artery compared with normoglycemic hyperlipidemic pigs. Although total and LDL CH concentrations did not differ, triglyceride (TG) were increased in DF pigs and FPLC analysis indicated that the LDL/HDL CH ratio was significantly increased in DF compared with HF pigs. The LDL fraction of DF pigs contained larger, lipid enriched particles resembling IDL. Consumption of the high fat/CH diet caused a moderate increase in the percentage of 14:0 fatty acids in plasma lipids and this was compensated by small-moderate declines in several unsaturated fatty acids. There was a significant increase in phospholipid arachidonic acid in DF compared with HF pigs. Atorvastatin protected diabetic pigs from atherosclerosis and decreased total and VLDL TG, but exerted minimal effects on the FPLC lipoprotein and plasma fatty acid profiles and plasma concentrations of total and LDL CH, vitamin A, vitamin E, and lysophosphatidylcholine. Across all groups the plasma CH concentration was positively correlated with hepatic CH concentration. These findings suggest that atorvastatin's protection against coronary artery atherosclerosis in diabetes may involve effects on plasma VLDL TG concentration. Lack of major effects on other lipid parameters, including the LDL/HDL ratio, suggests that atorvastatin may have yet other anti-atherogenic effects, possibly directly in the vessel wall. -Dixon, J. L., S. Shen, J. P Vuchetich, E. Wysocka, G. Y. Sun, and M. Sturek. Increased atherosclerosis in diabetic dyslipidemic swine: protection by atorvastatin involves decreased VLDL triglyc-erides but minimal effects on the lipoprotein profile.
Nitric oxide (NO) release upon microglial cell activation has been implicated in the tissue injur... more Nitric oxide (NO) release upon microglial cell activation has been implicated in the tissue injury and cell death in many neurodegenerative diseases. Recent studies have indicated the ability of interferon-gamma (IFNgamma) and lipopolysaccharides (LPS) to independently induce type II nitric oxide synthase (iNOS) expression and NO production in BV-2 microglial cells. However, a detailed comparison between the signaling pathways activating iNOS by these two agents has not been accomplished. Analysis of PKC isoforms revealed mainly the presence of PKCdelta, iota and lambda in BV-2 cells. Although both IFNgamma and LPS could specifically enhance the tyrosine phosphorylation of PKCdelta, treatment with IFNgamma induced a steady increase of phospho-PKCdelta for up to 1h, whereas treatment with LPS elevated phospho-PKCdelta levels only transiently, with peak activity at 5 min. Rottlerin, a specific inhibitor for PKCdelta, dose-dependently inhibited IFNgamma- and LPS-induced NO production. Despite the common involvement of PKCdelta, IFNgamma- but not LPS-induced NO production involved extracellular signal-regulated kinases (ERK1/2) cascade and IFNgamma-induced phosphorylation of ERK1/2 was mediated through PKC. On the other hand, LPS- but not IFNgamma-induced NO production was through stimulation of NF-kappaB activation and nuclear translocation to interact with DNA. These results demonstrated distinct signaling pathways for induction of iNOS by IFNgamma and LPS in BV-2 microglial cells.
Histone modifications affect timing of oligodendrocyte progenitor differentiation in the developi... more Histone modifications affect timing of oligodendrocyte progenitor differentiation in the developing rat brain
Two weeks prior to this time, she had had one episode of tarry stool. There had been a 5 kg weigh... more Two weeks prior to this time, she had had one episode of tarry stool. There had been a 5 kg weight loss during the first trimester. There was no history of smoking or of alcohol use and no history of abdominal surgery. Family history of uterine cancer, prostate cancer, leukemia, but no gastrointestinal cancer was noted. Physical examination revealed diffuse abdominal tenderness, more localized to the LLQ. Laboratory results showed a WBC of 12.3X109/L with 89% neutrophils. The hemoglobin was 10.0 with an MCV of 78.1 and RDW of 16.9. Comprehensive metabolic profile was normal. Fetal growth ultrasound revealed normal fetus without distress. The patient was discharged to home on the same day, following IV hydration and pain control, with oral ampicillin prescribed for a diagnosis of urinary tract infection. She returned on the subsequent day with persistent LLQ pain. MRI without gadolinium revealed prominent wall thickening in the sigmoid colon. After receiving metronidazole for a presu...
Differentiation of oligodendrocyte progenitor cells (OPCs) into mature oligodendrocytes is regula... more Differentiation of oligodendrocyte progenitor cells (OPCs) into mature oligodendrocytes is regulated by the interplay between extrinsic signals and intrinsic epigenetic determinants. In this study, we analyze the effect that the extracellular ligands sonic hedgehog (Shh) and bone morphogenetic protein 4 (BMP4), have on histone acetylation and gene expression in cultured OPCs. Shh treatment favored the progression toward oligodendrocytes by decreasing histone acetylation and inducing peripheral chromatin condensation. BMP4 treatment, in contrast, inhibited the progression toward oligodendrocytes and favored astrogliogenesis by favoring global histone acetylation and retaining euchromatin. Pharmacological treatment or silencing of histone deacetylase 1 (Hdac1) or histone deacetylase 2 (Hdac2) in OPCs did not affect BMP4-dependent astrogliogenesis, while it prevented Shh-induced oligodendrocyte differentiation and favored the expression of astrocytic genes. Transcriptional profiling of...
Nitric oxide (NO) release upon microglial cell activation has been implicated in the tissue injur... more Nitric oxide (NO) release upon microglial cell activation has been implicated in the tissue injury and cell death in many neurodegenerative diseases. Recent studies have indicated the ability of interferon-gamma (IFNgamma) and lipopolysaccharides (LPS) to independently induce type II nitric oxide synthase (iNOS) expression and NO production in BV-2 microglial cells. However, a detailed comparison between the signaling pathways activating iNOS by these two agents has not been accomplished. Analysis of PKC isoforms revealed mainly the presence of PKCdelta, iota and lambda in BV-2 cells. Although both IFNgamma and LPS could specifically enhance the tyrosine phosphorylation of PKCdelta, treatment with IFNgamma induced a steady increase of phospho-PKCdelta for up to 1h, whereas treatment with LPS elevated phospho-PKCdelta levels only transiently, with peak activity at 5 min. Rottlerin, a specific inhibitor for PKCdelta, dose-dependently inhibited IFNgamma- and LPS-induced NO production. Despite the common involvement of PKCdelta, IFNgamma- but not LPS-induced NO production involved extracellular signal-regulated kinases (ERK1/2) cascade and IFNgamma-induced phosphorylation of ERK1/2 was mediated through PKC. On the other hand, LPS- but not IFNgamma-induced NO production was through stimulation of NF-kappaB activation and nuclear translocation to interact with DNA. These results demonstrated distinct signaling pathways for induction of iNOS by IFNgamma and LPS in BV-2 microglial cells.
In this study, we address the hypothesis that aging modifies the intrinsic properties of oligoden... more In this study, we address the hypothesis that aging modifies the intrinsic properties of oligodendrocytes, the myelin-forming cells of the brain. According to our model, an "epigenetic memory" is stored in the chromatin of the oligodendrocyte lineage cells and is responsible for the maintenance of a mature phenotype, characterized by low levels of expression of transcriptional inhibitors. We report here an age-related decline of histone deacetylation and methylation, the molecular mechanisms responsible for the establishment and maintenance of this "epigenetic memory" of the differentiated state. We further show that lack of histone methylation and increased acetylation in mature oligodendrocytes are associated with global changes in gene expression, that include the re-expression of bHLH inhibitors (i.e. Hes5 and Id4) and precursor markers (i.e. Sox2). These changes characteristic of the "aging" oligodendrocytes can be recapitulated in vitro, by treati...
Mice lacking the expression of proteolipid protein (PLP)/DM20 in oligodendrocytes provide a genui... more Mice lacking the expression of proteolipid protein (PLP)/DM20 in oligodendrocytes provide a genuine model for spastic paraplegia (SPG-2). Their axons are well myelinated but exhibit impaired axonal transport and progressive degeneration, which is difficult to attribute to the absence of a single myelin protein. We hypothesized that secondary molecular changes in PLP null myelin contribute to the loss of PLP/DM20-dependent neuroprotection and provide more insight into glia-axonal interactions in this disease model. By gel-based proteome analysis, we identified >160 proteins in purified myelin membranes, which allowed us to systematically monitor the CNS myelin proteome of adult PLP null mice, before the onset of disease. We identified three proteins of the septin family to be reduced in abundance, but the nicotinamide adenine dinucleotide (NAD + )-dependent deacetylase sirtuin 2 (SIRT2) was virtually absent. SIRT2 is expressed throughout the oligodendrocyte lineage, and immunoelectron microscopy revealed its association with myelin. Loss of SIRT2 in PLP null was posttranscriptional, suggesting that PLP/DM20 is required for its transport into the myelin compartment. Because normal SIRT2 activity is controlled by the NAD + /NADH ratio, its function may be coupled to the axo-glial metabolism and the long-term support of axons by oligodendrocytes.
Timely differentiation of progenitor cells is critical for development. In this study we asked wh... more Timely differentiation of progenitor cells is critical for development. In this study we asked whether global epigenetic mechanisms regulate timing of progenitor cell differentiation into myelin-forming oligodendrocytes in vivo. Histone deacetylation was essential during a specific temporal window of development and was dependent on the enzymatic activity of histone deacetylases, whose expression was detected in the developing corpus callosum. During the first 10 postnatal days, administration of valproic acid (VPA), the specific inhibitor for histone deacetylase activity, resulted in significant hypomyelination with delayed expression of late differentiation markers and retained expression of progenitor markers. Differentiation resumed in VPA-injected rats if a recovery period was allowed. Administration of VPA after myelination onset had no effect on myelin gene expression and was consistent with changes of nucleosomal histones from reversible deacetylation to more stable methylation and chromatin compaction. Together, these data identify global modifications of nucleosomal histones critical for timing of oligodendrocyte differentiation and myelination in the developing corpus callosum.
Histone deacetylase 1 (HDAC1) is a nuclear enzyme involved in transcriptional repression. We dete... more Histone deacetylase 1 (HDAC1) is a nuclear enzyme involved in transcriptional repression. We detected cytosolic HDAC1 in damaged axons in brains of humans with multiple sclerosis and of mice with cuprizone-induced demyelination, in ex vivo models of demyelination and in cultured neurons exposed to glutamate and tumor necrosis factor-alpha. Nuclear export of HDAC1 was mediated by the interaction with the nuclear receptor CRM-1 and led to impaired mitochondrial transport. The formation of complexes between exported HDAC1 and members of the kinesin family of motor proteins hindered the interaction with cargo molecules, thereby inhibiting mitochondrial movement and inducing localized beading. This effect was prevented by inhibiting HDAC1 nuclear export with leptomycin B, treating neurons with pharmacological inhibitors of HDAC activity or silencing HDAC1 but not other HDAC isoforms. Together these data identify nuclear export of HDAC1 as a critical event for impaired mitochondrial transport in damaged neurons.
The efficiency of remyelination decreases with age, but the molecular mechanisms responsible for ... more The efficiency of remyelination decreases with age, but the molecular mechanisms responsible for this decline remain only partially understood. In this study, we show that remyelination is regulated by age-dependent epigenetic control of gene expression. In demyelinated young brains, new myelin synthesis is preceded by downregulation of oligodendrocyte differentiation inhibitors and neural stem cell markers, and this is associated with recruitment of histone deacetylases (HDACs) to promoter regions. In demyelinated old brains, HDAC recruitment is inefficient, and this allows the accumulation of transcriptional inhibitors and prevents the subsequent surge in myelin gene expression. Defective remyelination can be recapitulated in vivo in mice receiving systemic administration of pharmacological HDAC inhibitors during cuprizone treatment and is consistent with in vitro results showing defective differentiation of oligodendrocyte progenitors after silencing specific HDAC isoforms. Thus, we suggest that inefficient epigenetic modulation of the oligodendrocyte differentiation program contributes to the age-dependent decline in remyelination efficiency.
Under normal and pathological conditions, brain cells release nucleotides that regulate a wide ra... more Under normal and pathological conditions, brain cells release nucleotides that regulate a wide range of cellular responses due to activation of P2 nucleotide receptors. In this study, the effect of extracellular nucleotides on IFNc-induced NO release in murine BV-2 microglial cells was investigated. BV-2 cells expressed mRNA for metabotropic P2Y and ionotropic P2X receptors. Among the P2 receptor agonists tested, ATP, ADP, 2¢,3¢-O-(4-benzoylbenzoyl)-ATP (BzATP), and 2-methylthio-ATP (2-MeSATP), but not UTP, enhanced IFNc-induced iNOS expression and NO production, suggesting that the uridine nucleotide receptors P2Y 2 and P2Y 6 are not involved in this response. U0126, an antagonist for MEK1/2, a kinase that phosphorylates the extracellular signal-regulated kinases ERK1/2, decreased IFNc-induced NO production. BzATP, a potent P2X 7 receptor agonist, was more effective than ATP, ADP, or 2-MeSATP at enhancing IFNc-induced ERK1/2 phosphorylation. Consistent with activation of the P2X 7 receptor, periodate-oxidized ATP, a P2X 7 receptor antagonist, and suramin, a non-specific P2 receptor antagonist, inhibited the effect of ATP or BzATP on IFNc-induced NO production, whereas pyridoxal-phosphate-6-azophenyl-2¢,4¢-disulfonic acid (PPADS), an antagonist of several P2X receptor subtypes, was ineffective. These results suggest that activation of P2X 7 receptors may contribute to inflammatory responses in microglial cells seen in neurodegenerative diseases.
The role of epigenetics in modulating gene expression in the development of organs and tissues an... more The role of epigenetics in modulating gene expression in the development of organs and tissues and in disease states is becoming increasingly evident. Epigenetics refers to the several mechanisms modulating inheritable changes in gene expression that are independent of modifications of the primary DNA sequence and include post-translational modifications of nucleosomal histones, changes in DNA methylation, and the role of microRNA. This review focuses on the epigenetic regulation of gene expression in oligodendroglial lineage cells. The biological effects that post-translational modifications of critical residues in the N-terminal tails of nucleosomal histones have on oligodendroglial cells are reviewed, and the implications for disease and repair are critically discussed.
Male Yucatan swine were allocated to four groups (n ؍ 5-6 pigs per group): low fat (3%) fed con... more Male Yucatan swine were allocated to four groups (n ؍ 5-6 pigs per group): low fat (3%) fed control, high fat/2% cholesterol (CH) fed (HF), high fat/CH fed with alloxan-induced diabetes (DF) and DF pigs that were treated with atorvastatin (80 mg/day; DF ؉ A). Pigs were fed two meals per day and daily insulin injections were used in diabetic pigs to maintain plasma glucose between 250 and 350 mg/dl. Diabetic dyslipidemic (DF) pigs exhibited greater coronary atherosclerosis and increased collagen deposition in internal mammary artery compared with normoglycemic hyperlipidemic pigs. Although total and LDL CH concentrations did not differ, triglyceride (TG) were increased in DF pigs and FPLC analysis indicated that the LDL/HDL CH ratio was significantly increased in DF compared with HF pigs. The LDL fraction of DF pigs contained larger, lipid enriched particles resembling IDL. Consumption of the high fat/CH diet caused a moderate increase in the percentage of 14:0 fatty acids in plasma lipids and this was compensated by small-moderate declines in several unsaturated fatty acids. There was a significant increase in phospholipid arachidonic acid in DF compared with HF pigs. Atorvastatin protected diabetic pigs from atherosclerosis and decreased total and VLDL TG, but exerted minimal effects on the FPLC lipoprotein and plasma fatty acid profiles and plasma concentrations of total and LDL CH, vitamin A, vitamin E, and lysophosphatidylcholine. Across all groups the plasma CH concentration was positively correlated with hepatic CH concentration. These findings suggest that atorvastatin's protection against coronary artery atherosclerosis in diabetes may involve effects on plasma VLDL TG concentration. Lack of major effects on other lipid parameters, including the LDL/HDL ratio, suggests that atorvastatin may have yet other anti-atherogenic effects, possibly directly in the vessel wall. -Dixon, J. L., S. Shen, J. P Vuchetich, E. Wysocka, G. Y. Sun, and M. Sturek. Increased atherosclerosis in diabetic dyslipidemic swine: protection by atorvastatin involves decreased VLDL triglyc-erides but minimal effects on the lipoprotein profile.
Nitric oxide (NO) release upon microglial cell activation has been implicated in the tissue injur... more Nitric oxide (NO) release upon microglial cell activation has been implicated in the tissue injury and cell death in many neurodegenerative diseases. Recent studies have indicated the ability of interferon-gamma (IFNgamma) and lipopolysaccharides (LPS) to independently induce type II nitric oxide synthase (iNOS) expression and NO production in BV-2 microglial cells. However, a detailed comparison between the signaling pathways activating iNOS by these two agents has not been accomplished. Analysis of PKC isoforms revealed mainly the presence of PKCdelta, iota and lambda in BV-2 cells. Although both IFNgamma and LPS could specifically enhance the tyrosine phosphorylation of PKCdelta, treatment with IFNgamma induced a steady increase of phospho-PKCdelta for up to 1h, whereas treatment with LPS elevated phospho-PKCdelta levels only transiently, with peak activity at 5 min. Rottlerin, a specific inhibitor for PKCdelta, dose-dependently inhibited IFNgamma- and LPS-induced NO production. Despite the common involvement of PKCdelta, IFNgamma- but not LPS-induced NO production involved extracellular signal-regulated kinases (ERK1/2) cascade and IFNgamma-induced phosphorylation of ERK1/2 was mediated through PKC. On the other hand, LPS- but not IFNgamma-induced NO production was through stimulation of NF-kappaB activation and nuclear translocation to interact with DNA. These results demonstrated distinct signaling pathways for induction of iNOS by IFNgamma and LPS in BV-2 microglial cells.
Uploads
Papers by Siming Shen