In the last years, the use of microservice architectures is spreading in Cyber-Physical Systems (... more In the last years, the use of microservice architectures is spreading in Cyber-Physical Systems (CPSs) and Internet of Things (IoT) domains. CPSs are systems that integrate digital cyber computations with physical processes. The development of software for CPSs demands a constant maintenance to support new requirements, bug fixes, and deal with hardware obsolescence. The key in this process is code testing and more if the code is fragmented during the development of CPSs. It is important to remark that this process is challenging and time-consuming. In this paper, we report on the experience of instantiating of the microservice-based architecture for DevOps of CPSs to test elevator dispatching algorithms across different test levels (i.e., SiL, HiL and Operation). Such an architecture allows for a continuous deployment, monitoring and validation of CPSs. By integrating the approach with a real industrial case study, we demonstrate that our approach reduces significantly the time needed in the testing process and consequently, reduces the economic cost of the entire process.
In the last years, the use of microservice architectures is spreading in Cyber-Physical Systems (... more In the last years, the use of microservice architectures is spreading in Cyber-Physical Systems (CPSs) and Internet of Things (IoT) domains. CPSs are systems that integrate digital cyber computations with physical processes. The development of software for CPSs demands a constant maintenance to support new requirements, bug fixes, and deal with hardware obsolescence. The key in this process is code testing and more if the code is fragmented during the development of CPSs. It is important to remark that this process is challenging and time-consuming. In this paper, we report on the experience of instantiating of the microservice-based architecture for DevOps of CPSs to test elevator dispatching algorithms across different test levels (i.e., SiL, HiL and Operation). Such an architecture allows for a continuous deployment, monitoring and validation of CPSs. By integrating the approach with a real industrial case study, we demonstrate that our approach reduces significantly the time needed in the testing process and consequently, reduces the economic cost of the entire process.
Uploads
Papers by Iñigo Aldalur