Papers by Aristi Fernandes
Molecules, 2015
The mammalian thioredoxin reductases (TrxRs) are a family of selenium-containing pyridine nucleot... more The mammalian thioredoxin reductases (TrxRs) are a family of selenium-containing pyridine nucleotide disulfide oxidoreductases playing a central role in cellular redox homeostasis and signaling pathways. Recently, these selenoproteins have emerged as promising therapeutic targets for anticancer drug development, often being overexpressed in tumor cells and contributing to drug resistance. Herein, we summarize the current knowledge on metal- and semimetal-containing molecules capable of hampering mammalian TrxRs, with an emphasis on compounds reported in the last decade.
BBA Clinical, 2015
The possible beneficial effects of coenzyme Q10 (CoQ10) supplementation on disease progression an... more The possible beneficial effects of coenzyme Q10 (CoQ10) supplementation on disease progression and oxidant status in diabetes remains debated. In the present study, patients with type 1 and type 2 diabetes were treated with oral CoQ10, 100 mg twice daily for 12 weeks. We assessed total antioxidant capacity, intra- and extracellular levels of the redox regulating protein glutaredoxin 1 (Grx1), CoQ10, oxidized LDL-cholesterol, lipid profile and HbA1c. We have previously shown that extracellular Grx1 is increased in patients with type 2 diabetes compared to healthy subjects. In the present study, CoQ10 treatment significantly decreased serum Grx1 activity as well as total antioxidant capacity independent of type of diabetes, indicating an improvement to a less oxidized extracellular environment. The effect on serum Grx1 activity was more prominent in patients not on statin treatment. Conversely, intracellular Grx1 activity as well as mRNA levels increased independent of statin treatment. There was a significant improvement in oxidized LDL-cholesterol and lipid profile, with a tendency to improved metabolic control (HbA1c). Additionally, we describe for the first time that CoQ10 is a direct substrate for glutathione, and that Grx1 catalyzes this reaction, thus presenting a novel mechanism for CoQ10 reduction which could explain our findings of an increased intracellular Grx1. In conclusion, 12 weeks CoQ10 treatment significantly improved the extracellular redox balance and lipid profile, indicating that prolonged treatment may have beneficial effects also on clinical outcome in diabetes.
Biochimica et Biophysica Acta (BBA) - General Subjects, 2014
Background: With cancer cells encompassing consistently higher production of reactive oxygen spec... more Background: With cancer cells encompassing consistently higher production of reactive oxygen species (ROS) and with an induced antioxidant defense to counteract the increased basal ROS production, tumors have a limited reserve capacity resulting in an increased vulnerability of some cancer cells to ROS. Based on this, oxidative stress has been recognized as a tumor-specific target for the rational design of new anticancer agents. Among redox modulating compounds, selenium compounds have gained substantial attention due to their promising chemotherapeutic potential. Scope of review: This review aims in summarizing and providing the recent developments of our understanding of the molecular mechanisms that underlie the potential anticancer effects of selenium compounds. Major conclusions: It is well established that selenium at higher doses readily can turn into a prooxidant and thereby exert its potential anticancer properties. However, the biological activity of selenium compounds and the mechanism behind these effects are highly dependent on its speciation and the specific metabolic pathways of cells and tissues. Conversely, the chemical properties and the main molecular mechanisms of the most relevant inorganic and organic selenium compounds as well as selenium-based nanoparticles must be taken into account and are discussed herein. General significance: Elucidating and deepening our mechanistic knowledge of selenium compounds will help in designing and optimizing compounds with more specific antitumor properties for possible future application of selenium compounds in the treatment of cancer. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.
Free Radical Biology and Medicine, 2014
Although the etiology of sporadic Parkinson disease (PD) is unknown, it is well established that ... more Although the etiology of sporadic Parkinson disease (PD) is unknown, it is well established that oxidative stress plays an important role in the pathogenic mechanism. The thioredoxin (Trx) and glutaredoxin (Grx) systems are two central systems upholding the sulfhydryl homeostasis by reducing disulfides and mixed disulfides within the cell and thereby protecting against oxidative stress. By examining the expression of redox proteins in human postmortem PD brains, we found the levels of Trx1 and thioredoxin reductase 1 (TrxR1) to be significantly decreased. The human neuroblastoma cell line SH-SY5Y and the nematode Caenorhabditis elegans were used as model systems to explore the potential protective effects of the redox proteins against 6-hydroxydopamine (6-OHDA)-induced cytotoxicity. 6-OHDA is highly prone to oxidation, resulting in the formation of the quinone of 6-OHDA, a highly reactive species and powerful neurotoxin. Treatment of human cells with 6-OHDA resulted in an increased expression of Trx1, TrxR1, Grx1, and Grx2, and small interfering RNA for these genes significantly increased the cytotoxic effects exerted by the 6-OHDA neurotoxin. Evaluation of the dopaminergic neurons in C. elegans revealed that nematodes lacking trxr-1 were significantly more sensitive to 6-OHDA, with significantly increased neuronal degradation. Importantly, both the Trx and the Grx systems were also found to directly mediate reduction of the 6-OHDA-quinone in vitro and thus render its cytotoxic effects. In conclusion, our results suggest that the two redox systems are important for neuronal survival in dopamine-induced cell death.
Proceedings of the National Academy of Sciences, 2004
General Materials. Disposable cell culture materials were purchased from Techno Plastic Products ... more General Materials. Disposable cell culture materials were purchased from Techno Plastic Products (Trasadingen, Switzerland). Chemicals were purchased from Sigma, unless otherwise stated, and were of analytical grade or better.
Proceedings of the National Academy of Sciences, 2009
This article contains supporting information online at www.pnas.org/cgi/content/full/ 0902204106/... more This article contains supporting information online at www.pnas.org/cgi/content/full/ 0902204106/DCSupplemental.
PLoS ONE, 2012
Naturally occurring selenium compounds like selenite and selenodiglutathione are metabolized to s... more Naturally occurring selenium compounds like selenite and selenodiglutathione are metabolized to selenide in plants and animals. This highly reactive form of selenium can undergo methylation and form monomethylated and multimethylated species. These redox active selenium metabolites are of particular biological and pharmacological interest since they are potent inducers of apoptosis in cancer cells. The mammalian thioredoxin and glutaredoxin systems efficiently reduce selenite and selenodiglutathione to selenide. The reactions are non-stoichiometric aerobically due to redox cycling of selenide with oxygen and thiols. Using LDI-MS, we identified that the addition of S-adenosylmethionine (SAM) to the reactions formed methylselenol. This metabolite was a superior substrate to both the thioredoxin and glutaredoxin systems increasing the velocities of the nonstoichiometric redox cycles three-fold. In vitro cell experiments demonstrated that the presence of SAM increased the cytotoxicity of selenite and selenodiglutathione, which could neither be explained by altered selenium uptake nor impaired extra-cellular redox environment, previously shown to be highly important to selenite uptake and cytotoxicity. Our data suggest that selenide and SAM react spontaneously forming methylselenol, a highly nucleophilic and cytotoxic agent, with important physiological and pharmacological implications for the highly interesting anticancer effects of selenium.
Journal of Biological Chemistry, 2003
Inorganic sulfate (SO 4 2؊ , S ؉VI ) is reduced in vivo to sulfite (SO 3 2؊ , S ؉IV ) via phospho... more Inorganic sulfate (SO 4 2؊ , S ؉VI ) is reduced in vivo to sulfite (SO 3 2؊ , S ؉IV ) via phosphoadenylylsulfate (PAPS) reductase. Escherichia coli lacking glutathione reductase and glutaredoxins (gor ؊ grxA ؊ grxB ؊ grxC ؊ ) barely grows on sulfate. We found that incubation of PAPS reductase with oxidized glutathione leads to enzyme inactivation with simultaneous formation of a mixed disulfide between glutathione and the active site Cys-239. A newly developed method based on thiol-specific fluorescent alkylation and gel electrophoresis showed that glutathionylated PAPS reductase is reduced by glutaredoxins via a monothiol mechanism. This glutathionylated species was also observed in poorly growing gor ؊ grxA ؊ grxB ؊ grxC ؊ cells expressing inactive glutaredoxin 2 (Grx2) C9S/C12S. However, it was absent in better growing cells expressing monothiol Grx2 C12S or wild type Grx2. Reversible glutathionylation may thus regulate the activity of PAPS reductase in vivo.
Journal of Biological Chemistry, 2002
Three Escherichia coli glutaredoxins catalyze GSHdisulfide oxidoreductions, but the atypical 24-k... more Three Escherichia coli glutaredoxins catalyze GSHdisulfide oxidoreductions, but the atypical 24-kDa glutaredoxin 2 (Grx2, grxB gene), in contrast to the 9-kDa glutaredoxin 1 (Grx1, grxA gene) and glutaredoxin 3 (Grx3, grxC gene), is not a hydrogen donor for ribonucleotide reductase. To improve the understanding of glutaredoxin function, a null mutant for grxB (grxB ؊ ) was constructed and combined with other mutations. Null mutants for grxB or all three glutaredoxin genes were viable in rich and minimal media with little changes in their growth properties. Expression of leaderless alkaline phosphatase showed that Grx1 and Grx2 (but not Grx3) contributed in the reduction of cytosolic protein disulfides. Moreover, Grx1 could catalyze disulfide formation in the oxidizing cytosol of combined null mutants for glutathione reductase and thioredoxin 1. grxB ؊ cells were more sensitive to hydrogen peroxide and other oxidants and showed increased carbonylation of intracellular proteins, particularly in the stationary phase. Significant up-regulation of catalase activity was observed in null mutants for thioredoxin 1 and the three glutaredoxins, whereas up-regulation of glutaredoxin activity was observed in catalase-deficient strains with additional defects in the thioredoxin pathway. The expression of catalases is thus interconnected with the thioredoxin/glutaredoxin pathways in the antioxidant response.
Journal of Biological Chemistry, 2002
Levels of Escherichia coli thioredoxin 1 (Trx1), Trx2, glutaredoxin 1 (Grx1), Grx2, and Grx3 have... more Levels of Escherichia coli thioredoxin 1 (Trx1), Trx2, glutaredoxin 1 (Grx1), Grx2, and Grx3 have been determined by novel sensitive sandwich enzyme-linked immunosorbent assay. In a wild type strain, levels of Trx1 increased from the exponential to the stationary phase of growth (1.5-fold to 3400 ng/mg), as did levels of Grx2 (from ϳ2500 to ϳ8000 ng/mg). Grx3 and Trx2 levels were quite stable during growth (ϳ4500 and ϳ200 ng/mg, respectively). Grx1 levels decreased from ϳ600 ng/mg at the exponential phase to ϳ285 ng/mg at the stationary phase. A large elevation of Grx1 (20 -30-fold), was observed in null mutants for the thioredoxin system whereas levels of the other redoxins in all combinations of examined null mutants barely exceeded a 2-3-fold increase. Measurements of thymidine incorporation in newly synthesized DNA suggested that mainly Grx1 and, to a lesser extent, Trx1 contribute to the reduction of ribonucleotides. All glutaredoxin species were elevated in catalase-deficient strains, implying an antioxidant role for the glutaredoxins. Trx1, Trx2, and Grx1 levels increased after exposure to hydrogen peroxide and decreased after exposure to mercaptoethanol. The levels of Grx2 and Grx3 behaved exactly the opposite, suggesting that the transcription factor OxyR does not regulate their expression.
Biochemistry, 2007
The reducing proteins glutaredoxin 3 (Grx3) and glutaredoxin 1 (Grx1) are structurally similar bu... more The reducing proteins glutaredoxin 3 (Grx3) and glutaredoxin 1 (Grx1) are structurally similar but exhibit different specificities toward substrates. Grx1 efficiently reduces ribonucleotide reductase and PAPS reductase, while Grx3 reduces these enzymes inefficiently or not at all. We previously described a selection for Grx3 mutants with increased activity toward substrates of Grx1 in ViVo. Remarkably, we repeatedly isolated mutants with changes in only one of the amino acids of Grx3, methionine 43, converting it to either valine, leucine, or isoleucine. In this paper we present additional genetic studies and a biochemical characterization of Grx3-Met43Val, the most efficient mutant. We show that Grx3-Met43Val is able to reduce ribonucleotide reductae and PAPS reductase much more efficiently than the wild-type protein in Vitro. The altered protein has an increased V max over that of Grx3, nearly the same V max as Grx1 while the K m remains high. Molecular dynamics simulations suggest that the Met43Val substitution results in changes in properties of the N-terminal cysteine of the active site leading to a considerably lower pK a . Furthermore, Grx3-Met43Val shows an 11 mV lower redox potential than the wild-type Grx3. These findings provide biochemical and structural explanations for the increased reductive efficiency of the mutant Grx3.
Biochemical and Biophysical Research Communications, 2004
Glutaredoxins (Grx) catalyze glutathione-dependent thiol-disulfide oxidoreduction reactions. Mamm... more Glutaredoxins (Grx) catalyze glutathione-dependent thiol-disulfide oxidoreduction reactions. Mammalian cells contain at least two dithiol glutaredoxins, the well-characterized cytoplasmic (12 kDa) Grx1 and the recently identified (18 kDa) Grx2 with mitochondrial and nuclear isoforms. We have developed two sensitive and specific sandwich ELISAs to study the levels of human Grx1 and Grx2. Both Grx1 and Grx2 were present in placenta extracts and in cell lysates prepared from various tumor cell lines. However, the levels of Grx1 were at least 20 times higher than those of Grx2. Plasma from healthy blood donors contained 13.4 AE 7.9 ng/ml of Grx1, while Grx2 was not detected. Unstimulated peripheral blood mononuclear cells were shown to secrete Grx1, but upon 12-Otetradecanoylphorbol-13-acetate activation, the secretion of Grx1 was strongly suppressed. This effect was shown to occur at the transcriptional level. The secretion of Grx1 and its presence in plasma suggests extracellular functions as found for mammalian thioredoxin 1.
Biochemical and Biophysical Research Communications, 2005
Human mitochondrial glutaredoxin 2 (Grx2) catalyzes glutathione-dependent dithiol reaction mechan... more Human mitochondrial glutaredoxin 2 (Grx2) catalyzes glutathione-dependent dithiol reaction mechanisms, reducing protein disulfides, and monothiol reactions, reducing mixed disulfides between proteins and GSH (de-/glutathionylation). Here, we have overexpressed Grx2 in HeLa cells in its mitochondrial form (mGrx2-HeLa) as well as a truncated cytosolic form, lacking the mitochondrial translocation signal (tGrx2-HeLa). The resulting clones were less susceptible to apoptosis induced by 2-deoxy-D D-glucose (2-DG) or doxorubicin (Dox). Overexpression of Grx2 inhibited cytochrome c release and caspase activation induced by both agents. In addition, Grx2 prevented 2-DG-and Dox-induced loss of cardiolipin, the phospholipid anchoring cytochrome c to the inner mitochondrial membrane. Overexpression of mGrx2 provided better protection than tGrx2 overexpression, especially after treatment with 2-DG. We propose that Grx2 facilitates the maintenance of cellular redox homeostasis upon treatment with apoptotic agents, thereby preventing cardiolipin oxidation and cytochrome c release.
Biochemical Journal, 2010
Berndt et al., Iron and ionizing radiation 2 SYNOPSIS Ionizing radiation causes DNA damage and co... more Berndt et al., Iron and ionizing radiation 2 SYNOPSIS Ionizing radiation causes DNA damage and consequent apoptosis, mainly due to the production of hydroxyl radicals that follows radiolytic splitting of water. However, superoxide and hydrogen peroxide also form and induce oxidative stress with resulting lysosomal membrane permeabilization (LMP) arising from iron-catalyzed oxidative events. The latter will significantly contribute to radiation-induced cell death and its degree largely depends on the quantities of lysosomal redox-active iron present as a consequence of autophagy and endocytosis of iron-rich compounds. Therefore, radiation sensitivity might be depressed by lysosome-targeted ironchelators. Here we show that cells in culture are significantly protected from ionizing radiation damage if initially exposed to the lipophilic iron-chelator salicylaldehyde isonicotinoyl hydrazone (SIH), and that this effect is based on SIH-dependent lysosomal stabilization against oxidative stress. According to its dose-response-modifying effect, SIH is a most powerful radioprotector and a promising candidate for clinical application, mainly to reduce the radiation sensitivity of normal tissue. We propose, as an example, that inhalation of SIH prior to each irradiation session by patients undergoing treatment for lung malignancies would protect normally aerated lung tissue against life-threatening pulmonary fibrosis, while the sensitivity of malignant lung tumors, which usually are non-aerated, will not be affected by inhaled SIH.
Journal of Biological Chemistry, 2005
Glutaredoxins are ubiquitous proteins that catalyze the reduction of disulfides via reduced gluta... more Glutaredoxins are ubiquitous proteins that catalyze the reduction of disulfides via reduced glutathione (GSH). Escherichia coli has three glutaredoxins (Grx1, Grx2, and Grx3), all containing the classic dithiol active site CPYC. We report the cloning, expression, and characterization of a novel monothiol E. coli glutaredoxin, which we name glutaredoxin 4 (Grx4). The protein consists of 115 amino acids (12.7 kDa), has a monothiol (CGFS) potential active site and shows high sequence homology to the other monothiol glutaredoxins and especially to yeast Grx5. Experiments with gene knock-out techniques showed that the reading frame encoding Grx4 was essential. Grx4 was inactive as a GSH-disulfide oxidoreductase in a standard glutaredoxin assay with GSH and hydroxyethyl disulfide in a complete system with NADPH and glutathione reductase. An engineered CGFC active site mutant did not gain activity either. Grx4 in reduced form contained three thiols, and treatment with oxidized GSH resulted in glutathionylation and formation of a disulfide. Remarkably, this disulfide of Grx4 was a direct substrate for NADPH and E. coli thioredoxin reductase, whereas the mixed disulfide was reduced by Grx1. Reduced Grx4 showed the potential to transfer electrons to oxidized E. coli Grx1 and Grx3. Grx4 is highly abundant (750 -2000 ng/mg of total soluble protein), as determined by a specific enzyme-link immunosorbent assay, and most likely regulated by guanosine 3,5-tetraphosphate upon entry to stationary phase. Grx4 was highly elevated upon iron depletion, suggesting an iron-related function for the protein.
Free Radical Biology and Medicine
Selenium is an essential trace element incorporated as selenocysteine in 25 human selenoproteins.... more Selenium is an essential trace element incorporated as selenocysteine in 25 human selenoproteins. Among them are thioredoxin reductases (TrxR) and glutathione peroxidases, all central proteins in the regulation of the cellular thiol redox state. In this paper the effects of selenite and tellurite treatment in human cancer cells are reported and compared. Our results show that both selenite and tellurite, at relatively low concentrations, are able to increase the expression of mitochondrial and cytosolic TrxR in cisplatin-sensitive (2008) and -resistant (C13*) phenotypes. We further investigated the cellular effects induced by selenite or tellurite in combination with the specific TrxR inhibitor auranofin. Selenite pretreatment induced a dramatic increase in auranofin cytotoxicity in both resistant and sensitive cells. Investigation of TrxR activity and expression levels as well as the cellular redox state demonstrated the involvement of TrxR inhibition and redox changes in selenite ...
Free Radical Biology and Medicine
Malignant mesothelioma cells differentiate into sarcomatoid or epithelioid phenotypes. The sarcom... more Malignant mesothelioma cells differentiate into sarcomatoid or epithelioid phenotypes. The sarcomatoid cell type is more resistant to chemotherapy and gives a worse prognosis. We have investigated whether selenite alone and in combination with doxorubicin induced apoptosis in variously differentiated mesothelioma cells. Selenite in concentrations that could potentially be administered to patients strongly inhibited the growth of the sarcomatoid mesothelioma cells (IC50 = 7.5 microM), whereas epithelioid cells were more sensitive to doxorubicin. Benign mesothelial cells remained largely unaffected. Selenite potentiated doxorubicin treatment. Apoptosis was the dominating mode of cell death. The toxicity of selenite was mediated by oxidative stress. Furthermore the activity of the thioredoxin system was directly dependent on the concentration of selenite. This offers a possible mechanism of action of selenite treatment. Our findings suggest that selenite is a promising new drug for the...
European Journal of Cancer Supplements, 2007
Biochemical pharmacology
The thioredoxin system, composed of thioredoxin reductase (TrxR), thioredoxin (Trx), and NADPH (n... more The thioredoxin system, composed of thioredoxin reductase (TrxR), thioredoxin (Trx), and NADPH (nicotinamide adenine dinucleotide phosphate), plays a central role in regulating cellular redox homeostasis and signaling pathways. TrxR, overexpressed in many tumor cells and contributing to drug resistance, has emerged as a new target for anticancer drugs. Gold complexes have been validated as potent TrxR inhibitors in vitro in the nanomolar range. In order to obtain potent and selective TrxR inhibitors, we have synthesized a series of linear, 'auranofin-like' gold(I) complexes all containing the [Au(PEt(3))](+) synthon and the ligands: Cl(-), Br(-), cyanate, thiocyanate, ethylxanthate, diethyldithiocarbamate and thiourea. Phosphine gold(I) complexes efficiently inhibited cytosolic and mitochondrial TrxR at concentrations that did not affect the two related oxidoreductases glutathione reductase (GR) and glutathione peroxidase (GPx). The inhibitory effect of the redox proteins wa...
Free Radical Biology and Medicine, 2009
Selenium is an essential trace element incorporated as selenocysteine in 25 human selenoproteins.... more Selenium is an essential trace element incorporated as selenocysteine in 25 human selenoproteins. Among them are thioredoxin reductases (TrxR) and glutathione peroxidases, all central proteins in the regulation of the cellular thiol redox state. In this paper the effects of selenite and tellurite treatment in human cancer cells are reported and compared. Our results show that both selenite and tellurite, at relatively low concentrations, are able to increase the expression of mitochondrial and cytosolic TrxR in cisplatin-sensitive (2008) and -resistant (C13*) phenotypes. We further investigated the cellular effects induced by selenite or tellurite in combination with the specific TrxR inhibitor auranofin. Selenite pretreatment induced a dramatic increase in auranofin cytotoxicity in both resistant and sensitive cells. Investigation of TrxR activity and expression levels as well as the cellular redox state demonstrated the involvement of TrxR inhibition and redox changes in selenite and auranofin combined action.
Uploads
Papers by Aristi Fernandes