ABSTRACT Polypropylene and nylon 66 fabrics are subjected to atmospheric pressure He and He-O2 pl... more ABSTRACT Polypropylene and nylon 66 fabrics are subjected to atmospheric pressure He and He-O2 plasmas for selected exposure time intervals. Scanning electron microscopy anal ysis of the fabrics shows no apparent changes in the plasma-treated nylon fiber surfaces, but significant surface morphological changes for the polypropylene. Surface analyses of the nylon filaments reveal small differences in the surface carbon and oxygen contents between the treated and control groups. The surface oxygen and nitrogen content of the polypropylene fabric increases significantly after treatment in both He and He-O2 plasmas. There is a slight decrease in nylon fabric tensile strength after treatment in He plasma for 3 minutes, while. there is no significant change in tensile strength of the nylon fabric treated with He-O2 after exposure times of up to 8 minutes.
ABSTRACT Polypropylene and nylon 66 fabrics are subjected to atmospheric pressure He and He-O2 pl... more ABSTRACT Polypropylene and nylon 66 fabrics are subjected to atmospheric pressure He and He-O2 plasmas for selected exposure time intervals. Scanning electron microscopy anal ysis of the fabrics shows no apparent changes in the plasma-treated nylon fiber surfaces, but significant surface morphological changes for the polypropylene. Surface analyses of the nylon filaments reveal small differences in the surface carbon and oxygen contents between the treated and control groups. The surface oxygen and nitrogen content of the polypropylene fabric increases significantly after treatment in both He and He-O2 plasmas. There is a slight decrease in nylon fabric tensile strength after treatment in He plasma for 3 minutes, while. there is no significant change in tensile strength of the nylon fabric treated with He-O2 after exposure times of up to 8 minutes.
Uploads
Papers by P. Hauser