The Argon Dark Matter experiment is a ton-scale double phase argon Time Projection Chamber design... more The Argon Dark Matter experiment is a ton-scale double phase argon Time Projection Chamber designed for direct Dark Matter searches. It combines the detection of scintillation light together with the ionisation charge in order to discriminate the background (electron recoils) from the WIMP signals (nuclear recoils). After a successful operation on surface at CERN, the detector was recently installed in the underground Laboratorio Subterráneo de Canfranc, and the commissioning phase is ongoing. We describe the status of the installation and present first results from data collected underground with the detector filled with gas argon at room temperature.
ArDM-1t is the prototype for a next generation WIMP detector measuring both the scintillation lig... more ArDM-1t is the prototype for a next generation WIMP detector measuring both the scintillation light and the ionization charge from nuclear recoils in a 1-ton liquid argon target. The goal is to reach a minimum recoil energy of 30 keVr to detect recoiling nuclei. In this paper we describe the experimental concept and present results on the light detection system, tested for the first time in ArDM on the surface at CERN. With a preliminary and incomplete set of PMTs, the light yield at zero electric field is found to be between 0.3-0.5 phe/keVee depending on the position within the detector volume, confirming our expectations based on smaller detector setups.
The Tokai-to-Kamioka (T2K) experiment studies neutrino oscillations using an off-axis muon neutri... more The Tokai-to-Kamioka (T2K) experiment studies neutrino oscillations using an off-axis muon neutrino beam with a peak energy of about 0.6 GeV that originates at the J-PARC accelerator facility. Interactions of the neutrinos are observed at near detectors placed at 280 m from the production target and at the far detector -Super-Kamiokande (SK) -located 295 km away. The flux prediction is an essential part of the successful prediction of neutrino interaction rates at the T2K detectors and is an important input to T2K neutrino oscillation and cross section measurements. A FLUKA and GEANT3 based simulation models the physical processes involved in the neutrino
We present the results of the first exposure of a Liquid Argon TPC to a multi-GeV neutrino beam. ... more We present the results of the first exposure of a Liquid Argon TPC to a multi-GeV neutrino beam. The data have been collected with a 50 liters ICARUS-like chamber located between the CHORUS and NOMAD experiments at the CERN West Area Neutrino Facility (WANF). We discuss both the instrumental performance of the detector and its capability to identify and reconstruct low-multiplicity neutrino interactions.
The aim of the ArDM project is the development and operation of a one ton double-phase liquid arg... more The aim of the ArDM project is the development and operation of a one ton double-phase liquid argon detector for direct Dark Matter searches. The detector measures both the scintillation light and the ionization charge from ionizing radiation using two independent readout systems. This paper briefly describes the detector concept and presents preliminary results from the ArDM R&D program, including
We present the results of the first exposure of a Liquid Argon TPC to a multi-GeV neutrino beam. ... more We present the results of the first exposure of a Liquid Argon TPC to a multi-GeV neutrino beam. The data have been collected with a 50 liters ICARUS-like chamber located between the CHORUS and NOMAD experiments at the CERN West Area Neutrino Facility (WANF). We discuss both the instrumental performance of the detector and its capability to identify and reconstruct low multiplicity neutrino interactions.
The Argon Dark Matter (ArDM-1t) experiment is a ton-scale liquid argon (LAr) double-phase time pr... more The Argon Dark Matter (ArDM-1t) experiment is a ton-scale liquid argon (LAr) double-phase time projection chamber designed for direct Dark Matter searches. Such a device allows to explore the low energy frontier in LAr with a charge imaging detector. The ionization charge is extracted from the liquid into the gas phase and there amplified by the use of a Large Electron Multiplier in order to reduce the detection threshold. Direct detection of the ionization charge with fine spatial granularity, combined with a measurement of the amplitude and time evolution of the associated primary scintillation light, provide powerful tools for the identification of WIMP interactions against the background due to electrons, photons and possibly neutrons if scattering more than once. A one ton LAr detector is presently installed on surface at CERN to fully test all functionalities and it will be soon moved to an underground location. We will emphasize here the lessons learned from such a device for the design of a large LAr TPC for neutrino oscillation, proton decay and astrophysical neutrinos searches.
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment - NUCL INSTRUM METH PHYS RES A, 2011
We have previously reported on the construction and successful operation of the novel double phas... more We have previously reported on the construction and successful operation of the novel double phase Liquid Argon Large Electron Multiplier Time Projection Chamber (LAr LEM-TPC). This detector concept provides a 3D-tracking and calorimetric device capable of adjustable charge amplification, a promising readout technology for next generation neutrino detectors and direct Dark Matter searches. In this paper, we report on the first operation of a LAr LEM-TPC prototype equipped with a single 1mm thick LEM amplifying stage and a 2D projective readout anode. The active area of the detector is 10×10cm2 and the drift length is 21cm. Cosmic muon events were collected, fully reconstructed and used to characterize the performance of the chamber. The obtained signals provide images of very high quality and the energy loss distributions of minimum ionizing tracks give a direct estimate of the amplification. We find that a stable gain of ∼30 can be achieved with this detector configuration correspo...
We describe an important new technique to search for WIMPs. This technique employs a method of ba... more We describe an important new technique to search for WIMPs. This technique employs a method of background discrimination using double phase xenon as detector target. We describe the construction of a two-phase, 1-kg xenon detector. The detector will be installed at the underground laboratory in the Mt. Blanc tunnel, which provides a low background rate. A comparison between the sensitivity curve of our detector and the theoretical events limit from SUSY calculations is presented. q
The Argon Dark Matter experiment is a ton-scale double phase argon Time Projection Chamber design... more The Argon Dark Matter experiment is a ton-scale double phase argon Time Projection Chamber designed for direct Dark Matter searches. It combines the detection of scintillation light together with the ionisation charge in order to discriminate the background (electron recoils) from the WIMP signals (nuclear recoils). After a successful operation on surface at CERN, the detector was recently installed in the underground Laboratorio Subterráneo de Canfranc, and the commissioning phase is ongoing. We describe the status of the installation and present first results from data collected underground with the detector filled with gas argon at room temperature.
ArDM-1t is the prototype for a next generation WIMP detector measuring both the scintillation lig... more ArDM-1t is the prototype for a next generation WIMP detector measuring both the scintillation light and the ionization charge from nuclear recoils in a 1-ton liquid argon target. The goal is to reach a minimum recoil energy of 30 keVr to detect recoiling nuclei. In this paper we describe the experimental concept and present results on the light detection system, tested for the first time in ArDM on the surface at CERN. With a preliminary and incomplete set of PMTs, the light yield at zero electric field is found to be between 0.3-0.5 phe/keVee depending on the position within the detector volume, confirming our expectations based on smaller detector setups.
The Tokai-to-Kamioka (T2K) experiment studies neutrino oscillations using an off-axis muon neutri... more The Tokai-to-Kamioka (T2K) experiment studies neutrino oscillations using an off-axis muon neutrino beam with a peak energy of about 0.6 GeV that originates at the J-PARC accelerator facility. Interactions of the neutrinos are observed at near detectors placed at 280 m from the production target and at the far detector -Super-Kamiokande (SK) -located 295 km away. The flux prediction is an essential part of the successful prediction of neutrino interaction rates at the T2K detectors and is an important input to T2K neutrino oscillation and cross section measurements. A FLUKA and GEANT3 based simulation models the physical processes involved in the neutrino
We present the results of the first exposure of a Liquid Argon TPC to a multi-GeV neutrino beam. ... more We present the results of the first exposure of a Liquid Argon TPC to a multi-GeV neutrino beam. The data have been collected with a 50 liters ICARUS-like chamber located between the CHORUS and NOMAD experiments at the CERN West Area Neutrino Facility (WANF). We discuss both the instrumental performance of the detector and its capability to identify and reconstruct low-multiplicity neutrino interactions.
The aim of the ArDM project is the development and operation of a one ton double-phase liquid arg... more The aim of the ArDM project is the development and operation of a one ton double-phase liquid argon detector for direct Dark Matter searches. The detector measures both the scintillation light and the ionization charge from ionizing radiation using two independent readout systems. This paper briefly describes the detector concept and presents preliminary results from the ArDM R&D program, including
We present the results of the first exposure of a Liquid Argon TPC to a multi-GeV neutrino beam. ... more We present the results of the first exposure of a Liquid Argon TPC to a multi-GeV neutrino beam. The data have been collected with a 50 liters ICARUS-like chamber located between the CHORUS and NOMAD experiments at the CERN West Area Neutrino Facility (WANF). We discuss both the instrumental performance of the detector and its capability to identify and reconstruct low multiplicity neutrino interactions.
The Argon Dark Matter (ArDM-1t) experiment is a ton-scale liquid argon (LAr) double-phase time pr... more The Argon Dark Matter (ArDM-1t) experiment is a ton-scale liquid argon (LAr) double-phase time projection chamber designed for direct Dark Matter searches. Such a device allows to explore the low energy frontier in LAr with a charge imaging detector. The ionization charge is extracted from the liquid into the gas phase and there amplified by the use of a Large Electron Multiplier in order to reduce the detection threshold. Direct detection of the ionization charge with fine spatial granularity, combined with a measurement of the amplitude and time evolution of the associated primary scintillation light, provide powerful tools for the identification of WIMP interactions against the background due to electrons, photons and possibly neutrons if scattering more than once. A one ton LAr detector is presently installed on surface at CERN to fully test all functionalities and it will be soon moved to an underground location. We will emphasize here the lessons learned from such a device for the design of a large LAr TPC for neutrino oscillation, proton decay and astrophysical neutrinos searches.
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment - NUCL INSTRUM METH PHYS RES A, 2011
We have previously reported on the construction and successful operation of the novel double phas... more We have previously reported on the construction and successful operation of the novel double phase Liquid Argon Large Electron Multiplier Time Projection Chamber (LAr LEM-TPC). This detector concept provides a 3D-tracking and calorimetric device capable of adjustable charge amplification, a promising readout technology for next generation neutrino detectors and direct Dark Matter searches. In this paper, we report on the first operation of a LAr LEM-TPC prototype equipped with a single 1mm thick LEM amplifying stage and a 2D projective readout anode. The active area of the detector is 10×10cm2 and the drift length is 21cm. Cosmic muon events were collected, fully reconstructed and used to characterize the performance of the chamber. The obtained signals provide images of very high quality and the energy loss distributions of minimum ionizing tracks give a direct estimate of the amplification. We find that a stable gain of ∼30 can be achieved with this detector configuration correspo...
We describe an important new technique to search for WIMPs. This technique employs a method of ba... more We describe an important new technique to search for WIMPs. This technique employs a method of background discrimination using double phase xenon as detector target. We describe the construction of a two-phase, 1-kg xenon detector. The detector will be installed at the underground laboratory in the Mt. Blanc tunnel, which provides a low background rate. A comparison between the sensitivity curve of our detector and the theoretical events limit from SUSY calculations is presented. q
Uploads
Papers by A. Curioni